| AUTHOR | Johnson, Eugene G.; And Others |
| :---: | :---: |
| title | Focusing the New Design: The NAEP 1988 Technical Report. |
| INSTITUTION | National Assessment of Educational Progress, Princeton, NJ. |
| SPONS AgElicy | National Center for Ecucation Statistics (ED), Nashington, DC. |
| REPORT NO | ISBN-0-88685-106-8; NAEE-19-TR-20 |
| PUB DATE | Sep 90 |
| CONTRACT | OERI-G-008720335 |
| NOTE | 763p. |
| AVAILABLE YROM | National Assessment of Educational Progress (NAEP), Educational Tesing Service, Rosedale Roac, Princeton, NJ 08541. |
| pus type | Reports - Evaluative/Feasibility (142) -- Statıstıcal <br> Data (110) |
| EDRS PRICE | MFOC/PC3I Plus Postage. |
| DESCRIPTORS | Annual Reports; Data Analysis; Databases; |
|  | *Educational Assessment; Elementary Secondary |
|  | Education; *Federal Programs; Grade 4; Grade 8; Grade 12; *National Surveys; Private Schools; Public |
|  | Schools; *Research Design; Research Methodology; |
|  | Sampling; ,cal.ing; Scoring: *Standardized Tests; Test Constructica |
| IDENTIFIERS | *National Assessment of Educational Progress |

ASSTRACT
Details of the design and data analysis associated with the 1983 National Assessment of Educational Progress (NAEP) are presented. The 1988 NAEF surveyed American students' knowledge of reading, writing, civics, U.S. history, and gecgraphy. Small-scale studies were conducted for mathematics and science. Populations included public school students and private school students (aged 9, 13, and 17 years) as well as students in grades 4, 8, and 12. Geography was surveyed only at grade 12 /age 17 years. The objective of these ter nical notes is to provide information tc allo. the reader to judge the utility of the design, quality of the NAEP data, reasonableness of the assumptions made, appropriateness of the data analyses, and generalizability of the inferences made from the data. Topics addressed inclıdo: development of objectives and items; sample design; assessment instzuments; field administration; materials processing and database creation; processing assessment materials; professional scoring; data transcription systems; editing data; quality control of data entry; database products; weighting procedures and estimation of sampiing variance; scaling procedures; data analysis for the various subject area assessments; and the statistical summary of the sar?les and estimates of proficiencies of U.S. students. A total of 204 data tables and 14 figures are provided. Appendices provide: a list of consultants for development of the 1988 NAEP objectives and items; distributions of weight components for the 1988 NAEP samples; contrast codings and estimated effects for 1988 NAEP conditioning variables; 1988 NAEP derived and composite conditioning variables; revision of 1984 NAEP post-stratification weights for grade 4/age 9 years and grade 8/age 13 years; 1988 NAEP item response theory parameters; and NAEP reporting sungroups, composite and derived common background variables, and subject-specific composite and derived reporting variables. A glossary of terms, a list of references cited in the text, and an index are included. (TJH)



The Nation's Report Card, the National Assessment of Educational Progress (NAEP), is an education research project mandated by Congress to collect data over time on the performance of young Americans in various subject areas. It makes available information on assessment procedures to state and local education agencies.

The 1988 twelfth-grade geography assessment was funded in part by the National Geographic Society.

This report, No. 19-TR-20, can be ordered from the National Assessment of Educational Progress (NAEP), Educational Testing Service, Rosedale Roa 1, Princeton, New Je! sey 08541.

Library of Congress Catalog Card Number: 90-62792
ISBN 0-88685-106-8
The contents of this eport were developed under a grant from the Departruent of Education. However, those conients do not necessarily represent the policy of the Department of Education, and you should not assume endorsenent by the federal government.

The work upon which this publication is based was performed pursuant io Grant No. G-008?20335 of the Office of Educational Research and Improvement.

Educational Testing Service is an equal opportunity/affirmative action employer.
Educational Testing Service, ETS, and (玉S) are registered trademarks of Educational Testing Service.

## Focusing the New Design: The NAEP 1988 Technical Report

## CONTENTS

List of Tables and Figures ..... vii
Acknowledgments ..... xiii
Introduction ..... 3Albert E. Beaton
PART IThe Design and Implementation of the 1988 NAEP
Chapter 1 Overview of Part I: The Desigr and Implementation of the 1988 NAEP ..... 13 Eugene G. Johnson
Chapter 2 Developing the NAEP Objectives, Items, and Background Questions for the 1988 Assessments of Reading, Writing, Civics, U.S. History, and Geograph:; ..... 33
Walter B. MacDonald, Ina V. S. Mullis, Anne Campbell, Nancy A. Mead
Chapter 3 Sample Design ..... 51
Keith F. Rust, Moris H. Hansen
Chapter 4 Assessment Instruments ..... 69
Janet R. Johnson
Chapter $5 \quad$ Field Administration ..... 85
Nancy Caldwell, Renee Slobasky
Chapter 6 Overview of 1988 NAEP Materials Processing and Database Creation ..... 99
John L. Bürone
Chapter 6.1 Processing Assessment Materials ..... 109
Alfred M. Rogers, Norma A. Norris
Chapter 6.2 Professional Scoring ..... 127
Lynn B. Jenkins, Anne Campbell
Chapter 6.3 Data Transcription Systems ..... 145
Alfred M. Rogers
Chapter 6.4 Editing Data ..... 155
David S. Freund, Alfred M. Rogers
Chapter 6.5 Quality Control of NAEP Data Entry for 1988 ..... 159
John J. Ferris
Chapter 6.6 Creation of the 1988 NAEP Database ..... 163
David S. Freund, Alfred M. Rogers
Chapter 6.7 NAEP Database Products ..... 167
Alfrea' M. Rogers
PART II
The Analysis of 1988 NAEP Data
Chapter 7 Overview of Part II: The Analysis of 1988 NAEP Data ..... 179
Rebecca Zwick
Chapter 8 Weighting Procedures and Estimation of Sampling Variance ..... 187
Eugene G. Johnson, Keith F. Rust, Morris H. Hansen
Chapter 9 Scaling Procedures ..... 229
Rçert J. Mislevy
Chapter 10 Data Analysis for the Reading Assessment ..... 251
Rebecca Zwick
Chapter 11 Data Analysis for the Writing Assessment ..... 267
Eugene F. Johnson
Chapter 12 Data Analysis for the Civics Assessment ..... 297
Nancy Allen
Chapter 13 Data Analysis for the U.S. History Assessment ..... 317
Norma A. Noris
Chapter 14 Data Analysis for the Geography Assessment ..... 325
Norma A. Norris
Chapter 15 Data Analysis for Mathematics and Science ..... 329
Kentaro Yamamoto
PART IIIStatistical Summary of 1988 NAEP Data
Chapt: 16 Statistical Summary of the 1988 NAEP Samples and Estimates of the Proficiencies of American Students ..... 343
Bruse A. Kaplan
Aps idix A Consultants for the Development of 1928 NAEP Objectives and Items ..... 469
Ap $p_{\star}$ indix B Distributioa of Weight Components for 1988 NAEP Samples ..... 481
Appendix C Contrast Codings and Estimated Effects for 1988 NAEP Conditioning Variables ..... 497
Appendix D 1988 NAEP Derived and Composite Conditioning Variables ..... 611
Appendix E Revision of 1984 NAEP Poststratification Weights for Grade 4/Age 9 and Grade 8/Age 13 ..... 639
Keith F. Rust
Appendix F 1988 NAEP IRT Parameters ..... 643
Appendix G NAEP Reporting Sutgroups, Composite and Derived Common Background Variables, and Subject-specific Composite and Derived Reporting Variables ..... 679
lossary of Terms ..... 709
References Cited in Text ..... 715
Index ..... 723

# Focusing the New Design: The NAEP 1988 Technical Report 

## LIST OF TABLES AND FIGURES

Table 1-1 NAEP 1988 student samples ..... 16
1-2 NAEP subject areas, grades, and ages assessed: 1969-1988 ..... 20
3-1 Reference populations for the components of the NAEP 1988 samples ..... 51
3-2 Assessment type by age class and assessment period ..... 52
3-3 Geographic regions used for stratification ..... 53
3-4 Sampling subuniverses and number of noncertainty strata in each ..... 54
Figure 3-1 Distribution of 94 sampled PSUs by inclusion in fall, winter, and spring ..... 56
Table 3-5 Grade definition of school eligibility for frame inclusion and frame sizes ..... 57
3-6 School sample sizes, refusals, and substitutes, main samples ..... 60
3-7 School sample sizes, refusals, and substitutes, bridge samples ..... 62
3-8 Number of students per school by session type ..... 65
3-9 Exclusion and participation rates by age class ..... 66
3-10 Overall partizipation rates by age class ..... 68
4-1 Number of main sample subject area cognitive blocks administered ..... 71
4-2 Booklet contents and number administered, main sample, grade 4/age 9 ..... 72
43 Booklet contents and number administered, main sample, grade 8/age 13 ..... 73
4-4 Booklet contents and number administered, main sample, grade 12/age 17 ..... 74
4-5 Main sample block information, grade 4/age 9 ..... 75
4-6 Mair: sample block information, grade 8/age 13 ..... 76
4-7 Main sample blocl: information, grade 12/age 17 ..... 77
4-8 Booklet $\mathrm{CO}_{\mathrm{m}}{ }^{\circ}{ }^{\circ} \mathrm{nt}$ s and number administered, bridge samples, age class 9 ..... 78
49 Booklet conterin and number administered, bridge samples, age cluss 13 ..... 79
4-10 Booklet contents and number administered, bridge samples, age class 17 ..... 80
5-1 Summary of NAEP 1988 school participation ..... 92
5-2 School cooperation rate by age class and type of assessment ..... 92
5-3 Students sampled, invited, and assessed during the fall assessment ..... 97
5-4 Students sampled, invited, and assessed during the winter and spring assessments ..... 97
Figure 6-1 Data flow oyerview ..... 103
Figure 6.1-1 Main menu for the data entry system ..... 111
6.1-2 First school worksheet dita entry screen ..... 113
6.1-3 Second school worksheet data entry screen ..... 113
6.1-4 Absentee data entry screen ..... 114
6.1-5 Main menu for :anagement of the data entry system ..... 118
6.1-6 Menu for loading of data tapes into data entry system ..... 118
6.1-7 Student session data entry screen ..... 121
6.1-8 Studenr booklet cover data entry screen ..... 121
6.1-9 Primary menu for entry of questionnaire data ..... 122
Table 6.2-1 NAEP 198世 main sampie open-ended items ..... 129
6.2-2 NAEP 1988 bridge sample open-ended items ..... 130
6.2-3 Percentages of exact score point agreement and intraclass correlation coefficients for open-ended items in the 1988 main samples ..... 141

Table 6.2-4 Percentages of exact score point agreement and intraclass correlation coefficients for open-ended items in the 1988 bridge samples
$\begin{array}{lll}\text { Figure 6.3-1 } & \text { NAEP data transcription system (Part 1: Student-related materials) } & 146\end{array}$
6.3-2 NAEP data transcription system (Part 2: Questionnaire materials)
Table 6.5-1 Summary of quality control error analysis for data entry ..... 161
8-1 Major subgroups for poststratification in 1988 ..... 198
8-2 Major subgroups for poststratification in 1986 and 1984 ..... 200
8-3 Effect of change in poststratification procedures on relative frequencies and mean reading proficiencies, age 9, 1986 ..... 20.
9-4 Effect of change in poststratiication procedures on relative frequencies and mean reading proficiencies, age 13,1986 ..... 204
8-5 Effect of change in poststratification procedures on relative frequencies and mean rending proficiercies, age 17,1986 ..... 205
8-6 Distributions of design effects across items for the cognitive reading items given in 1988, gracie 4 ..... 214
8-7 Distributions of design effects across items for the cognitive reading items given in 1988, grade 8 ..... 215
8-8 Distributions of design effects across items for the cognitive reading items given in 1988, grade 12 ..... 216
8-9 Average design effects by demographic subgroup and grade for mean reading proficiency scores ..... 218
8-10 Average design effects by grade for simple regression coefficients based on seading proficiency scores ..... 221
8-11 Effective degress of freedom for the design effects of the proportion-correct statistics ..... 224
8-12 Effective degrees of freedom for the design effects for mean reading proficiency scores ..... 226
8-i3 Effective degrees of freedom for the design effects for simple regression coefficients based on reading proficiency scores ..... 227
91 Estimated effects based on full, no, and partial conditioning ..... 287
9-2 Estimation error variances and related coefficients for the 1988 grade-le ..l reading assessments ..... 248
10-1 NAEP 1988 reading samples ..... 253
10-2 Response modes for NAEP 1988 reading items ..... 254
10-3 NAEP 1988 reading items, BIB samples ..... 257
10-4 Dichotomization rales for open-ended reading items used in scaling ..... 257
10-5 Average percent of students failing to reach items for each block position ..... 259
10-6 Average item percent correct for each block position ..... 260
10-7 Items for which multiple item response functions were estimated ..... 262
11-1 Assignment of 1984-1988 writing trend items in 1984 and 1988 ..... 269
11-2 Percentages of exact score agreement and interrater reliability for the primary trait scoring of the 1988 writing trend items ..... 271
11-3 Mesn and standard deviation of (rescore - original) for the $20 \%$ rescore of 1984 writing responses ..... 272
11-4 Distribution of (rescore - original) for the $20 \%$ rescore of 1984 writing responses ..... 273
11-5 Sample sizes for primary trait analyses of trends in writing performance ..... 274
11-6 Estimable between-item correlations with grade and year ..... 281
11-7 Sample sizes for medlanics scoring ..... 288
11-8 Sample sizes for holistic scoring ..... 289
11-9 Assignment of writing items for cross-sectional writing assessment ..... 290
11-10 Sample sizes for primary trait analyses of cross-sectional writing performance ..... 290
11-11 Estimable between-item correlations for the cross-sectional scale with grade ..... 293
Table 11-12 Mean primary trait score by position of item in booklet ..... 294
12-1 NAEP 1988 civics samples ..... 299
12-2 Sample sizes and number of items for main assessment grade/age civics samples ..... 300
12-3 Descriptive statistics for main assessment civics blocks ..... 302
12-4 Effect of block position on average item percent correct for main foctised-BIB civics samples ..... 303
12-5 Results of the full-information factor analyses of tetrachoric matrices of civics item responses ..... 314
12-6 Civics means and standard deviations on the calibration scale for grade/age main assessment BIB spiral samples ..... 306
12-7 Means and standard deviations oa the civics proficiency scale ..... 308
12-8 Civics anchor levels and descriptions ..... 309
12-9 Dichotomous scoring of the two parts of the open-ended civics item ..... 310
12-10 Percent agreement for the ratings of the two portions of the dichotomously scored open-ended civics item ..... 310
12-11 Items deletca from the civics trend analysis because of text changes ..... 311
12-12 Number of items and sample sizes for the civies trend assessment ..... 312
12-13 Descriptive statistics for civics 1988 trend blocks ..... 313
12-14 Items deleted from the civics trend analysis duc to lack of model fit ..... 314
12-15 Means and standard deviations on the civics trend proficiency scale ..... 315
12-16 Dichotomous scoring of the open-ended civics trend items ..... 316
12-17 Percent agreement for the ratings of the dichotomously scored open-ended civics trend items ..... 316
13-1 NAEP 1988 U.S. history samples ..... 318
13-2 Dichotomized variables for U.S. history ..... 319
13-3 Descriptive statistics for multiple-choicu U.S. history blocks ..... 320
13-4 Range of percents of items not reached for multiple-choice II.S. history blocks ..... 319
13-5 U.S. history proficiency scale item information, by sample ..... 321
13-6 U.S. history item scores excluded from IRT' scale ..... 321
13-7 U.S. history anchoring: Percentages at or above each level, by grade ..... 323
14-1 NAEP 1988 geography samples ..... 326
15-1 Mathematics and science samples, 1988 assessment ..... 332
15-2 Mathematics weighted mean proportion correct ..... 333
15-3 Cocfficients of the linear ransformation of the trend scale from original units to the mathematics proficiency scale ..... 334
Figure 15-1 Plot of observed proportion correct of the 1986 BIB spiral and trend assessments with the estimated item response function for an "estimate" item ..... 336
Table 15-4 Science weighted mean proportion correct ..... 338
15-5 Coefficients of the lincar transformat. in of the trend scale frum original units to the science proficiency scale ..... 339
16-1 Measurement instruments developed for 1908 NAEP ..... 348
16-2 Numbers of distinct items administered, by age class ..... 349
16-3 Numbers of distinct cognitive items by age class and sample type ..... 350
16-4 Characteristics of schools in main NAEP (cross-sectional) samples ..... 351
16-5 Characteristics of schools in NAEP bridge samples ..... 353
16-6 Numbers of responses to teacher questionnaire ..... 355
16-7 Numbers of assessment sessions by sample, type of session, and age class ..... 356
16-8 Numbers of students assessed and excluded by sample and age class ..... 357
16.9 Numbers of students in main sample by subgroup, grade 4/age 9 ..... 358
16-10 Numbers of students in main sample by subgroup, grade 8 /age 13 ..... 359
16-11 Numbers of students in main sa pile by subgroup, grade 12/age 17 ..... 360
Table 16-12 Numbers of students in bridge to 1984 sample by subgroup, grade 4/age 9 ..... 361
16-13 Numbers of students in bridge to 1984 sample by subgroup, grade 8 /age 13 ..... 362.
16-14 Numbers of students in bridge to 1984 sample by subgroup, grade 11/age 17 ..... 363
16-15 Numbers of students in bridge to 1986 sample by subgroup, age 9 ..... 364
16-16 Numbers of students in bridge to 1986 sample by subgroup, age 13 ..... 365
16-17 Numbers of students in bridge to 1986 sample $\delta$ y subgroup, grade 11/age 17 ..... 366
16-18 Numbers of students in civics bridge by subgroup, age 13 ..... 367
16-19 Numbers of sttidents in civics bridge by subgroup, age 17 ..... 368
16-20 Numbers of excluded students in main and bridge samples by subgroup, grade 4,'age 9 ..... 369
16-21 Numbers of excluded students in main and bridge samples by subgroup, grade 8/age 13 ..... 370
16-22 Numbers of excluded students in main sample by subgroup, grade 12/age 17 ..... 371
16-23 Numbers of excludec stude ts in bridge samples by subgroup, grade 11/age 17 ..... 372
16-24 Numbers of students by sample and age class ..... 373
16-25 Numbers of students assessed in main assessment, grade 4/age 9 ..... 374
16-26 Numbers of students assessed in main assessment, grade 8/age 13 ..... 375
16-27 Numbers of students assessed in main assessment, grade 12/age 17 ..... 376
16-28 Numbers of students assessed in bridge to 1984, grade 4/age 9 ..... 377
16-29 Numbers of students assessed in bridge to i984, grade 8/age 13 ..... 378
16-30 Numbers of students assessed in bridge to 1984, grade 11/age 17 ..... 379
16-31 Numbers of students assessed in bridge to 1986, age 9 ..... 380
16-32 Numbers of students assessed in bridge to 1986, age 13 ..... 381
16.13 Numbers of students assessed in bridge to 1986, grade 11/age 17 ..... 382
16-34 Numbers of students assessed in civics bridge, age 13 and age 17 ..... 383
16-35 Weighted percentage of students in main sample by subgroup. grade 4/age 9 ..... 384
16-36 Weighted percentage of students in main sample by subgroup, grade 8/age 13 ..... 385
16-37 Weighted pe centage of students in main sample by subgroup, grade 12/age 17 ..... 386
16-38 Weighted percentage of students in bridge to 1954 sample by subgroup, grade 4/age 9 ..... 387
16-39 Weighted percentage of students in bridge to 1984 sample by subgroup, grade 8/age 13 ..... 388
16-40 Weighted percentage of students in bridge to 1984 sample by subgroup, grade 11/age ..... 389
16-41 Weighted percentage of students in bridge to 1986 sample by subgroup, age 9 ..... 390
16-42 Weighted percentage of students in bridge to 1986 sample by suigroup, age 13 ..... 391
16-43 Weighted percentage of students in bridge to 1986 sample by suogroup, grade 11/age 1? ..... 392
16-44 Weighted percentage of students in civics bridge by subgroup, age 13 ..... 393
16-45 Weighted percentage of students in civics bridge by subzroup, age 17 ..... 394
16-46 Weighted percentage of excluded students by subgroup, grade 4/age 9 main and brid, $\mathbf{z c}^{2}$ samples ..... 395
16-47 Weighted percentage of excluded students by subgroup, grade 8/age 13 main and bridge samples ..... 396
16-48 Weighted percentage of excluded students by subgroup, grade 12/age 17 main sample ..... 397
16-49 Weighted percentage of excluded students by subgroup, grade 11 /agi 17 bridge sample ..... 398
16-50 Numbers of students in main sample with proficiency scores, grade 4/age 9 ..... 399
16-51 Numbers of students in main sample with proficiency scores, grade 8/age 13 ..... 400
16-52 Numbers of students in main sample with proficiency scores, grade 12/age 17 ..... 401
16.53 Numbers of students in bridge te 1984 sample with p.oficiency scores, grade 4, age 9 ..... 402
16-54 Numbers of students in bridge to 1984 sample with proficiency scores, grade $8 /$ age 13 ..... 403
16-55 Numbers of students in bridge to 1984 sample with proficiency scores, grade 11/age 1? ..... 404
16-56 Numbers of students in tridge to 1986 se mp'e with proficieacy scores, age 9 ..... 405
16-57 Numbers of students in bridge to 1986 sa. aple with proficiency scores, age 13 ..... 406
16-58 Numbers of students in bridge to 1986 sample with proficiency scores, grade :1, age 17 ..... 407
16-59 Numbers of studeats in civics bridge with proficiency scores, age 13 ..... 408
16-60 Numbers of students in civics bridge with proficiency scores, age 17 ..... 409
16-61 Weighted proficiency means, standard deviations, and percentiles with standard errors for main focused-BIB reading samples, by grade and subgroup ..... 410
16-62 Weighted proficiency E. $_{2}$ ms, standard deviations, and percentiles with standard errors for bridge to 1884 reading samples, by age and subgroup ..... $4: 2$
Table 16-63 Weighted proficiency n.eans, standard deviations, and percentiles with standard crrors for main writing samples, by grade and subgroup ..... 414
16-64 Weighted proficiency means, standard deviations, and percentiles with standard crrors for bridge to 1984 writing samples, by grade and subgroup ..... 416
16-65 Weighted proficiency mewis, standard deviations, and percentiles with standard errors for main focused-BIB civics samples, by grade and subgroup ..... 418
16-66 Weighted proficiency means, standard deviations, and percentiles with standa-d errors for civics bridge :amples, by age and subgroup ..... ${ }^{4} 20$
16-67 Weighted proficiency means, standard deviations, and percentiles with standard errors for main U.S. history samples, by grade and subgroup ..... 422
16-68 Weighted proficiency means, standard deviations, and percentiles with standard errors for main geography sample, by grade and subgroup ..... 424
16-69 Weighted proficiency means, standard deviations, and peicentiles with standard errors for tridge to 1986 mathematics samples, by age and subgroup ..... 426
16-70 Weighted proficiency means, siandard deviations, and percentiles with standard errors for bridge to 1986 science samples, by age and subgroup ..... 428
16-71 Weighted response perecntages and reading proficiency means with standard errors, grade 4, by gender, for main focused-BIB reading samples ..... 430
16-72 Weighted response percentages and reading proficiency means with standard criors, grade 4, by derived race/et' 'sity, for main focused-BIB reading samples ..... 431
16-73 Weighted response percentages and reading proficiency means with standard errors, grade 4, by parental education, for main focused-BIB reading samples ..... 432
16-74 Weighted response percentages and reading proficiency means with standard errors, grade 8 , by gender, for main focused-B!B reading samples ..... 433
16.75 Weighted response percentages and reading proficiency means with standard e. ors, grade 8, by derived race/cthnicity, for main focused-BIB reading samples ..... 434
16-76 Weighted response percentages and readies proficiency means with standard errors, grade 8, by parental cducation, for main focused-BIB reading samples ..... 435
16-77 Weighied response percentages and reading proficiency means with standard enors, grade 12 , by gender, for main focused-BIB reading samples ..... 436
16-78 Weighted response percentages and reading proficiency means with standard errors, grade 12, jy derived race/ethnicity, for main fycused-BIB reading samples ..... 437
16-79 Weighted response percentages and reading proficiency means with standard errors, grade 12, by parental education, for main focused-BIB reading samples ..... 438
16-80 Weighted response percentages and writing proficiency means with standard errors, grade 4, by gender, for main writing samples ..... 439
16-81 Weighted response percentages and writing proficiency means with standard errors, grade 4 , by derived race/ethnicity, for main writing samples ..... 440
16-82 Weighted response percentages and writing proficiency means with standard errors, grade 4, by parental cducation, for main writing samples ..... 441
16.83 Weighted response percentages and writing proficiency means with standard eryors, grade 8 , by gender, for main writing samples ..... 442
16-84 Weighted response percentages and writing proficiency means with standard errorc, grade 8, by derived race/ethnicity, for main writing samples ..... 443
16-85 Weighted response percentages and writing proficiency means with standard errors, grade 8 , by parental cducation for main writing samples ..... 444
16-86 Weighted response percentages and writing proficiency means with standard errors, grade 12, by gender, for main writing samples ..... 445
16-87 Weighted response percentages and writing proficiency means with standard errors, grade 12, by derived race/ethnicity, for main whiting samples ..... 446
16 28 Weighted response percentages and writing proficiency means with standard errors, grade 12, by parental education, for main writing samples ..... 447

Table 16-89 Weighted response percentages and civics proficiency means with standard errors, grade 4 , by gender, for main focused-BIB crvics samples

# 16-90 Weighteri response percentages and civics proficiency means with standard errors, grade 4, oy derived race/ethnicity, for main focused-BIB civics samples <br> 449 

16-91 Weighted response percentages and civics proficiency means with standard errors, grade 4, by parental education, for main focused-BIB civics samples ..... 450
16-92 Weighted response percontages and civics proficiency means with standard errors, grade 8 , by gender, for main focused-BiB civics samples ..... 451
16-93 Weighted response percentages and civics proficiency means with standard errors, grade 8, by derived race/ethnicity, for main focused-BIB civiss samples ..... 452
16-94 Weighted response percentages and civics proficiency means with standard errors, grade 8, by parental education, for main focused-BIB civics samples ..... 453
16-95 Weighted response percentages and civics proficiency means with standard errors, grade 12 , by gender, for main focused-BIB civics samples ..... 454
16-96 Weighted response percentages and civics proficiency means with standard errors, grade 12, by derived race, ethnicity, for main focused-BIB civics samples ..... 455
16-97 Weighted response percentages and civics proficiency means with standard errors, grade 12, by parental education, for main focused-BIB civics samples ..... 456
16.93 Weighted response percentages and U.S. history proficiency means with standard errors, grade 4, by gender, for main U.S. history samples ..... 457
1:-99 Weighted response percentages and U.S. history proficiency means with standard errors, grade 4, by derived race/ethnicity, for main U.S. bistory samples ..... 458
16-100 Weighted response percentages and U.S. history proficiency nieans with standard errors, grade 4, by parentai education, for main Ú.s. histury samples ..... 459
16-101 Weighted response percentages and U.S. history proficiency means with standard errors, grade 8, by gender, for main U.S. history samples ..... 460
16-102 Weighted response percentages and U.S. history proficiency means with standard errors, grade 8, by derived race/ethnicity, for main U.S. history samples ..... 461
16-103 Weighted response percentages and U.S. history proficiency means with standard errors, grade 8, by parental education, for main U.S. history samples ..... 462
16-104 Weighted response percentages and U.S. history proficiency means with standard errors, grade 12, by gender, for main U.S. history samples ..... 463
16-105 Weighted response percentages and U.S. Fistory proficiency means withstandard errors, grade 12, by derived ethnicity, for main U.S. historysamples464
16-106 Weighted response percentages and l's. history proficiency means with standard errors, grade 12 , by parental education, for main U.S. history samples ..... 465
16-107 Weighted response percentages and geozraphy proficiency means with standard eirors, grade 12 , by gende:, for main geography samples ..... 466
16-108 Weighted respense percentages and geography proficiency means with standard errors, grade 12, by derived race/ethnicity, for main geography samples ..... 467
16-109 Weighted response percentages and geography proficieacy means with standard errors, grade 12 , by ₹ rental education, for main geography samples ..... 468

## ACKNOWLEDGMENTS

The comprehensive and important findings reported in the 1988 National Assessment of Educational Progress (NAEP) attest to what can be accomplished whe. educational policy makers and practitioners, technical experts, and o.her concerned stakeholders work together to provide the information needed to make informed educational policy decisions.

This repert documents the NAEP design and data analysis procedures and the technical thinking that led to their implementation. The report is the result of the contributions of many individuals from many organiz tions. Individuals from ETS and Westat, Inc., had the responsibility for both carrying out and documenting the procedur's reported here. Others have served in facilitating, consulting, and advisory roles. It is appropriate that all of these individuals and ganizations be acknowledged here for their contributions to the team effort.

The 1988 NAEP assessment was funded through the Office of Educational Research and Improvement (OERI) of the Department of Edu.-tion. The staff of OERI have worked in cooperation with ETS and Westat staff in many facilitating roles. In addition, OERI staff have helped to provide the intellectual environment necessary to carry out the sophisticated design and analysis procedures that have become a NAEP trademark. I wish to take this opportunity to thank Emerson Elliott, David Sweet, Gary Phillips, Eugene Owen, Steven Gorman, Maureen Treacy, and their associates at OERI; they have all played a very important role in this endeavor. I also thank the anonymous reviewers for their helpful comments.

The NAEP Design and Analysis Committee (DAC), which oversees the technical aspects of NAEP, has been of exceptional help in both their advisory and supportive roles. The members for the 1988 assessment were Robert Linn (Chair), John Carroll, Robert Glaser, Bert Green, Sylvia Johnson, Ingram Olkin, Tej Pandey, Richard Snow, and John Tukey. New members of the DAC who have also given thoughtful reviews of this report are Jeremy Finn and Huynh Huynh.

I am also grateful to the members of the National Assessment Governing Board (NAGB) for their advice and guidance.

The ETS and NAEP management staffs have been both supporters of and contributors to the technical work of NAEP. Special thanks go to Gregory Anr:g, Nancy Cole. Victor Bunderson, and Henry Braun of ETS management and to Archie Lapointe, Ina Mullis, Jules Goodison, and David Hobson of NAEP management.

Ina Mullis deserves special recognition for her leadership and influence on the present and future direction of NAEP. The impact of her experience and expertise can be found in all areas of NAEP. Her wisdom, leadership, and organizational skills have been a source of strength for all those involved in NA.EP.

Albert Beaton also deserves special praise for his leadership in the technical aspects of NAEP. He has been the director of NAEP's statistical and psychometric activities from the beginning of ETS' participation, and has helped develop and direct the application of the many new technical innovations that are outlined in this and previous technical reporis.

Norma Norris and Jules Gondison deserve special thanks for their demanding role as those responsible for the operational aspects of the 1988 NAEP. I would also like to thank Ina Mullis, Walter MacDonald, and Nancy Mead for their roles in guiding the development of the 1988 assessment objectives and items and Anne Campbell for her part in leading the professional scoring. Ina Mullis and Lynn Jenkins were vital to the process of reporting the results from the assessment; significant contributions to this process were also made by Walter MacDonald and Mary Foertsch. Janet Johnson played an extremely valuable role in facilitating the coordinasion between NAEP management and NAEP research.

The design and the data analysis of the 1988 NAEP, including the writing of this report, was primarily the responsibility of the NAEP research data analysis staff with significant contributions from both Westat and NAEP management. Many among the NAEP research staff made innovative statistical and psychometric contributions as well as carrying out their more routine supervisory activities. NAEP is particularly indebted for the major contributions of Albert Beaton, Eugene Johnson, Robert Mislevy, Kentaro Yamamoto, and Rebecca Zwick. Nancy Allen, a more recent member of the NAEP research staff, also brought new perspectives and energy to the NAEP tasks. I am grateful also for the contributions of Maxine Kingston and Kathleen Sheehan. Jo-Ling Liang was exceptional in her role as technical assistant.

As in the past, the Data Analysis Department, under the outstanding leadership of John Barone, performed exceptionally in carrying out their responsibilities for developing operating systems and producing data analyses. Alfred Rogers and David Freund deserve special commendation for their excellent leadership in developing and maintaining the large and complex NAEP data management systems. .ilfred Rogers also deserves special mention for his role in the development of the new NAEP database products and systemized approach to NAEP data analysis and scaling. In addition, special thanks go to David Freund, Bruce Kaplan, Edward Kulick, Norma Norris, and Jim Ferris for their continuing key roles a: supervisors and/or developers of innovative software solutions to NAEP data analysis problems. Other members of the Data Analysis Department who played key roles in the 1988 data analysis were Jennifer Nelson, Michael Narcowich, Inge Novatkoski, Kate Pashley, Minhwei Wang, Ira Sample, and Lee Ann Held.

The staff of Westat, Inc., once again contributed their exceptional organizational skills and talents in all areas of sampling desigr and data collection. Morris Hansen and Keith Rust developed and supurvised the sampling design and Renee Slobasky and Nancy Caldwell carried out the field upe'stions. I wuld like to thank all of the Westat field staff for their exceptional data collertion efiort.

Other ETS staff members who contributed to the 1988 design include Margaret Goertz, Ann Jungeblut, und Gita Wilder. I am especially grateful tr

William Angoff for his careful reviews and constructive observations during the writing of this report.

Kent Ashworth and Janice Askew were responsible for coordinating the cover design and final printing of the report.

I would like to tinank the support staff, including Marge Edmonds, Alice Kass, Donna Lembeck, Kandy Olbrick, June Quattromani, Shaion Stiwart, Kay Tyberg, Mary Varone, and Maray Yates, for their diligence and patience in typing and proofreading the many revisions.

Finally, I would like to give special thanks to Debra Kline, the editor of this and other NAEP technical reports, for her tireless efforts in ensuring that the reports meet the higinest standards. As always, she has done an exceptional job of organizing, scheduiing, editing, and motivating, and has worked hard to make sure that the final report is cohereat and correct. Without her there would be no report.

Donalo A. Rock

Coordinating Director
NAEP Research
August 15, 1990

INTRODUCTION

## ERIC

 2

17

# Focusing the New Design: The NAEP 1988 Technical Report 

# INTRODUCTION 

Albert E. Beaton<br>Educational Testing Service

The $1: 88$ National Assessment of Educational Progress (NAEP) surveyed what students in American schools knew and could do in the subject artas of reading, writing, civics, U.S. history, and geography. Small-scale studies were also carried out for mathematics and science. The populations that were sampled included students enrolled in both public and private schools at ages 9, 13, and 17 as well as students in grades 4, 8, and 12. Geography was surveyed at grade 12/age 17 only.

The purpose of this technical report is to supply the details of the design and data analysis of the 1988 assessment. Our aim is to give the reader sufficient information to judge the utility of the design, the quality of the NAEP data, the reasonableress of the assumptions made, the appropriateness of the data anaiyses, and the generalizability of the inferences made from the data. For educational psychometricians and statisticians, the report provides a summary of how the technical challenges posed by the 1988 assessment were addressed by NAEP staff. For test development experts, the report provides a detailed account of the evolution and final composition of the 1988 assessment instruments.

The report does not attempt to provide substantive results that might be of interest to educational policy makers; results from the 1988 assessment are provided in a series of NAEP reports on the status of and trends in student performans $e^{1}$. This technical documentation is incended to support the

[^0]proficiency reports by presenting detailed information on the methods used to derive the results that are presented in those reports.

The technical details of the design and analysis of the 1988 NAEP assessment were the result of a collaborative effort of a large number of persons, including not only the Educational Testing Service (ETS) and Westat, Inc., staff members who collaborated to produce this report, but many others who contributed recommendations, reviews, comments, and other substantial help on technical issues. Of special note are the contributions of the staff of the National Center for Education Statistics, including Ems rson Elliott, David Sweet, Gary Phillips, and Eugene Owen, and of the NAEP Design and Analysis Committee (DAC), chaired by Professor Robert Linn (University of Colorado). Other members of the committee included vice-chair Professor Sylvia Johnson (Howard University), Professor Emeritus John B. Carroll (University of North Carolina), Professor Robert Glaser (University of Pittsburgh), Professor Bert Green (Johns Hopkins University), Professor Ingram Olkin (Stanford University), Dr. Tej Pandey (California Department of Education), Professor Richard Snow (Stanford University), and Professor Emeritus John W. Tukey (Princeton University).

## features of naep in 1988

NAEP has always been innovative. When NAEP first collected assessment data in 1969, it introduced a number of features that were to lead the way in assessment methodology. Then, as now, the National Assessment elected to sample a broad range of knowledge and skills in the subject areas that were surveyed, and so introduced multiple matrix sampling as a way to enlarge the assessment coverage without placing excessive demands on the school time of individual students. NAEP eschewed exclusive reliance on multiple-choice items, and used many open-ended and essay items in its assessment instruments. When funds permitted, NAEP assessments used hands-on methods of measuring student performance. NAEP applied and improved sampling methods and procedures for estimating sampling errors. A brief summary of innovations in NAEP-at its beginning and at this time-is available in NAEP: On the Cutting Edge of Measurement Since 1969 (ETS, 1990).

The NAEP design underwent a series of major modifications after 1983, when ETS became the grantee. The major goals of NAEF were maintained, but the technology by which they were attained was changed. The new design that was introduced is described in A New Design for a New Era (Messick, Beaton, \& Lord, 1983). One feature of the new design was the introduction of modern IRT (item response theory) scaling technology in order to summarize efficiently the extensive NAEP data and to communicate the results more effectively to educational policy makers and the public. Another design innovation was the introduction of a more complex form of multiple matrix sampling called BIB (balanced incomplete blo k) spiraling. BIB spiraling made it possible to maintair the broad coverage of each subject arta while adding the ability to estimate the correlations among items, without increasing the amount of testing time for individual students. Another innovation was collecting information from a national probability sample of students who were excluded
from the assessment (approximately 5 percent) because they had limited English proficiency, were mildly mentally retarded (educable), or were functionally disabled. Another new feature irtroduced in the 1984 NAEP was the extension $0^{\prime \prime}$ the sample to cover the modal grades of the stidents at each age, so that results could be reported by grade as well as by ige. A new feature introduced in 1986 was oversampling of Black and dispanic students, so as to improve the precision of stati. ics for these sutpopulations. The new design also axtended the amount of teacher and school information that was made available for analysis.

The new design was introduced in the 1984 assessment and used again with some slight changes in the 1986 assessment. The 1988 NAEP assessment further improved the reneral design ard added a few new features that are discussed below.

It is useful at this point to consider the consequences or introducing a new design into an existing measurement system. There is a clear tension between the need to maintain constant measurement procedures in order to estimate changes in performance and the desire to continue to improve the assessment by using the most modern, best available technology. The new design introduced in 1984 responded to this tension by assessing student achievement in two ways: in one set of samples using the methods of past assessments and in another set using the best available methodology. The samples using the methods of the past were called "bridge" samples, since they provided bridges to the performance of students in past assessments. The result was parallel assessments, using different technologies, that could be compared and for some purposes, perhaps, equated. In this way, innovations could be introduced without losing comparability with the past. Although this flexibility to introduce innovations while maintaining trends has come at the cost of increased complexity, the flexibility does allow NAEP to be responsive to the information needs of policy makers while maintaining the scientific requirements of sophisticated survey research.

The innovative f.atures of NAEP in 1988 were as follows:
Focused-BIB spiraling. BIB spiraling is a special type of multiple matrix sampling in which each item in an assessment is paired with each other item in some booklet so that the interrelationship between any pair of items can be estimated. As originally implemented in the 1984 and 1986 national assessments, th pool of all assessment items in all subjest areas was divided into item blocks that typically took a student about 15 mirutes to finish. The item blocks were then combined in such a way that each ileck was pai ed with each other item block in some asses,sment booklet. Many assessment booklets were printed and "spiraled" together in a random sequence. Ultimately, each student was assigned an assessment booklet that contained a block of background and attitude questions and three blocks of assessment items. As a result of this process, a student might receive a booklet with items from different subject areas: In 1984, reading and writing were BIBspiraled together; in 1986, reading, mathematics, science, and computer competence were BIB-spiraled together. The advar tage of BIB spiraling across different subject areas was that the correlations among the various subject areas could be explored. The disadvantage of this type of BIB spiraling was
that many different assessment booklets had to be printed and assigned to a small number of students. The correlations between subject areas were, therefore, based on small-sized samples.

Focused-BIB spiraling was introduced in 1988 to increase the sample size on which correlations within a subject area were based, at the cost of eliminating the correlations between items in different subject areas. In this case, an assessment book? et consists of a block of demographic background questions, a block of questions about educational experiences in a specific subject area, and three blocks of assessment items all in that same subject area. Proficiency for each student is, therefore, well measured, lut onl, in one subject area. Using this method, far fewer booklets need to be formed, and each different booklet is administered to a larger sample of students. The disadvantage of the focused-BIB spiral design is that no .nf $n$ rmation is accumulated about the relationship between different subject axeas. To allow the estimation of correlations between some of the subject areas, the 1988 design also included several special booklets that included blocks of items from different subjist areas.

Scaling. The 1988 assessment continued the scaling advances that characterized the 1,84 and 1986 assessments. The data collected using the focused-BIB spiral design were carefully checked for unusual properties or differential item functioning in different subpopulations. Although focusedBIB spiraling assures that each student is presented enough items, there is no way to assure that the student will answer enough items in a subject area for precise estimation of his or her proficiency. To avoid the statistical bias introduced by having subsamples that are inadequately measured, the method of plausible values was used in the data analyses. This method also allows for scaling and reporting in narrowly defined content areas. In addition, it provides consistent estimates of changes in proficiency over time, even if there are changes in the number of items per student or the average difficulty of these items. The scales were carefully anchored to enhance public interpretation of various scale points.

Comparable instrument bridges. The 1988 design also contained two equivalent samples of students at each age level that were included to compare the properties of different assessment instruments. The reading assessments in 1984 and 1986 bot' used BIB-spiraled instruments but the instruments differed in a number of seemingly minor details. In comparing the 1996 reading results to the previously published trend infc mation, the 1986 results seemed anomalous and publication of these results was suspended ustil further corroborative evidence could be gathered. In 1988, to further investigate the reading anomaly, two equivalent samples of students were selected at each age level, one of which was assigned a booklet from the 1984 assessment and the other of which was assigned a booklet from the 1986 assessment. (Because the booklets from the 1986 assessment contained mathematics and science items, data for these two subject areas were also collected and analyzed.) In both cases, the administrative procedures of the
corresponding past assessments were duplicated as carefully as possible. Since the two 1988 samples were randomly equivalent, they are in principle identical in reading proficiency, and any difference between them is due to differences in the assessment instruments and sampling error. These samples were subjected to extensive analysis, and the results were published in a separate report, entitled The Effect of Changes in the National Assessment: Disentangling the NAEP 1985-86 Reading Anomaiy (Beaton \& Zwick, 1990).

Age cohorts. In the original design of NAEP and in the 1984 implemencation of the new design, the way in which age was defined at age 17 was different from the way it was defined at ages 9 and 13. As a result of these age derinitions, although most 9 -year-olds were in tle fourth grade and most 13 -year-clus were in the eighth grade, most of the 17-y.ar-olds were in the eleventh grade-three instead of four grades ahead. Comparisons across ages were also complicated by the previous NAEP praこtice of testing 13-yearolds in the fall, 9 -yeal-olds in the winter, and 17 -year-olds in the spring of the assessment year.

To facilitate comparisons between different age and grade groups, the 1988 design f.ntroduced new age cohorts in the main part of the NAEP design. The definicie: ci 17 -year-old students was changed so that the definitions of the ages are sinilar for the three age groups and the NAEP 9-, 13-, and 17-year-old student cohorts are precisely four years apart. The new definitions now place most of the 17 -year-old students in the twelfth grade. In addition today's population of 9 -year-olds will be the population of 13 -year-olds sampled in four years and the population of 17 -year-olds sampled in eight years. In these samples, students at all ages and grades are assessed in two randomly equivalent half-samples, one assessed between January and mid-March and the other between mid-March and May.

This innovation in the main NAEP sample could not be introduced for the bridge samples used for estimating trends (since the bridge samples had to be comparable to samples from previous assessments), and thus the bridge samples have maintained the former age definitions and times of year for testing.

Experimental samples. Over the years, NAEP has developed a highly successful and innovative way of developing assessment items. However, it is continually exploring new ways to impiove its procedures. In 1988, two additional samples were added to NAEP to explore potential measurement improvements. One sampie involved the assessment of writing-students were given twice as much time to write essays as in the regular NAEP assessment, and the results of the essays written under different time conditions were compared. This study is reported in Learning to Write in Our Nation's Schools: Instruction and Achievement in 1988 at Grades 4, 8, and 12 (Applebee, Langer, Mullis, Jenkins, \& Foertsch, 1990). The second special sample was designed to Iink student performance at ages 13 and 17 to NAEP's 1985 literacy study of young adults.

Poststratification improvements. As discussed in section 8.1.4 of Chapter 8, the process of computing the poststratification adjustments was modified from the procedures followed in 1984 and 1986. The changes were irtroduced to accelerate the reporting process and to make NAEP results closer to those of the Census Bureau in terms of numbers of students reported in various subpopulations identified by region, race/ethnicity, age, and grade.

Teacher questionnaires. The design for administering teacher questionnaires was modified in 1988 to obtain teacher data for all students at a given grade in a particular subject area, rather than for a few students in all subject areas. In 1988, resources permitted obtaining teacher data for two samples of students. Extensive teacher questionnaires were given: 1) to teachers of fourth-grade students who were assessed in reading and 2) to teachers of eighth-grade students who were assessed in writing. These questionnaires contain not only questions about the teacher's background and teaching practices but also questions for the teacher about the performance of his cr her individual students. The results of the assessment of student performance and the teacher questionnaires have been linked for analysis and reported in Learning to Read in Our Nation's Schools: Instruction and Achievement in 1988 at Grades 4, 8, and 12 (Langer, Applebee, Mullis, \& Foertsch, 1990) and Learning to Write in Our Nation's Schools: Instruction and Achievement in 1988 at Grades 4. 8, and 12 (Applebee, Langer. Mullis, Jenkins, \& Foertsch, 1990).

Public-use data tapes and other database products. NAEP continues to make available to the public all of its data, except those that would identify its participants. The public-use data tapes are care fully prepared and documented, making it possible for others to duplicate the analyses done by NAEP staff or conduct other analyses of the vast NAEP database.

The NAEP item information database concains all of the descrip:ive, processing, and usage information for every item developed and administered for NAEP. This database functions as a resource for test development activities, data system control operations, and item linkage to past assessments.

The NAEP restricted-use data files contain all NAEP respondent data, including "secure" files. These files function as NAEP data archives for responses from students, teachers, and school administraiors from the booklets and questionnaires used in NAEP from 1970 to 1988.

The NAEP database products are especially useful because they are portable and can be used on a variety of hardware systems; they can be accessed by a variety of software systems (including SAS and SPSS); they are in a "rectangular" file structure that eliminates the need for complex data retrieval processes from dissimilaz file formats; and they are well documented.

## ORGANIZATION OF THE TECHNICAL REPORT

This technical report is divided into three parts:

Part $I$ presents the detais of the 1988 design and contains a summary in Chapter 1 of the steps involved in the process of producing a database ready for analysis. Chapter 1 is followed by chapters in which the details of the snveral steps in collecting and preparing the data for analysis are described. Chapter 2 describes the specification of the NAEP assessment objectives and the development of the assessment items and background questions for the several assessment instruments and questionnaires. Chapter 3 describes the details of the selection of the NAEP samples. The details of the arsessment instruments that were used in the 1988 NAEP are presented in Chapter i. The adminirtration of sifép to students in American schools is discusst. in Chapter 5. Chapters 6 through 6.7 contain the details of converting the data received from the field into a usable datatase, including the processing of the raw assessment materials, professional scoring, data transcription systems, editing, quality control, and the creatıon of the database system, and dest-ibes the database products that are available.

Part II begins with Chapter 7, which outlines the analysis of the 1988 NAEP data. Chapter 8 includes general discussions of the weighting and variance estimation procedures used in NAEP analyses. A general discussion of the NAEP scaling methodology is pre nted in Chapter 9. Chapters 10 through 15 contain the details of the analyses performed for the respective subject areas.

Part III contains some basic data from the 1988 NAEP assessment, including the properties of the measuring instruments, characteristics of the selected sample, and some estimates of the proficiencies of students in American schools. Only a few of the huge number of $\cdots s s i b l e ~ p o p u l a t i o n ~$ proficiency estimates are presented, and these include estimates of the means, standard deviations, and selected percentiles of populations of students in various sul ject areas and grade levels. Estimates are also presented separately for gender, racial/ethnic groupings, and other subpopulations. Estimates of average proficiency values for cross-classifications of selected variables are also reported. Estimated standard errurs are reported with all parameter estimates.

## PART I

The Design and Implementation of the 1988 NAEP

Chapter 1

# OVERVIEN OR PART I: tHE DESIGN AND IMPLEMENTATION OF THE 1988 NAEP ${ }^{1}$ 

Eugens G. Johnson
Educational Testing Service

The 1988 National Assessment collected information on the knowledge, skills, understanding, and attitudes of young Americars in the subject areas of reading, writing, civics, U.S. history, and geography. In addition, information on mathematics and science was collected in a special small-scale study. The basis for this information was a complex sample survey involving more than 126.000 students and consisting of national sameses of students aged 9,13 , and 17 as vell as national samples of students in grades $4,8,11$, and 12. This chapter provides a description of the design for the 1988 assessment and gives an overview of the steps involved in the implementation of NAEP from the planning stage through the creation of a database ready for analysis. The major components of the implementation of che assessment are presented here with references to the appropriate chapters in Part I for more details. Not included in Part I are the procedares used for the analysis of the data, these are summarized in the overview to Part II (Chapter 7) and discussed in detail in the remaining chapters in Part II.

The organization of this chapter, and of Part $I$, is as follows:

- Section 1.1 provides an overview of the NAEP design for 1988 and describes the constituent samples. To provide background, the section also gives the assessment schedule from the inception of NAEP in 1969 through the 1988 assessment.
- Section 1.2 summarizes the four-stage stracified random sampling procedures used for the 2988 assessment with a fuller description provided in Chapter 3.
- Section 1.3 summarizes the development of the odjectives for each of the subject areas in the assessment and the development and review of the items written to fit those objectives. Details of the objective and item development processes appear in itapter 2.
- Section 1.4 discusses the aisignment of the cognitive and background questions to assessment booklets and describes the

[^1]focused-BIB spiral design. Chapter 4 provides a complete description of the assessment booklets.

- Section 1.5 summarizes the field administration procedures including the training of field administrators, attaining school cooperation, administering the assessment, and conducting quality control. Furthér details appear in Chapter 5.
- Section 1.6 describes the flow of the data from their receipt at ETS through data entry, professional scoring, and entry into the database in final form, ready for analysis. Chapters 6 through 6.7 provide a detailed description of the process.

The data collected in the 1988 assessment are available for public use in a set of data tapes containing the data from the sampled students, data about students excluded from the assessment, and data from tea=hers, principals, and schools linked to the assessed students. The documentation for the public-use data tapes appears in National Assessment of Educational Piogress 1988 Public-use Data Tapes Version 2.0 User Guide (Rogers, Kline, Johnson, Mislevy, \& Rust, 1990).

### 1.1 THE 1988 NAEP DESIGN

The 1988 NAEP design was intended to address two occasionally competing considerations. The first is NAEP's charge to measure trends in educational achievement. The second is the need for NAEP to evolve as educational issues oi interest develop over time and as new technologies of assessment become available. The goal of measuring trends requires a stability in the measurement process; the goal that NALP evolve implies, however, that the measurement process must he permitted to change.

The 1988 design addresses the competition between stabiiity and change by basing the assessment on two distinct types of samples. The first type of sample, the trend sample, is used for estimating changes in performance from previous assessments in a subject area and uses the same methodology and population definitions as in previous assessments. The second type of sample, a cross-sectional sample, is used for detailed information about the current student population. This sample allows the use of new technology and population definitions and addresses new educational issises.

A number of improvements have been made in the design of NAEP since ETS' first assessment in 1984. Before the 1984 assessment, NAEP used a simple matrix sampling procedure with audiotape pacing-all students in an assessmen ${ }^{+}$ session received the same booklet of assessment items and an aurally presented stimulus was used to pace the students through the assessment items. In the 1984 assessment, balanced incomplete block (BIB) spiraling (discussed in section 1.4), which does not include aural pacing, was instituted in place of taped matrix sampling. With EIB spiraling, students in an assessment session receive different booklets resulting in a more efficient sample (for reasons given in section 1.4). BIB spiraling also allows the study of the
interrelationships between all items included in the balanced incomplete block design. In the 1988 assessment, additional efficiencies were introduced when focused-BIB spiraling was instituted. Focused-BIB spiraling ensures that all correlations between items within a subject area can be estimated but, unlike the BIB designs used in 1984 and 1986, does not require that correlations between items in different subject areas be estimable. This produces a simpler and more efficient design than that used in 1984 and 1986. Like BIB spiraling, focused-BIB spiraling required the elimination of the audiotape pacing used in earlier assessments.

From its inception, NAEP has sampled students of a given age (9, 13, and 17). Since 1984, the designs have also included samples from the population of the corresponding modal grades (the grade in school of the majority of the students of the age level). As was the case for previous national assessments, the primary populations of inference for the 1988 assessment were in-school students of the specified ages or grades. Thus, youth of the specified age who were not attending public or private school at the time of the assessment (including, in particular, dropouts and early graduates) were excluded from the sample and from the population of inference.

To assure that the grade/age samp . . measure four years of growth, the definitions of student age were made unif rrm for the 1988 assessment. While NAEP orizinally defi- d age by birth within a calendar year for ages 9 and 13 but defined age 17 as being born between October 1 of one year and September 30 of the next, the 1988 assessment placed all ages on the calendar-year basis. This change in age definition changed the modal grade for 17-year-old students from the eleventh grade to the twelfth grade. Since their age definitions were unchanged, the modal grades for ages 9 and 13 remained at grades 4 and 8.

A final change in the 1988 assessme.t, relative to previous assessments, in the direction of greater uniformity and, therefore, greater comparability, was in the time of year that the students were assessed. NAEP traditionally assessed 9 -year-olds in the winter, 13-year-olds in the fall, and 17-year-olds in the spring; in the 1988 assessment, all students were assessed in the winter and spring.

### 1.1.1 The 1988 Samples

The full 1988 assessment consists of four types of samples: main assessment focused-BIB samples, main assessment intercorrelation samples, main assessment special study samples, and bridge (trend) samples. A list of all assessment samples, with'ey characteristics, appears in Table 1-1. A description of the samples follows.

Main assessment fr - BIB samples. These samples form the basis for the cross-sectional $\mathrm{on}^{-}$ and assessed the su of achievement for the 1988 student populition ceas of writing (labeled as [Main-Wrt] in Table 1-1), reading [(Mai, кdg], U.S. history [Main-His], civics [Main-Civ] and geography [Main-Geo]. All but geography were assessed at all three age

Table l-1
NAEP 1988 Student Samples

| Sample | Booklets | Mode | Cohort <br> Assessed | T:me of Tusting | Age Defn. | Modal <br> Grade | Sample Size |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 [Main-Wrt] | 1-7 | Print | Grade 4/age 9 | Winter, spring | CY | 4 | 6247 |
| 13[Main-Wrt] | 1-7 | Print | Grade 8/age 13 | Winter, spring | CY | 8 | 6011 |
| 17[Main-Wrt] | 1-7 | Print | Grade 12/age 17 | Winter, spring | CY | 12 | 5740 |
| 9 [Main-Rdg] | 8-14 | Print | Grade 4/age 9 | Winter, spring | CY | 4 | 6177 |
| 13[Main-Rdg] | 8-14 | Print | Grade 8/age 13 | Winter, spring | CY | 8 | 5912 |
| 17[Main-Rdg] | 8-14 | Print | Grade 12/ag. 17 | Winter, spring | CY | 12 | 5768 |
| 9 [Main-His] | 15 | Print | Grade 4/age 9 | Winter, spring | CY | 4 | 2664 |
| 13[Main-His] | 15-21 | Print | Grade 8/age 13 | Wirter, spring | CY | 8 | 5988 |
| 17[Main-His] | 15-21 | Print | Grade 12/age 17 | Winter, spring | CY | 12 | 5780 |
| 9 [Main-Civ] | 16 | Print | Grade 4/age 9 | Winter, spring | CY | 4 | 2652 |
| 13[Main-Civ] | 22-28 | Print | Grade 8/age 13 | Winter, spring | CY | 8 | 5981 |
| 17!Main-Civ] | 22-28 | Print | Grade 12/age 17 | Winter, spring | CY | 12 | 5683 |
| 17[Main-Geo] | 29 | Print | Grade 12/age 17 | Winter, spring | CY | 12 | 2446 |
| $9[$ Main-Int] | 17-19 | Print | Grade 4/age 9 | Winter, spring | CY | 4 | 2638 |
| 13[Main-Int] | 29-31 | Print | Grade 8/age 13 | Winter, spring | CY | 8 | 2590 |
| 17[Main-Int] | 30-32 | Print | Grade 12/age 17 | Winter, spring | CY | 12 | 2438 |
| 9 [Main-Lwr] | 20-22 | Print | Grade 4/age 9 | Winter, spring | CY | 4 | 2634 |
| 13[Main-LWr] | 32-34 | Print | Grade 8/age 13 | Winter, spring | CY | 8 | 2586 |
| 17[Main-LWr] | 33-35 | Print | Grade 12/age 17 | Winter, spring | CY | 12 | 2438 |
| 13[Main-Doc] | 35-36 | Print | Grade 8/age 13 | Winter, spring | CY | 8 | 2533 |
| 17[Main-Doc] | 36-37 | Print | Grade 12/age 17 | Winter, spring | CY | 12 | 2425 |
| 9[Br84-RW] | 51-55 | Print | Grade 4/age 9 | Winter | CY | 4 | 5188 |
| 13[ $\mathrm{Br} 84-\mathrm{RW}$ ] | 51-56 | Print | Grade 8/age 13 | Fall | CY | 8 | 5500 |
| 17[Br84-RW] | 51-56 | Print | Grade 11/age 17 | Spring | not-CY | 11 | 4622 |
| $9[\mathrm{Br} 86-\mathrm{RMS}]$ | 91-93 | Mixed | Age 9 | Winter | CY | 4 | 3711 |
| 13[Br86-RMS] | 91.93 | Mixed | Age 13 | Fall | CY | 8 | 3942 |
| 17[Br86-RMS] | 61-66 | Print | Grade 11/age 17 | Spring | not-CY | 11 | 4703 |
| 17[Br86-His] | 67 | Print | Grade 1l/age 17 | Spring | not-CY | 11 | 2349 |
| 13[BrCiv] | 90 | Tape | Age 13 | Fall | CY | 8 | 1938 |
| 17[BrCiv] | 90 | Tape | Age 17 | Spring | not-CY | 11 | 1786 |

## Legend

| Rds $=$ | Reading |
| :---: | :---: |
| Wrt = | Hriting |
| Eis $=$ | U.S. Bistory |
| Civ $=$ | Civics |
| Geo | Geography |
| Int ${ }^{\text {a }}$ | Inter correlation |

[^2]classes; geography was assessed only at grade 12/age 17. In these samples, focused-BIB spiraling (and hence printed administration) was used, age was defined on a calendar-year basis and both age populations ( $9,13,17$ ) and modal grade populations ( $4,8,12$ ) were sampled. Each age class sample was divided into two random helf-samples, one of which was assessed in the winter and the other in the spring. The purposes of these half-samples were: (l) to allow comparison with other selected samples (assessed only in the winter or spring) ; and (2) to allow the study of gruwth in student achievement within a school year.

Main assessment intercorrelation samples. These samples (labeled [Main-Int] in Table l-1) are intended to permit the measurement of interrelationships in achievement between subject areas. Each booklet in these samples includes blocke of reading, : ivics, and U.S. history items (as well as some geograply items at grade 12/age 17). Print administration was used and age was defined on a calendar-year basis. Both grades and ages were sampled and the assessment was conducted in two random half-samples in cine winter and spring.

Main assessment special study samples. These samples are designed to allow the conduct of special studies relating to achievement. The long writing sample [Main-LWr] is intended to measure the relationship between time allocated to che writing task and writing performance; the document literacy sample [Main-Doc] allows the assessment of document literacy and its relation to reading proficiency. Both samples used printed administration, age and grade sampling, and new age definitions and time of testing.

The 1988 Essessment also includes a number of additional samples designed to determine the possible effects of changes in age definitions, time of testing, and mode of administration (audiotape pacing versus print administration) and to provide links to the results from previous assessments. Because the purpose of these samples is to provide a linkage between the 1988 data and data from previous assessments, they are referred to as briage samples (although they are also called treni samples). The vasious bridge samples are as follows:

Civics Bridge to 1976 and 1982. This bridge (trend) sanple, labeled [BrCiv] in Table l-1, addresses the subiect area of civics. The samples for this bridge are comparable to past assessments of citizenship and social studies. Like these past assessments, the civics bridge sample uses tape recorders and pre-1984 definitions of age and time of testing. Since trend data have been traditionally collected only by age, grade sampling was unnecessary. The civics bridge sample consists of one booklet for age 13 and one booklet for age 17. Because there were no reusable civics items from previous assessments of 9 -year-olds, an age 9 sample was not needed.

Bridge to 1984. This bricge (trend) sample, labeled [Br84-RW] in Table l-1, consists of samples comparable to the 1984 main assessment and addresses the subject areas of reading and writing. The samples were collecteu by grade and age for grade 4/age 9, grade 8/age 13, and grade 1l/age 17, using the age definitions and time of testing from 1984. Six assessment booklets were administered at each grade/age. Each booklet consisted of at least one block of reading items and at least one block of writing items. The administration of these booklets was nonpaced (that is, no audiotape was used).

Bridge to 1986, Ages 9 and 13. This bridge consists of trend samples for ages 9 and 13 comparable to those used for the measurement of trends in 1986. The samples are labaled 9 [Br86-RMS] and 13 [Br86-RMS] in Table 1-1. The samples were collected by age only and used the same age definitions and time of testing as in 1984 and in the 1986 bridge to 1984. The su.jject areas addressed by this bridge are read $g$, mathematics, and science. Three assessment booklets were administered to each age group. These boinlets were identical to those administered in 1986. Each booklot contains one block of reading, one block of mathematics, and one block of science items. As in -986, administration of the mathematics and science blocks was paced with an audiotape; the reading blocks were administered without an audiotape.

Bridges to 1936, Grade 11/Age 17. These 'rici,es (labeled 17[Br86-RMS] and 17 [Br86-His]) consist of trend samples of grade 11 /age 17 students coniparable to the 1986 main assessment sample and were selected and administered using the same age definition and time of cesting as in that assessment. Since those definitions also apply to samples from the 1984 ard earlier assessments, the students in these bridge samples are comparable to the students from these earlier assessments. (However, the ferformance results are not directly comparable because the earlier assessments had paced audiotape administrations.) The subject areas assessed in the 17 [Br86-RMS] bridge were reading, mathematics, and science and consisted of six assessment booklets administered to grade ll/age 17 students. These booklets contained biocks of reading, mathematics, and science items. The $17[\mathrm{Br} 86-\mathrm{His}]$ bridge involved one booklet consisting entirely of blocks of U.S. history items. The ndministration of the booklets in both bridges was nonpaced.

Although many of the questions in the assessment booklets for the bridice samples also appeared in the booklets used for the main assessment, the bridg? assessment instruments were considered as distinct from the main assessment instruments. Add':tionally, the procedures used to administer the bridge assessment instriments sometimes differed from those used for the main assessment. A overview of the assessment instrumentation and mode of administration appears in section 1.4 , with further details presented in Chapter 4. Details of the analysis of the bridge and main assessment data appears in Part II of this technical report.

### 1.1.2 NAEP Assessments Since $1: 69$

Table 1-2 shows the subject areas, grades, and ages assessed since the inception of NAEP in 1969. As can be seen, besides the 1988 subject areas of reading, writing, civics, U.S. history, geography, mathematics, and science, many other subject areas have been assessed over the years-social studies, citizenship, literature, music, career development, art, and computer competence. Many subject areas have been reassessed periodically to determine trends over time.

Assessments vere conducted annually through 1980, but budget restrictions since then have reduced data collection to a biennial basis. Since its inception, NAEP has assessed 9-year-olds, 13-year-olds, and inschool 17-year-olds, although the age definitions changed in 1986 and again in 1988. Because of budget restrictions, NAEP no longer routinely assesses out-of-school 17-year-olds or young adults. (A separatie assessment of young adults or ages 21 to 25 was conducted in 1985 under a separate grant.)

The table also indicates the initiation of data collection by grade as well as by age in 1984, a practice that was continued in the 1986 and 1988 assessments. It should be noted that somewhat different age definitions were used in the 1984, 1986, and 1988 assessments. In the 1984 assessment, the younger two ages were dcfined on a calendar-year basis while the 17 -year-olds were defined on an October 1 to September 30 basis. This resulted in modal grades of 4, 8, ani 11 . In the 1986 main assessment, all ages were defined on a October 1 to September 30 basis resulting in modal grades of 3, 7, and 11. In 1988, the ages were redefined on a calendar-year basis, with the modal grades being 4, 8, and 12.

### 1.2 THE 1988 SAMPLE DESIGN

The target population for the 1988 main assessment consists of all students in public and private schools wh o belong to one of three cohorts: students who were either in the fourth grade or 9 years old; students who were either in the eighth grade or 13 years old; and students who were eithor in the twelfth grade or 17 years old. The main assessment represents two overlapping samples. The first sample represents students of the grades $4, \mathcal{E}$, and 12 (who could be of any age)-these are the modal grades for the students of the specified ages. The second sample represents students of specified ages (who could be of any grade). Students were age-eligible for the main assessment if they were horn in the appropriate calendar year (1978, 1974, or 1970). Only students who were attending public or private schools at the time of the assessment were included in the sample (and, therefore, in the target population). Specifically excluded from the sample and the target population are early graduates and dropouts.

For the purposes of analysis, the grade/age samples were treated as two separate samples: 1) a representative sample of students in grades 4, 8, and 12, and 2) a representative sample of students of ages 9, 13, and 17. (A student who was both grade and age eligible, was regarded as a member of both

Table 1-2
National Assessment of Educational Progress Subject Areas, Grades, and Ages Assessed: 1969-1988


[^3]Table 1-غ (continued)
National Assessment of Educational Progress Subject Areas, Grades, and Ages Assessed: 1969-1988

|  | Grades/Ages Assessed |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assessment Year | Subtect Area(s) | Grade 3 | Grade 4 | $\begin{gathered} \text { Age } \\ 9 \end{gathered}$ | Grade 7 | Grade 8 | Age 13 | Grade 11 | Grade 12 | $\begin{gathered} \text { Age } \\ 17 \end{gathered}$ | $\begin{aligned} & \text { Age } \\ & \text { 170S }{ }^{\text {a }} \text { Pdult } \end{aligned}$ |
| 1976-77 | ```Science Basic Life Skills }\mp@subsup{}{}{\mathrm{ b} Science, Reading, Healith``` |  |  | x |  |  | x |  |  | $\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$ | X |
| 1977-78 | Mat'nematics <br> Consumer Skills ${ }^{\text {b }}$ |  |  | x |  |  | x |  |  | X $\mathbf{x}$ |  |
| 1978-79 | Writing, Art, and Music |  |  | x |  |  | X |  |  | x |  |
| 1979-80 ${ }^{\text {d }}$ | Keading/Literature Art |  |  | x |  |  | $\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$ |  |  | x | x |
| 1981-82 | ```Science* Math and Citizenship/ Social Studi*s``` |  |  | x x |  |  | x x |  |  | x x |  |
| $1984^{\circ}$ | Reading Wriiing |  | $\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$ | X x |  | X | X x | x x |  | x $\mathbf{x}$ |  |
| $1985{ }^{\text {c }}$ | Adist Literacy ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  | X |

b Aso 17 students who had dropped out of school or had graduated prior to assessment.
c Small, special-interest assessment conducted on limitud samples at specific grades or ages
c Assessment conducted by Educational Testing Service.
Because of reduced funding, assessments were conducted bienslally after 1979-80.

Table 1-2 (continued)
National Assessment of Educational Progress Subject Areas, Grades, and Ages Assessed: 1969-1988

b Ase 17 atudants who had dropped out of achool or had sraduated prior to asaeasmant.
c Sm:
f seasmant conducted by Educational Tastíng Sarvica.
of these samples.) Thus, summary statistics were computed fr the age sample or for the grade sample, but generally not for the combincd grade/age sample.

The target population for the bridge assessments also consisted of all public and private school students in one of three cohorts, but the age and grade definitions for one cohort differed from that used in the main assessment. All bridge samples contained samples of students eligible by age using the following age definitions (consistent with those used in 1984 and previous assessments):

Students were eligible for the age 9 and the age 13 bridge assessments if they wert bern in the appropriate calendar year (1978 and 1974, respectively! ; students were eligible for the age 17 bridge assessments if they were born between October i, 1970 and September 30, 1971.

For certain bridge samples, students eligible by grade were also selected. These samples consisted of students in grades 4, 8, and 11 , the modal grades for the age definitions used by the bridge samples.

The sample for the 1988 NAEP assessment was selected using a complex four-stage sample design involving the sampling of students from selected schools within 94 selected geographic areas, called primary sampling units, across the United States. The sample design is similar to that used in 1986 and is described in detail by Westat, Inc., the firm subcontracted by ETS to select the sample, in 1988 National Assessment of Educational Progress-Sampling and Weighting Procedures, Final Reporl (Rust, Bethel, Burke, \& Hansen, 1990). The following sections provide an overview of each of the four stages of the sampling design with further details given in Chapter 3.

## Stage 1: Primary Sampling Unizs

In the first stage of sampling, the United States (the 50 states and the District of Columbia) was divided into geographic primary sampling units (PSUs). Each PSU met a minimum sizt requirement and generally comprised either a metropolitan statistical area (MSA), a single county, or a group of contiguous counties. The PSUs were classified into four regions (Northtast, Southeast, Central, West), each containing about one-fourth of the U.S. population. In each region, PSUs were additionally classif ad as MSA or nonMSA. In the Southeast and West regions, the PSUs in shicn 20 percent of the population in the 1980 Census was eicner Black or Hi: panic were furthe classified as high-minority, while the remaining PSUs in those regions wete classified as not high-minority. This resulted in twelve subuniverses of PSUs.

Ninety-four PSUs were then selected from these subuniverses with probability proportional to a measure of their size (the number of school age children from the 1980 census). Thirty-four large PSUs were designated as certainty units, as it was cost effective to include them in the sample with certainty. Within each major stratum (subuniverse), further stratification was achieved by ordering the noncertainty PSUs according to several additional
socioeconomic characteristics. Sixty PSUs were selected from the noncertainty strata with probability proportional to size. To enlarge the samples of Black and Hispanic students, thereby enhancing the reliability of estimates for these groups, PSUs fron the high-minority subuniverses were sampled at twice the rate of those from the other subuniverses.

The 94 PSUs were used for the main assessments of all three age classes. To facilitate and improve administration of the assessments and to allow for some estimation of growth in achievement during the schoc: year, the main assessment sample was divided into two randomly equivalent subsamples, one to be assessed in the winter and the other to be assessed in the spring. For this purpose, the 94 PSUs, were designated as winter PSUs, spring PSUs, or both winter and spring PSUs, according to the scheme detailed in Chapter 3 .

The bridge assessments used a subsample of the 94 PSÚs, used for the main assessment. The grade 4/age 9 biidge assessments. which wére conducted in the wiater, used the 56 PSUs designated as winter PSUS in the main assessment; the grade $11 /$ age 17 bridge assessments, conducted in the spring, used the 56 PSUs designated as spring PSUs. (The 18 largest PSUs were used in both the winter and the spring assessments.) The grade $8 /$ age 13 bridge assessments, conducted in the fall, used 64 PSUŚs selected from the complete set of 94 PSUs with probability proportional to the measure of size of the sträta from which the PSUs were selected. As for the winter and spring subsapṕples, the 18 largest certainty PSUs wepe retainec in the fall bridge sample with certainty. Agair, the scheme detailed in Chapter 3 shows the relationshif betueen these PSU samples.

## Stage 2: Sampling Schools

In the second stage of sampling, the public, private, Catholic, Bureau of Indian Affairs, and Department of Deferse schools within each of the 94 PSLis were listed arnording to the three grade/ages. An independent sample of schools was select.d separately for each of the grade/ages so that some schools Jere selected fer asses̈sment of two grade/ages, and a few were selected for all three. Schools within each PSU were selected (without replacement) with probabilities proportional to assigned measures of size. (Details of the probabilities used for school selection appear in Chapter 3.) Overall probgbilis ties of selection for high-minority schools were twice those for other schools in order to enlarge the sample of Black and Hispanic students, thereby enhancing the reliability of estimates for these groups.

The ovesali school cooperetion rate exceeded 85 percent at each grade:- ge. In certain instances, refusing schools were replaced by substitutes according to the rules indicated in Chapter 3.
brer all three grade/ages, a sample of schools was first drawn for the bridge assessments according the procedures detailed in Chapter 3. These schools Were then excluded from the frame when the samples of schocls were drawn for: the ain assessiments. Appropriate adjustments were made to the sample weights for both bridge and main s-mples. Schools assigned main
assessment sessions were further classified as belonging to the winter main assessment or the spring main assessment.

Stage 3: Assigning Assessment Sessions to Schools
In the third stage of sampling, assessment sessions were assigned to the sampled schools, as described in section 3.3 of Chapter 3. An assessment session typically consisted of 25 to 30 students, all of when could be assessed following the same procedures. There were two general types of sessions in the 1988 assessment: 1) tape sessions, where every student was administered the same booklet and where audiotape prompts paced the students through at least part of the booklet, and 2) print sessions, where a nun. 3 r of distinct booklets were administered and where no audiotape pacing was used. (Print sessions are also called spiral sessions, since the assessment booklets were spiraled for administration-see section 1.4.1.)

The assignment of sessions to schools was designed to maximize the number of session types conducted within each PSU, where each session type corresponded to a separate sample of the population of students. In most sample schools, four types of sessions were conducted although schools with fewer than 20 eligibles were asked to conduct only a sing ?e session.

## -age 4: Sampling Students

In the fourth stage of sampling, a consolidated list was prepared for each school of all grade-eligible and age-eligible students for the age class for which the school was selected. To provide the target sample size, a systematic selection of eligible students was made from this list, if necessary. In small and mediums zed schools all eligible students were in the sample. For bridge (or trend) sample schools assigned to more than a single session type, students were assigned by Westat district supervisors to print or paced-tape sessions using specified procedures. A student was not assigned to more than one session. Students assigned to paced-tape sessions who were not age-eligible were dropped from the assessment.

## Stage 4a: Excluded Students

Some students selected for the sample were deemed unassessable by school authorities because they had limited English language proficiency, were judged as being mildly mentally retarded (educable), or were functionally disabled. For each of these students, school staff completed an excluded student questionnaire, listing the reason for exclusion and providing some background information.

## Stage 4b: Sampling Teachers

The reading teachers of fourth-grade students sa.apled for the main assessments of reading and the writing teachers of eighth-grade students sampled for the main assessments of writing were identified and asked to complete a questionnaire about the reading or writing capabilities of each selected student and about the kinds of instruction received.

Stage 4c: The School and Principal Questicmaires
A school characteristics and policies questionnaire was mailed to tvery sampled school by Westat before the assessment. The Westat supervisor then collected the questionnaires and returned them to ETS. The schoo. characteristics and policies questionnaire is described in Chapter 4. The principal questionnaire, distributed to the principal of each sampled school by Westat before the assessment, was used to estimate the number of grade/agz-esigible students and to determine the size and type of community used in assigning the STOC codes.

### 1.3 DEVELOPMENT OF ASSESSMENT OBJECTIVES, ITEMS, AND BACKGROUND QUESTIONS

In 1988, NAEP conducted main assessments of students at all three ages in the subject areas of reading, writing, civics and U.S. history. Also part of the main assessment was a separately funded study of geography achievement at grade $12 /$ age 17 and a special NAEP study of document literacy at grade o/age 13 and grade 12/age 17. These assessments eniailed the generation of a large number of cognitive items. In addition, a large number of background and attitude questions were asked of students and information was collected from principals and teachers. Details of the item development procedures followed for the 1988 main assessment are given in Chapter 2; this section provides an overview. (In addition to the main assessment, bridge studies were performed in reading, writing, civics, U.S. history, mathematics, and science. Since the instruments used for these studies consisted enti• ly of items used in previous assessments, no developmental tasks were required for their use in the 1988 assessment.)

The development of items for each subject area was s'pervise' by a Learning Area Committee consisting of educators, scholars, and citizens representing many diverse constituencies and points of view. Each Learning Area Committee developed a set of objectives for its subject area, proposing goals that students at each grade/age level should achieve. After careful and extinsive review, the objectives were given to item writers to develop assessunent items to fit the objectives. Besides specifying the types of cognitive items to be used to measure academic achievement, the Learning Area Committees were also responsible for the development of items to measure student backgrounds, attitudes, expexiences, and interests as they relate to the subject area.

Four additional types of instruments were developed for the 1988 assess.dent: a common studeat background questionnaire to be given to all asses jed students of a given grade/age, a school characteristics and policies questionnaire, teacher questionnaires for teachers of fourth- and eighth grade students, and an excluded student questionnaire. Each of these questionnaires was developed through a broad-based consensus process.

All items in the assessment underwent extensive reviews by subject area and measurement specialists, as well as careful scrutiny to eliminate any potential bias or lack of sensitivity to any group. Further, the items were field tested on a representative group of students. Based on the results of the field test, items were revised or modified as necessary and then again reviewed for lack of sensitivity to particular groups. With the help of staff and outside reviewers, the Learning Area Committee selected the items to include in the assessment.

Nearly every subject area included both multiple-choice and open-taded items. The exceptions were writing, which ronsisted entirely of open-ended items, and geography and science, which consisted entirely of multiple-choice items. The open-ended items were professionally scored; the details of the professional scoring process are given in Chapter 6.2.

### 1.4 ASSESSMENT INSTRUMENTATION

Four types of instruments were used in the 1988 assessment: student assessment booklets, excluded students questionnaires, teacher questionnaires, and a school characteristics and policies questionnaire. This section provides an overview of these instruments; more information about the instruments can be found in Chapter 4.

### 1.4.1 Student Assessment Booklets-Main Assessment

The student assessment booklets for the main assessment contained both cognitive and :oncognitive items. The total testing time was approximately 45 minutes for grade 4 /age 9 students and 56 minutes for the older ages. A block of common background quesions appeared first in every booklet and required 10 minutes for completion for grade 4/age 9 and 6 minutes for the older students. This was followed by a 5 -minute block of subject-specific background questions and (typically) three 15 -minute blocks of cognitive items ( 10 -minute blocks for grade 4/age 9).

The assembly of cognitive items into booklets and their subsequent assignment to assessed students was determired by a balanced ircomplete block (BIB) design with spiraled administration. The first step in implementing BIB spiraling is to divide the items within a subject area into units called blocks, where each block was designed to take 15 minutes for the older students to complete. For the grade 4/age 9 students, blocks requiring 10 minutes for completion we'e ereated. Some blocks were administered at more than one grade/age; addicional items were adued to the end of grade 4/age 9 blocks which were also administered to older students.

These blocks wese chen assembled into booklets containing the background questions and three blocks of subject area items according to a partially balanced incomplete block desigı. (In a complecely balanced incomplete block design, th.e subject area blocks would be assigned to booklets in such a way that each block appears in .e sa .e number of booklets and every pair of blocks appears together in exactly one booklet. This is the balanced part of the method; the incomplete part refers to the fact that no booklet contains all items and hence incomplete data is yialded for each assessed student. Such a design allows the computation of the correlation between each pair of items but generates a vast rumber of differ?nt booklets, particularly if blocks from different subject areas are to be paired.)

In i988, the BIB design was focused-that is, each block of items within each of the subject areas was paired with every other block withir that subject area but generally, not with blocks of items from other subject areas (special booklets were constructed to measure relationships between subjects). The focused-BIB design used in 1988 called for seven blocks of cognitive items at a given grade/age to be assembled into seven booklets, where each pair of the seven blocks appears in exactly one booklet and where each block appears in three booklets. The focused-BIB design also balances the order of presentation of the blocks of items in the sense that every block of items appears as the first cognitive block in one booklet, as the second block in another booklet, and as the third and last block in a third booklet.

An example of the focused-BIB design with seven blocks (labeled A, B, C, D, E, F, G) and seven booklets (labeled Bl through B7) is as follows:

| Booklet | Blocks |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | B1 | A |  |  |
| B2 | B | D |  |  |
| B3 | C | C |  |  |
| B4 | E |  |  |  |
| B5 | D | E |  |  |
| B6 | G | F |  |  |
| B7 | F | G |  |  |
| B | B |  |  |  |
|  |  | A |  |  |
|  |  | C |  |  |

In addition to the focused-B’B booklets, three types of special booklets were created for the main samples. To permit the calculation of cor:elations an ing itens between subject areas, three special intercorrelation booklets containing one block each of reading, U.S. history, and civics items were created at each grade/age. Threo special writing booklets were also created at each grade/age. Each of these booklets consisted of a standard-length writing block and a writing block designed to take twice the regular block time. The purpose of these booklets was to allow an evaluation of the effect of the amount allocated time on writing performance. Finally, two dc ument literacy booklets were created at grade 8/age 13 and grade 12/age 17.

A total of 22 different booklets were assembled for grade 4/age 9, 36 different booklets for grade $8 / a g e 13$, and 37 different booklets fcr grade 12/age 17. rhese booklets were :hen spiraled and placed into bundles.

Spiraling involves interleaving the booklets in regular (systematic) sequence so that each booklet appears an appropriate number of times in the sample. Booklets were packaged together in bundles of 25 to 27 booklets, which was large enough to accommodate a typical assessment session. The bundles were designed so that each booklet would. appear equally often in each position in a bundle.

The final step in the BIB-spiraling procedure is the assigning of the booklets to the assessed students. The students within an assessment session were assigned booklets in the order in which the booklets were bundled. The result was that, typically, each student in an assessment session received a different booklet and, even in schools with multiple sessions, only a few students received the same booklet or block of items. In the 1988 BIB-spiral design, representative and randomly equivalent samples of about 2,600 grade. or age-eligible students responded to each item (resulting in samples of about 2,000 students eligible by age and 2,000 eligible by grade).

BIB spiraling differs from the simpler matrix sampling scheme used by NAEP prior to 1984 to assign items to students. In the earlier scheme, the pool of items was divided into distinct booklets rer.,iring about 45 minutes to administer, and all students with...$n$ assessment session were given the same booklet. Because all students in a session received the same booklet, it was possible to accompany the administration with a paced audiotape of the exercise stimuli, with the aim of minimizing the effect of a student's reading ability on performance in other subject areas. However, since each item appeared in a single booklet, it was impossible to estimate correlations between items appearing in different booklets. Furthermore, the administration of the same items to clusters of students within schools results in an increase in sampling variability over an unclustered sample of the same size because of intracluster correlation.

The BIB spiral design permits the estimation of correlations between all items within a subject area. Furthermore, since the spiral design presents each block of items to fewer persons in any school, but to more schools, than the simple matrix sampling design, the cluster effect is markedly reduced, leading to a sample with high statistical efficiency. The spiral design does preclude the use of audiotape pacing. Since each student within a session responds to a different set of items, the instructions and the items themselves must be read by the stud: nt as audiotape administration would be unmanageable.

### 1.4.2 Student Assessment Booklets-Bridge Samples

There were four distinct bridge sampıes in the 1988 assessment, each of which required the creation of special booklets.

Civics Bridge. One booklet was created for each of the ages 13 and 1 At each age, the booklet consisted of a common background block, a civics background and attitude block and three blocks of cognitive items. The background blocks were from the main assessment; the cognitive blocks
contained items used in previous assessments as well as items used in the 1988 assessment. The booklets were administered to all students within a session using audiotape pacing.

Bridge to 1984. Six booklets were used at each of the three grade/age classes. These booklets were identical to booklets used in the 1984 assessments of reading and writing. Each . Joklet consisted of a common background block and three cognitive blocks, either two reading and one writing or one reading and two writing. All cognitive blocks also contained subject-related background questions. The booklets were administered without audiotape and were spiraled through the assessment session.

Bridge to 1986 for Ages 9 and 13. Three booklets were used at each of the 2 ges 9 and 13 and were identical to booklets administered in 1986. Each booklet contained one blocic each of reading, mathematics, and science i,ems in addition to a common background block. All cognitive blocks also centained subject-related background questions. In each session, all studer cs were administered the same ne of the three booklets. The mathematic, and science blocks were paced with an audiotape; the reading blocks were admıniecered without an audiotape.

Bridges to 1986 for G-ade 11/Age 17. Seven assessment booklets were created for administration to grade llage 17 students. One booklet consisted entirely of blocks of U.S. history items from the 1986 assessment and was administered to the $17[\mathrm{Br} 86$-His] sample. The remaining six booklets consisted of blocks of reading, mathematics, and science items, were identical to booklets administered in 1986, and were administered to the $17[\mathrm{Br} 86 \cdot \mathrm{RMS}]$ sample. The bociclets in both bridges were administered without sudiotape pacing. All seven booklets from both bridges were administered to students in the same assessment session by spiraling through the session.

### 1.4.3 Other Instruments

Besides the student assessment booklets, three other instruments provided data relating to the assessment:

Teacher questionnaires were administered to the reading teachers of fourth-grade students assessed for reading and to the writing teachers of eighth-grade students assessed for writing in the main assessment. These questionnaires were designed to gather information about the characteristics of the teachers of the assessed students and about the curricula and teaching methods in the classroom.

School characteristics and policies questionnaires were completed by school principals or a representative and provided information about school
administration, staffing patterns, special programs, subject requirements, and school resources.

Excluded student questiomeires were completed by school personnel for each sampled student excluded from the assessment and provided information about the reasons for exclusion as well as basic demographic characteristics of the student.

### 1.5 YIELD ADMINISTRATION

The field administration of the 1988 assessment was the sesponsibility of Westat and is documented in Chapter 5. The field operation was organized around a staff at Westat's home office and a larger staff in the field. The home office staff consisted of a field director and a number of assistant field directors who were responsible for coordinating all activities of the Westat home office staff related to field operations and coordinating materials distribution and home-office receipt of assessment reporting forms. The field stanf consisted of district supervisors and exercise administrators The district supervisors, who were trained by Wes at, were each responsible for the assessment activities in one or more PSUs. Each district supervisor was primarily responsible for follow-up contacts to the school districts containing schools selected for assessment (as explained beiow, ETS made initial contact), recruiting and training exercise administrators to work with them in administering the assessment sessions, making arrangements for the assessments, and selecting the sample of students to be assessec within each school. The district supervisors and the exercise administrators administered the assessments, filled out the necessary forms, performed process control, and shipped the assessment booklets and forms to ETS.

Gaining school cooperation was the responsibilits of both Westat and ETS staff. ETS made the preliminary contacts preparatory to obtaining school cooperation by first contacting the Chief State School Officers, informing them that schools within the..r states had been selected for the assessment and, in a later letter, listing the selected schools and districts. Later mailings were sent to superintendents of public schools and parochial schools and principals of private schools for all schools selected in the assessment. These materials provided an explanation of NAEP, a list of the selected schools in the official's jurisdiction, and a cover letter explaining that a Westat district supervisor would contact them to set up an introductory meeting. Westat district supervisors then scheduled and conducted introductory meetings, worked with the schools to schedule the assessments, and, with the exercise administrators, conducted the assessments. The overall cooperation rate of schools originally selected for all phases of the 1988 assessment was 86.7 percent. Further detail on school partici ${ }_{r}$ ation rates before and after substitution is given in sections 3.2 and 3.3 of Chapter 3

The main assessment samples were assessed betwe.n January 4 and May 18, 1988 at all grade/age levels. The winter portion of the main assessment and the gracie 4/age 9 bridge samples were assessed between January 4 and March 11; the spring portion of the main assessment aud the grade 11/age

17 bridge samples were assessed between March 14 and May 18, 1988. The grade 8/age 13 bridge sample was assessed between $\mathcal{G}$ Eober 12 and December 16, 1987.

Both Westat and ETS participated in the quality control of the fic d administration. The quality control involved on-site visits by Westat and ETS staff to verify the sampling of the siudents and to observe the conduct of the assessment by the field supervisors and the exercise administrators. At the end of the assessment, a telephone survey of a 10 percent sample of the assessed schools was conducted to evaluate the field procedures.

### 1.6 Materials processing and database creation

Upon completion of an ass ssment session, Westat field supervisors and exercise administrators shipped the ..ssessment booklets and forms from the field to ETS for entry into computer files, checking, and forming the database. Careful checking assured that all data from the field were received. More than 130,000 booklets or questionnaires were received and processed. The extensive processing of these data is detailed i, Chapters 6 and 6.1.

Items requiring a written response from the student (open-ended items) were included in the assessment instruments for every subject aren except geography. Such items had to be professionally scored; the details of the professional scoring appear in Chapter 6.2.

The transcription of the student data into machine-readable form was accomplished by scanning the student instruments with an optical scanning machine. An intelligent data entry system was used for resolution of the scanned data, entry of documents rejected by the scanning machine, and entry of the information on the questionnaires. Additionally, each input datum was checked to verify that it was of an acceptable type, that it was within a specified range or set of ranges of values, and that it was consisteat with other data values. The entry and editing of materials is discussed in Chapters 6.3 and 6.4 .

Chapter 6.5 discusses the extensive quality control checks undertaken to verify that the information in the database corresponded to the inform tion in the assessment booklets and questionnaires. A random sample of each booklet and questionnaire was selected from the database and compared with the original document. The database was determined to be quite free of errors (with an observed error rate of less than .001).

The final step in the preparation of the assessment data for analysis was the construction of the database and the public-use data tapes. These are described in Chapters 6.6 and 6.7.

## Chapter 2

DEVELOPING THE NAEP OBJECTIDES, ITEMS, AND BACKGROUND QUESTIONS FOR THE 1988 ASSESSMENTS OF READING, WRITING, CIVICS, U.S. HISTORY, AND GEOGRAPHY

Walter B. MacDonald, Ina V. S. Mullis, Anne Campbell, and Nancy A. Mead
Educational Testing Service

The subject areas constituting the 1988 assessment were specified by a combination of the legislation in place when development work began and the advice of NAEP's governing board (at that time the Assessment Policy Committee). ${ }^{1}$ A brief rationale for the inclusion of each subject area follows.

Reading. Over the past few years, there had been well-warranted concern that an alarming number of American students were underprepared for the literacy demands of an increasingly complix world. Concern had arisen not only for student's intellectual and economic well-being, but also for their ability to participate fully in an information-based society. In addition, because reading is central to proficiency in other subject areas, levels of reading proficiency are likely to serve as an overall barometer of educational prugress.

Writing. Good writing is an essential underpinning in stuc'ents' abilities to express ideas clearly. The importance of assessing writing was exhibited in the NAEP legislation effective through 1988 that required that at least once every five years NAEP collect and report data assessing the writing performanse of students at various age or grade levels.

Civics. The civics assessment took place during the bicentennial of the writing of the U.S. Constitution. This was a time of high civic awareness and responsibility which focused attention on students' needs to understand democratic principles in order to appreciate and exercise their rights and to recognize the responsibilities inherent in being a U.S. citizen. Civics was first measured in the context of citizenship assessments in 1970, 1976, and 1982. The Assessment Policy Committee selected civics because of its

[^4]importance and because of the time elapsed since it had last been assessed. The 1988 civjes assessment represents current trends in civics education and reflects the civics-related portions of past citizenship assessments.
U.S. History. History plays a major role in helping students understand the world in which they live. The Assessment Policy Committee included U.S. history in the 1988 assessment to measure Ar^rican students' familiarity witi. the basic timeline and significance of the main issues of U.S. history and the key roles American men and women played in effecting social, political, and economic change.

Geography. The extent to which students understand geography affects their ability to comprehend global relationships and preserve the world's valuable resources. An understanding of geography is also pivotal to the successful study of related disciplines, including history and science. To measure and report on the extent and quality of students' understanding of geography, the National Geographic Society provided support for the inclusiun of geography in the 1988 assessment.

From its inception, NAEP has developed assessments through a consensus process and the 1988 assessment was no exception. Educators, scholars, and citizens representacive of many diverse constituencies and points of view designed objectives for each of the five subject areas, proposing goals they felt students should achieve in the course of their education. After careful reviews, the objectives were given to item writers, who developed assessment questions appropriaie to the objectives. Al: , destions underwent xtensive reviews by subject-matter, measurement, and bias/sensitivity specialists. They were assembled and prinud into booklets suitable for matrix sampling and then administered by a trained field staff to a stratified, multistage probability sample of students.

The development for the 1988 assessment included questionnaires for students, teachers, and school administrators, as well as a substantial number of cognitive questions for each of the five subject areas.

All 1988 development efforts were governed by four major considerations.

1) As spectfied in the legislation, the objectives would be developed through a consensus process involving subject matter expeits, school administrators, teachers, and parents, and the itens would be carefully reviewed for potential bias.
2) As outlined in the ETS proposal for the administration of the NAEP grant, the development of $o^{2}$.jectives and items for each subject area would be guided by a $!$ arning Area Committee.
3) As described in the ETS Standards for Quality and Fairness (ETS, 1987), all materials developed at ETS must be in compliance with specified procedures.
4) All NAEP items must be submitted to a ccinplex Office of Management and Budget (OMB) clearance process $2 . d$ all publications, including objectives booklets, submitted for review by the Office of Educational Research and Improvement (OERI).

In general, developing the objectives and items for the 1988 assessment was a two-year procwos, beginning in October 1985 when the governing board determined tirs subject arcas to be assessed and ending ir. October 1987 when data collection began at age 13 for the first trend assessment materials. The schedule called for selecting the Learning Area Committees in the fall of 1987 and beginning objectives development in January 1986. Once the frameworks for the objectives were set, item development proceeded in earnest from July through November 1986 when the clearance materials for the field test were submitted to the U.S. Department of Education. The field testing was conducted in February 1987. Subsequent to the rield testing, the Learning Area Comnittees met to guide selection of the materials for inclusion in the 1988 assessment. The materials for the 1988 assessment were submitted for clearance in May 1987. The objectives booklets were prepared for publication, printed, and disseminated during 1987. It should be noted that the specially funded geography assessment of high school seniors was on an abbreviatted schedule, beginning in January 1987, field tested in April 1987, and catching up to the main portion of the assessment in time to be administered beginning in January 1988 tegether with the reading, writing, civics, and U.S. histery materials. The geography objectives booklet was printed in June 1988.

The sections that follow in this chapter include general overviews for setting objectives and developing items and specific details about developing the objec cives and the assessments. Included in Appendix $A$ is a list of the more than 400 consultants who partisipated in the $1988 \mathrm{dcvelopment} \mathrm{process}$.

### 2.1 GENERAL OVERVIEW OF PROCEDURES FOR SETTING OBJECTIVES

The general procedures followed for determining the objectives to be measured in each subject area in 1988 vere essentially those followed by NAEP in previous assessments (see sections 2.3-2.6 for more detail).

1) The objectives used in the previous assessment were mailed to about 25 specialists for their review, comments, and suggestions. No constraints were placed on this activity and we asked for candid, critical reactions. The individuals involved in this process tended to be educators and specialists in the field and were selected to represent differing points of view, geographical locations, backgrounds, and constituencies. We sought advice from a wide range of sources for recommendations for this activity.
2) Learning Area Committees were established to help guide assessment development procedures within subject areas. The members of each committee were selected on the basis of recommendations from professional organizations, including those related to the specific subject arezs, and with great care to represent differing perspectives and backgrounds. In addition to gender and race/ethnicity, care was taken to have representation fro. classroom teachers, district administrators, and state education agencies as wcll as researchers and university professors. As much as possible, attention was also given to selecting members familiar with the concerns of the professional organizations appropriate for each of the five subject areas. These committee members worked closely with NAEP staff in developing the 1988 assessment.
3) Comments from the initial objectives review were synthesized and used as input for the first Learning Area Committee meeiings.
4) The first assignment of the respective icarning Area Committees was to review and revise the objectives booklets for each subject area based on their professional expertise and the comments of the previous revicwers.
5) The new edition of the objectives was, in turn, mailed to teachers, curriculum specialists (including the state curriculum supervisor $f$. sach subject area in each of the 50 s.tates), and school admin. trators practitioners from around the country. These individuals are school administrators and teachers, as well as teacher trainers who live and work in the practical educational environments. Their task was to review these objectives from the point of view of what seems reasonable and practical. As with earlier steps in the objectives development process, care was taken to be certain that appropriate minority group representatives were included to assure proper attention to these sensitivities. Depending upon the results of that review, the objectives were redrafted with the participation of the Learning Area Committee members and others, as necessary.
6) The revised objectives were mailed to the Depa: tment of Education for comment and review.
7) Further modifications of the objectives were made as necessary.
8) The Learn ${ }^{3}$ ng Area Committees completed the final review of the product.
9) The objectives were published, printed, and made available for national distrivution.

### 2.2 GENERAL OVERVIEW OF PROCEDURES FOR DEVELOPING THE ITEMS

A carefully developed and tested series of steps, essentially those followed in the past by NAEP, were used to create test items that roflected the objectives and that measured achievements related to them (see also sections 2.3-2.6).

1) Each Learning Area Committee and the staff of NAEP determined what spec. Eic aspects of the objectives could be measured given the realistic constraints of resources and the feasibility of implementing the measurement technology. For example, the grant from the U.S. Department of Education set a limit on the financial resources available as well as delineated the general design of the assessment as outlined in Chapter 1. Thus, the measures were constrained to those that could be administered via paper and pencil technology to groups of students. Each respective committee made recommendations about priorities for the assessment and types of items to be developed.
2) The existing pool of items to be ased to measure change from previous assessments (trend items) was reviewed in detail.
3) Item specifications were then developed and protutype items were created to reflect the type of questions that had been suggested. Trend items were selected.
4) Item writers with skills and experience in creating items according to specifications were identified from both inside and beyond ETS and scheduled for item development tasks.
5) Newly created items were reviewed and revised by staff and external reviewers.
6) Further language editing and sensitivity reviews were c، ducted according to ETS quality control procedures.
7) Field test materials were prepared, including the materials necessary to secure OMB clearance.
8) The field test was conducted with a representative group of students from across the country.
9) Field test booklets were scored and the results analyzed.
10) Based on these analyses and the results of the pilot testing, items were revised or modified and re-edited. They once again went through an ETS sensitivity review.
11) With the help of staff and outside reviewers, the Learning Area Committee selected the items to include in the assessment.
12) Items were assembled into "blocks" (15-minute mini-tests) with attention given to balancing content coverage and difficulty levels.

13;
After a final review and check to assure that each issessment booklet and each block therein met the overall guidelines for the asscsim?nt, the booklets were typeset and printed.

### 2.3 DEVELOPING THE READING ASSESSHENT

### 2.3.1 Reading Objectives

The objectives for the 1588 reading assessment ${ }^{2}$ carried forwarc the view expressed in the 1984 reading objectives that the processes of comprehension and the extension of comprehension through interpr tation and analysis have a place in reading of all kinds of texts. The 1988 objectives were based on an interactive view of reading. In this view, reading is a dynamic process in which a number of elemets interact, including the reader, the material being read, the purposes of 'he reading, the resder's previous experiences, and tie context for reading.

The first objective, "Compr'hends What Is Read," is cantral to the reading process. This obje:tive encomparses the comprchensior of var :ous types of written materials as well as the comprehension of materials read for a particular purpose. Objective two, "Extends Comprehension," in ${ }^{\circ} \mathrm{olves}$ deliberate kinds of analysis, interpretation, and evaluation. Objective three, "Manages the Reacng Experience," recognizes that good reade s develop a vari.e. $y$ of strategies to help them comprehend what they rent. These strategies include using the structure and organization of the text; using readers' aids; showing flexibility in one's a.proach tc reading; and selecting reading materials afpropriate to the purpose. The fourth objective, "Values Reading," discusses the kinds of appreciation that students can develop. The values include reading as a source of enjoynent; reading to expand understanding and to fulfill personal g: 's; reading as a means of acquiring knowledge and leazning new skills; and recognizing the cultural role of written languagt. In order to help teachers using the objectives, instructional strategies for each of the objectives were included in the booklet. In addition, because the 1984 reading assessment was so extensive in content coverage and because the proficiency scale :eloprd from it forms the basis for reporting data through the 1980s, a brief eescription of the reading scale was included.

[^5]
### 2.3.2 Reading Materials

As with previous NAEP reading assessments, a variety of reading stimulus materials were used that reflected the realities of reading passages, charts, and instructions found in texts, newspapers, and source documents. To this end, materials were drawn from many sources, including science and social studies textbooks, peer writing, technical writing, and directions.

### 2.3.3 Reading Item Development

The main goals of the 1988 reading assessment were to provide a link to the 1984 reading assessment and to broaden the scope of the assessment with some new items. As a resuľ, the items from the 1984 assessment became the foundation for the 1.988 assessment and the extensive development of new items was determined to be unnecessary. New items were developed under guidelines that included such factors as type of material narrative, expository, or peer writing), number of features bejng matched, number of possible distractors, and correspondence between the question and text. These guidelines were helpful in assembling the items for the field test, particularly in determining an approximate difficulty level for the items. In assembling the items into blocks for the field test, factors that were taken into consideration included the length of the stimulus, the type of reading material, and the estimated difficulty of the items.

Once the field test data had been analyzed, the reading Learning Area Committee met to select trend items from the 1984 reading assessment and to select rew items that sould complement the pool of trend items. Trend items were selected with careful attention to their psychometric characteristics as evaluated in prior assessments. The new items were selected on the basis of their statistical item analyses from the field test as well as the type of stimulus material. One fastor that had to be taken into consideration in compiling the items into blocks was that at least one trend and one new block at each age level had to overlap with the age level above and/or below it. There were to be at least three blocks of trend items at each age level as well. In addition to the criteria for overlap across age levels, trend blocks were selected to represent the best content coverage across the objectives ard be representative of the range of performance in previous assessments.

Once the items were selected and the blocks assembled, they underwent final review by ETS subject-area specialists and ..est editors as well as a review to detect the presence of any bias according to the ETS Standards for Quality and Fairness (ETS, 1987). After internal review, the OMB clearance package was prepared and submitted.

### 2.3.4 Reading Background and Attitude Questions

The 1.984 and 1986 assessment provided a wide range of reading background questions for consideration for the 1988 assessment. The Learning Area Committee reviewed this pool of items and selected a rumber ior rause. Of continuing interest were items that measure student behaviocs that indicate
interest in reading (reading for fun in your spare time, telling a friend about a good book). Other questions from prior years included spare time spent read_ug fiction and nonfiction and the student's evaluation of his or her own competence as a reader.

The Learning Area Committee was interested in expanding questions about the home reading environment: whether students subscribe to magazines at hone or have books of their own, whether students were read to when they were young, whether students read aloud to someone at home. Also added to the assessment were questions about frequency of various teaching practices-introducing the main idea of a story, pointing out new vocabulary, giving students a list of questions to answer. Finally, the Learning Area Committee wanted to know how often students used various reference books, such as dictionaries and encycloped' ${ }^{\text {' }}$.

### 2.4 DEVELOPING THE WRITING ASSESSMENT

### 2.4.1 Uriting Objectives

The objectives for the 1988 writing assessment ${ }^{3}$ were essentially a revised update of the objectives developed for the 1984 writing assessment. Because a major development effort was expended in the preraration of the 1984 objectives, NAEP anticipated that those objectives still reflected current theory of writing. To make sure, however, that the objectives for the 1988 assessment were up-to-date, NAEP sent the 1984 objeciives to teachers and theorists across the nation and asked them to comment on and revise the objectives as they felt necessary. Although many reviewers suggested numerous small revisions, the reviews supported the hypothesis that extensive revisions were unnecessary. The one major concern was integrating the concept "learning through writing" across all writing purposes-informative, persuasive, and personal/imaginative narrative-rather than segregating it as a single objective.

NAEP staff collated the comments and prepared a revised version of the objectives. This revised version was sent to members of the Learning Area Committee prior to their first meeting. When the committee met, they discussed the reviews and the revised objectives and then each member took a section and revised it further to reflec : the discussion. Their revisions became the basis for the final version of the objectives.

The writing objectives were based on the premise that individuals write for a purpose to an audience. Reflecting this premise, the first objective was that students use writing to accomplish a variety of purposes: informative, persuasive and, personal/narrative. The second objective-that students manage the writing process-focused on the importance of the process that leads to a piece of writing. The third objective-that students control the forms of written language-concerned itself with such skills as

[^6]organizing, elaborating, and using appropriately the conventions of writing (usage and mechanics). The fourth objective was that students value writing and what has been written and so underscored the importance of understanding the value of writing and the roles written works serve in our society. In order to help people put the objectives into practice, ideas and suggestions for teaching to each objective were presented in the final section of the objectives booklet.

### 2.4.2 Writing Item Development

Because of the similarity between the 1984 and 1988 objectives and because a major effort had also been put forth to develop the tasks for the 1984 writing assessment, NAEP felt that those items could be the foundation for the 1988 assessment. In addition, NAEP had access to the many tasks being developed for the California Assessment Program (CAP). For these reasons, it was possible to keep the new item development effout to a minimum.

First, the Learning Area Committee, made up of seven writing specialists, evaluated and selected the 1984 items by taking into consideration such factors as data from the 1984 writing assessment, the purpose for writing addressed by the task, the appropriatentss of the items for more than one age, and the necd to use enough items to provide = bridge to the 1984 assessment. The items that the Learning Area Committee selected became the pool for the writing trend bridge assessment and were the foundation of the pool of items for the more comprehensive 1988 main assessment. After selecting the 1984 trend iteins, the committee then considered what other items were needed to meet the specifications for the 1988 main assessment, reviewed the materials from the CAP, and developed new items. The developers of the CAP writing assessment program, which is bunt on a theoretical base very similar to that used by NAEP, had worked very long and hard to develop over 80 grade 8 prompts and were pleased to share materials with the NAEP committee. We are particuiarly grateful for access to this resource and indebted to CAP. In developing th new prompts for the 1988 assessment, particular attention was given to making the writing tasks relevant to students at the grade level being assessed. Consistent with the growing emphasis on process-writing instruction, it was also determined to study the effect on performance of the length of time provided to respond to the writing tasks. A small study on this issue co.ducted in conjunction wich the South Carolina Department of Education had indicated some improvements in performance. Therefore, some tasks were identified to be gi $\because e n .0$ students in two versions. In the regular version, fourth-grade students had 10 minutes to respond and eighth- and twelfth-grade students had 15 minutes to respond. In addition, some of the tasks were also given with longer response times-20 minutes for fourth graders and 30 minutes for students in the upper grades. (Because any assessment context seriously iostricts provisinn for the usual revision strategies, including peer review and outside consulting recources, in either situation the responses were to be viewed as first draft writing and evaluated accordingly.)

Once the pool of prompts had been developed, thes, itsms were reviewed by ETS subject-area specialists, sensitivity reviewers, and test editors.


Subsequent to the internal revie. srocedures, NAEP staff submicted the items for OERI and OMB clearance prior to field testing.
A. review the results and to select the new items that would complete the item pool for the 1988 assessment. Those items underwent final review by ETS subject-area specialists and test editors as well as a review to detect any bias according to the ETS Standards for Quality and Fairness (ETS, 1987). The final item pool, including the trend items, was then submittea for OMB clearance for the 1988 assessment.

### 2.4.3 Writing Background and Attitude Questions

For $r$ asons explained in Chapter l, the overall NAEP design between 1984 and 1988 che riged from one where student background questions wi.e BIB-spiraled across the assessment along with cognitive itcms to one where all students assessed in writing at a given grade level were given the same five-minute writing background questionnaire. Again, as the result of the c tensive development effo」r for the 1984 writing assessment and also as a result of the design used in 1984, that assessment had contained over 100 background questions and all had been thoroughly analyzed and reported in the Writing Report Card: Writing Achievement in American Schools (Applebee, Langez, \& Mullis, 1986). Tris pool provided an ample source of questions fr. devising a five-minute background questionnaire for each of the three grade levels (10 questions at grade 4, 24 questions at grade 8, and 35 questions at grade 12).

The Learning Area Committee reviewed the questions and the 1984 results and determined which areas to carry forward into the 1988 assessment. The reduction in background coverage for $198{ }^{2}$ necessitated difficult decisions, but agreement was reached about the need to focus on information about students' use of and instruction in the writing process as well as the amount of writing actually done by students.

The latter two areas of emphasis were particularly important in view of the teacher questionnaire that was developed for the writing teachers of the eighth-grade studencs who participated in the assessment (see section 2.7 for further detail abuut the teacher questionnaires). While both students and teachers were asked some questions relevant to their $\jmath w n$ experiences, care also was given to obtaining a coordinated set of information from teachers and students. In this way, NAEP was ajle to obtain the perspectives nf both teachers and students about writing instruction and compare the two (see Learning to Write in Our Nation's Schools: Instruction and Achievement in 1988 at Grades 4, 8, and 12 (Applebee, Langer, Mullis, Jenkins, \& Foertsch, 1990).

### 2.5 DEVELOPING THE CIVICS AND U.S. HISTORY ASSESSMENT

Because state education agencies had expressed a desire to have greater input into the NAEP assessment development process so that state curriculum concerns could be adequateiy reflected in the discussions about the objec:ives
and the content of the assessment, the civics and U.S. history assessments were developed together using a new model-one Learning Area Committee with the additional support of a State Advisory Committee. The integrated development of the civics and U.S. history woulc also be a very efficient protocol for development by decreasing the redundarcy of particular aspects of these related subject areas. Th's model for devel spment was accepted by OERI and ratified by the Assessment Policy Committee at their May 30-31, 1986 meeting. In November 1985, シAEP staff solicited reccumendations for reviewers and Learning Area Committee membership fr' the 50 State Testin' rectors.

To enhance state participation in * actual development of the civics and U.S. histoly assessment, a plan was developed with the State Testing Directors at the Large Scale Assessment Conference held in Boulder, Colorado, June 9-12, 1986. The plan established a State Advisory Committee to work in conjunction with the Learning Area Committee.

### 2.5.1 Civics and U.S. History Objectives

The eight-member civics and U.S. history Learning Area Committee first met in July 1986 to draft the objectives and suggest prototype items. Unlike reading and writing with ongoing development and extensive efforts in recent assessments, civics had not been assessed since 1976 (as part of citizenship) and although U.S. history had been assessed in 1986, that asse.ssment was a knowledge-based assessment at only grade $11 /-\mathrm{ge} 17$. Thus, more initial work was needed to update and elaborate or the existing objectives for civics and U.S. history.

For civics, a three-dime- ional matrix made up of content, co.text, and cognition frame three broad objectives. "The content dimension included the democratic principles and the purpose of government; the political institutions; tie politiral process; and rights, responsibilities, and the law. Each of tue areas were further broken down into numerous assessment topics. The concext dimension included home, school, community, state, nation, and worid. 'These addressed the expectations that civics learning begins in c.ildhood, continues throagh adolescence and schooling, and matures in adulthoid when people are participating in society. The cognition dimension included 1) knows and 2) understands and applien. These abilities addressed the notions that students must first be ahle to recognize factual knowledge and then be able to interpret information and be aware of how concepts and facts are interrelated.

As with the civics objectives, the U.S. history objectives ${ }^{5}$ took form as a matrix framed by three broad objectives. The first, chronology of events, persons, and documents, included the following eight hist.-ical periods:
${ }^{4}$ Civics Objectives, 1988 Assessment (Princeton, NJ. Educational Testing Service, National Assessment of Educational Progress, September 1987).
${ }^{5}$ U.S. History Objectives, 1988 Assessment (Princeton, NJ: Educational Testing Service, National Assessment of Educational Progress, August 1987).

1) Exploration and colonization up to 1763 ; 2) The revolutionary era, the Constitution, and the new Republic, 1763-1815; 3) Economic and social developmenc of the Antebellum Republic, 1790-1861; 4) Crisis of the union: origins of the $k, 1$, the war, and reconstruction, 1850-1877; 5) The rise of modern America and World War I, 1877-1920; 6) The United States, 1920-1941; 7) World War II and the postwar era, 1931-1968; and 8) Modern post-industrial era: 1968 to the present. Additional topics were specified under each of these chronological periods. The second objective, historical contexts, included the following contextual backgrounds. political life; economic life, cultural, social, and family life; and intellectual life. Reasoning skills formed the third dimensinn of the framework. The first skill, reference skills and knowledge, addressed the need to know historical aspects and the need to know how to expand an existing knowledge base. The second skill addressed the need for an understanding and a comprehension of the association of ideas and the perception of relationships.

In September 1986, the State Advisory Committee was convened to review these draft objectives and to review items submitted by states for anclusion in the civics and U.S. history assessment. For both the civics and U.S. history objectives, the committee suggested minor improvements to revise or rephrase some of the topic areas. Following the review of the objectives, the committee weighted each of the topic area with consideration to their relevance at a given grade/age level. The revised objectives were subsequently reviewed by the Learning Area Comnittee who were, by and large, satisfied with the results.

### 2.5.2 Givics and U.S. History Item Development

Some of the new items used in the 1988 assessment were submitted by some of the states; others were developed by either ETS staff or outside item writers. To facilitate the writing of new itens that were appropriate to the curriculum, $1^{5}$ social studies teachers were convened at an item development conference at ETS to write and revise new items. Following this conference, additional input was obtained from another 15 social studies teachers who reviewed items and suggested other new items during an item development conference at the Social Science Education Consortium in Boulder. The item development process proceeded through the fall of 1986 in accordance with the guidance provided by the Learning Area Committee. The new items were reviewed by subject-matter specialists, edited, and presented io the committee. The cormittee met in October 1986 to review, revise, and select items for field testing in the spring. To ensure the appropriateness of the items selected for stidents in the fourth grade, these items were sent to eight fourth-grade teachers for review in November 1986. All materials were submitted to OERI in November 1986, and revised and resubmitted in Decembe: to OERI for submission to OMB. After 'ield testing, the Learning Area Committre met for a third time, in April 2987, to review the field test results and select the items for the 1988 assessment of civics and U.S. history. Consistent with routine procedures, the items selected for the 1988 assessment were submitted for internal ETS review and subnitted for OERI/OMB clearance.

### 2.5.3 Civics and U.S. History Background and Attitude Questions

The civics and U.S. history Learning Area Com..ittee was primarily concerned with gathering information about students' instructional experiences. At all grade/age levels, students were asked how much they had studied the various topics covered in the assessment. At the two higher grade/age levels, students were asked about the amount of course work they had taken and their teachers' practices. High-school students also were asked about their homework, their grades, and their attitudes toward the subject areas.

### 2.6 DEVELOPING THE GE2GRAPHY ASSESSMENT

The 1988 geography assessment was initiated and funded by the National Geographis Society due to well-warranted concerns about the state of geography learning in the United States. The development of this assessment did not start at the same time as the otier subjects. The design, planning, and funding for a geography assessment of grade 12/age 17 students commenced man months later in NAEP's 1988 development cycle.

A five-member Learning Area Committee was created with individuals recommended by the National Geographic Society in accordance with the guidelines for committee membership articulated in section 2.1. This committee eagerly took the charge to develop an assessment in a new subject area never before assessed by NAEP. The challenge of a late start and a brand new subject area for assessment was balanced by the modest scope of this assessment relative to the other subject areas-one grade and three blociss uf questions versus three grades with approximately seven blocks of questions fer grade.

### 2.6.1 Geoqraphy Ubjectives

The geography Learning Area Committee first convened at the end of January 1987. At this meeting, the objectives of the 1988 geography assessment ${ }^{6}$ were formulated to reflect the current trends in geography education. During this process, the Wisconsin geography assessment provided valuable background information upon which to build NAEP's draft framework for a national assessment of geography. This framework was organized arourd three dimensions of geography: geographic skills and tools, including the use of maps, charts, and globes; geographic knowledge and concepts, including the understanding the area of physical and cultural geography; and geographic inquiry, including the cognitive application of skills, knowledge, and understanding to new situations. The dimension of geographic knowledge and concepts (content) was divided into physical and cultural geography. Physical geography included physical locations, places, and regions; climatology and meteorology; and the evolution of land-form features of the earth's surface,

[^7]whereas cultural geography included cultural locations, places and regions, human frupacts on the environment; influences of the environment on human activity; and spatial interactions. All of the categories within physical and cultural geography were broken down into numerous subcategories to help characterize topics for assessment

Following the Learning Area Committee meeting, the draft objectives were reviewed by external consultants representing various cothinituencies and revised as necessary. Because of the hastened development time and also because of their keen interest, the Learning Area Committee remained closely involved throughout the review and revision process.

### 2.6.2 Geography Item Development

Foliowing the drafting of objectives, item development proceedsd at an accelerated pace in order to bring the geograrhy assessment into phase with the assessments in reading, writing, civics, and U.S. history. About lOC cognitive items were written by ETs test development staif and 100 items were written by members of the Learning Area Committee. These items were reviewed by about 10 reviewers and used to assemble six blocks of cognitive items. The rapid preparation did not preclude the standard ETS test development procedures to ensure quality and fairness of the geography item blocks.

The geography field test data were gathered and analyzed in preparation for a May 1987 meeting of the Learning Area Committee. At this meeing, the committee reviewed the items and their statistics to select a pool of items that would be appropriate for the assessment of the geography knowledge and skills possessed by students at grade 12/age 17. Decisions were monitored in terms of the coverage of both the four content areas and the importance of assessing conceptual understanding as well as facts. After the meeting, test developers assembled one test booklet comprising one five•minute block of general background questions, one five-minute block of geography background questions, and three 15 -minute blocks of cognitive items, totaling 78 items in all. These materials were reviewed thoroughly by ETS specialists and submitted for OME clearance.

### 2.6.3 Geography Background and Attitude Questions

As mentioned above, geography assessment development also included a block of background questions for inclusion into a test booklet with the cognitive blocks. In developing materials for the student questions sperific to geography, the Learning Area Committee focused on coursework and content coverage. Students were asked what geography courses thiy had taken duiing high school and how much they studied the various topics covered by the objectives and assessment items.

## 2.J DEVELOPING THE COMMON CORE STUDENT QUESTIONS AND QUESTIONNAIRES

Additional instruments were developed for the 1988 asses,ment: a common core of student background questions containing 21 questions at ra 4, 21 questions at grade 8, and 33 questions at grade 12; teacher questi naires containing 56 questions at grade 4 and 67 questions at grade 8 ; school characteristics ani policies questionnaires containing 91 questions at grade 4, 94 questions at grade 8, and 107 questions at grade 12; and an exclided student questionnaire containing 28 questions.

The student, teacher, and school instruments were designed te collect information about home, classroom, and school factors related to four policy issues that had also been the focus of the 1986 assessment: instructional practice, students at risk, teacher workforce, and effectivc schools.

The development of policy issues and items was an iterative process that involved staff work, field testing, periodic review by an external advisory group, and review by the Assessment Policy Committee. At an initial meeting, a group of external consultants drafted a set of policy issues and made recommendations regarding the design of the assessment. They were particularly interested in capitalizing on the unique properties of NAEP and not duplicating the purposes underlying other surveys (e.g., The National Survey of Public and Privaie School Teachers and Administrators and The National Education Longitudinal Study). They secommended a more focused study of the relationship between student achievement and instrurtional practices. This recommendation provided the impetus for a major redesign of the teacher questionnaire (see below). Items were developed to assess the policy issues and field tested with students, teachers, and principals. The policy issues, items, and field test results were reviewed by the group of external consultants who id ntified specific items to be included in the final questionnaires. The field test results and the recommendations of the consultants were also reviewed by the Assessment Policy Committee. The items were then assembled into questionnaires and submitted to internal ETS procedures to ensure fairness and quality. The background questionairab were submitted for OMB clearance together with the cognitive items.

Every student booklet began with a common core of background questions. In many cases the questions used in 1988 were taken from prior assessments. Although many of the questions were common to the three grade/age levels as ssed, some were specifically targeted to elementary or high-school students. At grade 4/age 9, the background questions were read aloud to the students and took approximately 10 minutes to complete. At the other two grade/age levels, only the first race/ethnicity question was read aloud, students read and answered the remaining questions on theit own during a five minute time period. The questions asked about demographics, home environment, and instruction experiences.

The teacher questionnaire was administered to samples of grade 4 and grade 8 teachers. All grade 4 students assessed in reading were identified and questionnaires were given to their reading teachers (whoever took primary responsibility for the student's reading instruction). All grade 8 students
assessed in writing were identified and questionnaires wert given to their writing teachers.

The teacher questionnaire included three sections and took approximately 20 sinutes to complete. The first section focused on individual student information. Aill teachers whose students had participated in the assessment were asked to resyond to a set of questions about their students. Each taacher answered this set of questions for up to 10 different students. Most of the questions were new.

The second section focused on classroom information. Teachers were asked to respond to a set of questions about the classes in which the stidents in the assessment were enrolled. Each teacher arswered this set of question for up to five different classes. Most of the questions in this section were new in 1988, although some used wording that is parallel to student questions from prior assessments.

The third section focused on teachers' background and experience. Almost all of these items were taken from prior assessment.

The school characteristics and policies questionnaire was given to the principal in each participating school, and took about l! minutes to complete. Three versions were administered-one for each of the three grade/age levels. The questions asked about the principal's background and experience, school policie. programs, and facilities, and the composition and background of the student body.

The excluded student questionnaire was given to the teachers of students who were identified in the NAEP sample but were determined by the school to be unable to participate because they were milcly mentally retarded (educable), functionally disabled, or had limited Englisu proficiency. This questionnaire took approximately three minutes per student to complete and asked about the nature of the student's exclusion and special prograns in which the student participated.

### 2.8 FIELD TESTS FOR THE 1988 ASSESSMENT

By February 1987, staff had secured school cooperation for participation in field testing for the 1988 assessments of reading, writing, c.vics, and U.S. history and for the teacher and schonl policies questionnairas. By this time, staff had assembled 8415 -minute blocks of reading, wrǐing, civics, and U.S. history cognitive items and combined these into 34 field test
booklets- 13 booklets at grade 4, 11 booklets at grade 8 , and 10 booklets at grade 12. Upon receipt of clearance for the field testing, booklets were printed and approximately 30 trained administrators imnediately began field testing. The field tests, involving 6,800 students in ${ }^{-2}$ school districta across the country, were conducted in February 1987. EfS staff members traveled to 12 districts in the Northeast, 17 in the Southeast, 12 in the Central, and 11 in the West. Generally, field tests were conducted at al three levels in each school district including two classes at fourth grade, and one class at each grades 8 and 12. Field tests were carried out in 104
fourth-grade classes, 88 eighth-grade classes, and 80 twelfth-graje classes. Approximately 300 responses were obtained to each question in the field test materials.

Overall the field test was completed on schedule. The data were collected, scored, and analyzed in preparation for meetings with the Learning Area Committees and Background Advisory Committee. Using item analysis, whirh provides the mean percentage of correct responses for each item in the field test, committee members and NAEP staff reviewed the materials according to five purposes: to determine which items were most related to achievement in the four subject areas; co evaluate the effectiveness of items designed specifically to assess higher-order thinking skills; to dete-nine necessary revisions to items that lacked clarity, or to ineffective item formats; to give priority to items to be included in the full assessment; and to determine appropriate timing for assessment items.

The geography background questionnaire and the blocks of cognitive items were field tested in April 1987. Trained administrators conducted field tests at the twelfth grade at about 12 locations around the country.

Unce the committees had selected the 1988 assessment items, all items were rechecked for content, measurement, and sensitivity concerns. The OMB clearance process was initiated April 28,1987 with the submission of draft materials to the Office of Educational Research and Improvement. The final package was submitted May 27, 1987. Throughout the clearance process revision were made in accordance with changes required by OERI, the IMCD, and OMB.

### 2.9 FINAL PREPARATION OF THE 1988 ASSESSMENT MATERIALS

### 2.9.1 Objectives Booklets

The objectives booklets were sent out for external review by teachers, educators, and state representatives. The many good suggestions generated from these reviews were used to revise the booklets. After consensus review and approval by each Learning Area Committee, the objective booklets were sent to OERI for the internal government and peer review process. Subsequent to that 30 -day review and incorporation of suggested revisions, the booklets were submitted to ETS internal editing and finally to the composition and printing process The new objectives booklets for reading, writiug, civics, and U.S. history sere published and released in 1987; the geography objectives booklet was published and released in 1988.

### 2.9.2 Student Assessment Booklets and Questionnaires

The items earmarked by each Learning Area Committee and submitted to OMB clearance for incıusion in the 1988 assessment were assembled into blocks in accordance with the assessment design. These blocks were assembled to meet content, context, cognition, and psychometric specifications and to contorm to the assessment time and administration restrictions. A common core of questions about students' demographics and home backgrounds appeared at the
beginning of each booklet. Approximately five minutes of background questions related to a subject area appeared next, followed by blucks of cognitive items in the same subject area. For reading, seven blocks of cognitive items were prepared for each grade/age level; for writing, 10 blocks of cognitive items were prepared for each grade/age level; for civics, three cognitive item blocks were prepared for grade 4/age 9 and 10 for each of the two older grade/age levels; for U.S. history, three blocks of cognitive items were prepared for grade 4/age 9 and seven for each of thc two older grade/age levels; and for geography, thres blocks of cogniti, items were prepared for grade 12/age 17. The questions for school administrators, teachers, and abuat exclu. led students were assembled into questionnaires.

In addition to the main assessment special studies were included to measure the relationship between length of time permitted fol writing and writing performance and the relatiorship between document literacy and reading proficiency. Further details about assessment instruments appear in Chapter 4.

Subsequent to assembly, all of the assessment blocks and questionnaires were subjected to the review process established by ETS and NAEP, including scrutiny by subject-matter specialists, measurement specialists, test editors, and persons specially trained to review questions for any potential insensitivity to women or minority groups. As part of the OMB clearance process, all items were also reviewed by OERI staff, by the Office for Quality Assurance, and by the OMB. Subsequent to final OMB clearance on August 11 , 1987, the blocks ata questionnaires were submitted for composition, printing, bundling, and distribution to the Westat, Inc., field staff responsible for administering the 1988 assessment.

## Chapter 3

## SAMPLE DESIGM

Keith F. Rust and Morris H. Hansen
Westat, Inc.

The samples for the 1988 NAEP assessment were selected using a complex multistage sample dissign involving the sampling of students from selected schools within 94 selected geographic areas, called primery sampling 'anits (PSUs), across tire United States.

The sample design had four stages of selection:

1) selection of geographic PSUs (counties or groups of counties);
2) selection of schools within PSUs;
3) assignment of session types to schools; and

4, selection of students for session types within schools.

The samples were drawn for the three different age classes, and for each age class the samples were of two distinct types. The fir. : type consisted of the cross-sectional or "main" samples, while the second type consisted of the trend or "bridge" samples. The populations surveyed with each of these sample types are defined in Table 3-1. Separate samples of schools were required for the bridge samples and main samples, because of various differences in the calendar period for test administration, the format of the administration, and, in the case of age class 17, the grade and age definition of the population of interest.

Table 3-1
Reference Populations for the Components of the NAEP 1988 Samples

| Age Class | Main Samples |
| :---: | :---: |
| 9 | Born 1978 andior onrol *ed in grade 4 |
| 13 | Born 1974 and/or anrolled in srade 8 |
| -1 | Born 1970 end/or anrolled in srade 12 |

Bridge to 1986
Born 1978 md/or onrollod in grade 4

Born 1974 and/or anrolled in grade 8

Born 10/70-9/71 and/or enrolled in grade 11

Bridge to 1984
and
Civics Bridge

Born 1978

Bern 1974

Boin 10/70-9/72

In addition to representing the respective fopulations as a whole, the main samples had as a component a modest oversampling of schools rith moderate or high enrollment of Black and/or Hispanic students (see secticn 3.2). This oversampling was undertaken to increase the sample $s$ es of such students, thus increasing somewhat the reliabilit, of estimates for these minority groups.

The overall assessment period fell into threc time periods - faıl, winter, and spring. Not all assessment components were conduct.ed in each time perio:. Table 3-2 shows the relationship between the varixus sample components and the assessment periods. The sizes of the PSU and school samples and the procedures for their selection were determined by the assessment period, as well as by the population to be surveyed and the method of administration in each case.

Table 3-2
Assessment Type by Age Class and Assessment Period

| Age Class | $\begin{gathered} \text { Fall } \\ 10 / 12 / 87-12 / 18 / 87 \end{gathered}$ | $\begin{gathered} \text { Winter } \\ 1 / 4 / 88-3 / 11 / 88 \end{gathered}$ | $\begin{gathered} \text { Spring } \\ 3 / 14 / 88-5 / 1^{2} / 88 \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 9 | - | Croas-sectional (part) Bridges to 1384, 1986 | Cross-sactional (part) |
| 13 | $\text { Bridges to } 1984 \text { 1986, }$ Clvice Bridgo | Cross-soctional (part) | Crosa-anctional (part) |
| 17 | - | Croas-sectional (part) | Cross inectional (part) Bridges to 1984. 1986. Clvics Bridea |

This chante. gives details of the samp ?e selection procedure, and information on the results of the sampling process. Stil: fuller details are given in The 1988 National Assessment of Educational Progress-Sampling and Weighting Procedures, Final Report (Rust, Bethel, Burke, \& Hansen, 1990).

### 3.1 PRIMARY SAMPLING UNITS

In the first stage of sampling, the United States (the 50 states and the District of Columbia) was divided into geographic primary sampling units (PSUs). Each PSU met a minimum size requirement (a pcpulation of at leas: 60,000 in the 1980 Census) and comprised either a metropolitan statistical area (MSA), a singlf sounty, or (more usually in the case of nonMSA YSUsi a grouf of contig ous usunties. In the case of New England MSAs, which are not formed from whole counties, the correspond'.. ${ }^{\text {N }}$ New England County Metropolitar Areas, which are defined in terms of whole counties, were designated as he PSUs. The New York City MSA was d'vided along cot aty/borough lires inco thice PSUs for reasons of administrative at.' sampling convenience. Each PSU was contained entirely within one of the four regions defined in Tab?.e ? 3. These regions were used to stratify the sample of PSUs, ensuring that each regior. was adequately represented in the various assessment samples.

Trble 3-3
Geographic Regions Used for Stratification

| Northeast | Southeast | Central | West |
| :---: | :---: | :---: | :---: |
| Connecticut | Alabama | Illinois | Alaska |
| Uelaware | Arkansas | Indiana | Arizona |
| District of | Florida | Iowa | Cnisifornia |
| Columbia | Georgia | Kansas | Colorad |
| Maine | Kentucky | Michigan | Hawaii |
| Maryland | Louisiana | Minnesota | Idaho |
| Massachusetts | Mississippi | Missouri | Montana |
| New Hampshire | North Carolina | Nebraska | Nevada |
| New Jersey | South Carolina | North Dakota | New Mexico |
| New York | Tennessee | Ohio | Olclahoma |
| Pennsylvania | Virginia* | South Dakota | Oregon |
| Rhode Island | West Virginia | Wisconsin | Texas |
| Vermont |  |  | Utah |
| Virginia* |  |  | Washington |
|  |  |  | Wyoming |

[^8]In a few cases an MSA crossed region boundaries. Such MSAs were split into two or more PSUs as necessary (e.g., the Cincinnati OH-KY-IN MSA was split into the Cincinnati OH-IN PSJ in Region 3 and the Cincinnati KY PSU in Region 2). Twelve subuniverses of PSUs were then defined as described below.

The 28 largest PSUs were included in the sample with certainty. An additional six very large PSUs (four from the Southeast and two from the West) that had large proportions of Black students andjor Hispanic students were also included with certainty. The 34 certainty PSUs constituted 32 metropolitan areas, since the New York City MSA was divided into three certainty PSUs. The inclusion of these 34 PSUs in the sample with certainty provided an approximately optimum cost-efficient sample of schools and students when samples were drawn within them dt the required national sampling rate. The representa iiveness of the sample for minority groups was enhanced by ensur ${ }^{-2 g}$ that these PSUs were included in the sample, since these minority groups are relatively heavily re: resented within these certainty PSUs. The remaining smaller PSUs were not guaranteed to be selected for the sample. These were grouped into a number of noncertainty strata (so called because the PSUs in these strata were not included in the sample with certainty), and a sample PSU was selected from each stratum.

The PSUs were classified into four regions, each contioning about onefourth of the U.S. population. These regions were defined primarily by state (Table 3-3). In each region, noncertainty PSUs were classified as MSA or
nonMSA. In the Southeast and West regions, the PSUs in which the combined proportion of population which were Black and Hispanic respectively in the 1980 Census exceeded 20 percent, were classified as high minori上y. The resulting major strata, or subuniverses, are shown in Table 3-4.

Table 3-4
The Sampling Subuniverses
and the Number of Noncertainty Strata in Each

| Region | - MSA PSUs - |  | - NonMSA PSUs _ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Regular | High-minority | Regular | High-minority |
|  | Strata | Strata | Strata | Strata |
| Northeast | 8 | - | 2 | - |
| Southeast | 4 | 6 | 4 | 6 |
| Central | 8 | - | 6 | - |
| Hest | 4 | 6 | 4 | 2 |
| Total | 24 | 12 | 16 | 8 |

Within each major stratum (subuniverse), further stratification was achieved by ordering the noncertainty PSUs according to several additiona: socioeconomic characteristics, yielding 60 strata. The strata were definew 0 that the aggregate of the measures of size of the PSUs in a stratum was approximately equal for each stratum, except for strata in the high-minority subuniverses, in which the aggıegate was approximately half that of the regular strata. The size measure used was the population from the 1980 Census. The characteristics used to define strata were the percent minority population, the nercentage change in total population since 1970, the per capita aducational expenditure, and the percent of persons employed in manufacturing (MSA subuniverses only) and tie percentages of rural and urban dwellers (nonMSA subuniyerses only). One PSU was selected with probability proportional to size from each of the 60 noncertainty strata. That is, within each stratum, a PSU's probability of being the sample selection from that stratum was proportional to its population. Thus the high-minority subuniverses were sampled at approximately twice the rate of the other subuniverses, since they were about half as large. This procedure of oversampling from the high-minority sutuniverses was used with the aim of reducing somewhat the level of sampling error for estimates relating to the populations of Bl ack and Hispanic students.

The final sample of 94 FSUs was drawn from a population of about 1,000 PSUs. Primarily because of the use of MSAs as PSUs, PSU's varied considerably as to their probability of selecticn, since they varied greatly in size. The 34 certainty PSUs consisted of the 26 largest MSAs in the country, based on the 1980 population from the Census, plus six other large MSAs from the Southeast and West regions with in excess of 20 percent of their population, being Black or Hispanic. The 36 selected noncertainty MSA PSUs had probabilitles of selection ranging from 0.028 to 0.584 , while the 24 selected nonkSA PSUs had probabilities ranging from 0.021 to 0.101 . The variations in
probability depended upon the size of the PSU (1980 population) and whether or not the PSU was in a high minority subuniverse. Parts of 37 states were included in the 94 selected - Us.

The PSU samples were drawn at one time for the 1986, 1988, 1990, and 1992 assessments. They were drawn so as to provide for the rotation of the PSUs from one assessment to the next, except that certainty PSUs were retained in each assessmant year, and some of the larger noncertainty PSUs were retained for two successive assessment years.

The 94 PSUs were used for the main assessments of all three age classes. To facilitate and improve administration of the assessments and co allow for the estimation of growth in achievement during the school year, the assessment sample was divided into ti randomly equivalent subsamples, une to be asst sed in the winter and the other to be assessed in the spring. For this purpose, the 94 PSUs were designated as winter PSUs, spring PSUs, or both winter and spring PSUs, according to the following scheme. The 18 largest certainty PSUs were designated both winter and spring PSUs, to be included in the sample for both seasons (the sample of schools within each of these PSUs was divided into two stratified random half-samples; one half-sample to be assessed in the winter and one to be assessed in the spring). The 16 smaller certainty PSUs were ordered by region and then alternately designated as winter PSUs or spring PSUs, resulting in eight PSUs for each season. Similarly, alternate members of the set of the 60 noncertainty PSUs, arranged in stratum order within each subuniverse, were designated as winter or spring PSUs. The end resul.t was 56 winter PSUs, inciuding 38 in which assessments were conducted only during the winter, and 18 where assessments were conducted in the winter and the spring, and 56 spring PSUs, consisting of 38 in which assessinents were conducted only in the spring. and the 18 winter and spring PS'Is.

The procedure of designating two half.samples for the main assessment, one for winter and one for spring, differed from the procedure used in 1986. In that year, all of the main (i.e., cross-sectional) sample assessments took place in the spring within the 94 selected PSUs; consequently, it was not necessary to designate half-samples on th. basis of season of assessment.

The bridge assessments used a series of subsamples of the 94 PSUs used for the main assessment. The age class 9 bridge assessments, whicn were conducted in the winter, used the 56 PSUs designated as winter PSUs in the main assessment; the age class 17 bridge assessments, conducted in the spring, used the 56 PSUs designated as spring PSUs. The age class 13 bridge assessments, conducted in the fall, used 64 PSUs selecced from the complete set of 94 PSUs with probability proportional to the measure of size of the strata from which the PSUs were selected. The selection of PSUs for the fall assessment was independent of the projess of designating PSUs as winter or spring. As for the wirter and spring subsamples, the 18 largest certainty PSUs were retained in the fall bridge sample vith certainty. The distribution of PSUs among the fall, winter, and sprinfonssessment periods is ilustrated in Figure 3-1

Figure 3-1
Distribution of 94 Sampled PSUs by Inclusion in the Fall, Winter, and Spring Assessment Periods


The age class 9 and age class 13 bridge samples used the same school and student eligibility requizements as the respective main samples. Nevertheless, special bridge samples were required because

1) The conditions for administration of the a: sessment varied considerably between the main sample and bridge sample sessions.
2) The need in the bridge samples for four distinct session types for age class 9 and five for age class 13 made it infeasible to conduct both a main sample session and the several bridge sessions within a given school.
3) For age class 13, the main samples were conducted at an inappropriate time of the year for bridging purposes, so that a sample of schools was needed to undertake the bridge assessments in the fall of 1987.

A separate sample of schools was required for the bridge sessinns and the main sessions for age class 17 primarily because the definitions for st.udent eligibilicy, based on age and grade, differed substantially be wween the - o samples, even though the same popuiation of schools was surveyed in each case. Conlitions oí administration varied somewhat also.

### 3.2 SCHOOLS FOR MAIN SAMPLES

In the second stage of sampling, the public, private, Catholic, Bureau of Indian Affairs, and Department of Defense schools within each of the 94 PSUs were listed according to the grade ranges associated with the three age classes. The population of eligible schools for each age class (Table 3-5) was the same for bridge and main samples in each case. Any school having one or more of the eligible grades, and located within an appropriate PSU, was included on the frame of schools (the list of schools from which the samples of schools were drawn) for a grven sample. For each age class, only a fractio \& of one percent of age-eligible students was errolled in ineligible schools. Each school within the 94 PSUs with a grade in the range of 2 to 12 was included in at least one age class-a total of 36,290 schools. An independent sample of schools was selected for each of the age classes. Thus some schools were selected for assessment of two age classes, and a few were selected for all three. The lists of schools were obtained from the 1986 list of schools maintained by Quality Education Data, Inc.

Table 3-5
Grade Definition of School Eligibility for Frame Inclusion and Frame Sizes, Main and Bridge Samples

Frame included schools
Age Class
9
13
17
Total

2-5
6-9
9-1.2
2-12
with an' grade in the range

Number of schools on frame

26,951
28,167
8,485
36,290

Schools within each PSU were selected (without replacement) with probabilities proportional to assigned ures of size. Roughly equal measures of size were assigned to schools containing estimates of grade/ageeligible students ranging from 20 to 150 (for age class 9), or to 200 (for age class 13 and age class 17). Schools larger than the indicated maximum saze were selected withir the selected PSUs with probabilities proportional to the number of grade/age-eligible students. As a result, in some instances a large school was selected with certainty within a relatively small selected PSU. Schools with fewer than 20 estimated grade/age eligibles were assigned considerably lower measures of size, and this lower probabilities of selection, since assessment in these schools involved substantially higher per-student administrative co: ts.

A school with minority (Black and/or Hispanic) enrollment in excess : 15 percent of total errollment was given double the probability of selertion of a school of similar size in the same PSU with minority enrollment below 15 percent. Overall probabilities of selection for such high-minority schools were twice those for other schools of the same size from a given PSU in order to enlarge the sample of Black and Hispanic students, thereby enharicing the
reliability of estimates for these groups. For a given ovarall size of sample, this procedure reduces somewhat the reliability of estimates for all students as a whole and for those not Black or Hispanic.

The total number of schools selected for each age class was determined to be such that the predesignated student sample sizes would be achieved by selecting all eligible students in a selected school. up to a maximum of 150 (for age class 9) or 200 (for age class 13 and age class 17), allowing for losses dut to nonparticipation of selected schools and students and the exclusion of students from the ass ssment.

In each of the 94 PSUs, a minimum of three schools was selected for age class 9, four schools for age class 13, and two schools for age class 17. These minima were established based on the total number of students and hence schools required for the particular age class, and on the proportion of selected schools likely to contain few or no eligible students. This propurtion is much higher for age class 13 than for the other age classes because of the inclusion on the frame for this age class of commonly occurring elementary schools with a grade span of kindergarten through grade 6, and high schools with grade 9 through grade 12, which generally enroll few l3-yearolds. The use of these minima for the sample size of schools per PSU was derived as a -ompromise between two desirable but conflicting objectives. The first of these is to ensure substantial representation from within each selected - J (after the impact of nonresponse). The second objective is the need to keep the variability in overall student sampling probabilities (and hence weights) to a low level, so as to control the sampling errors associated with N:EP estimates. The use of a large minimum sample size requirement per PSU would act to reduce unduly the weights of studerts selected from small PSUs.

This design, with the important exceptions described above, had the goal of yielding a sample of students in a given age or grade with approximately uniform probabilities of selection. The practical constraints on the sample size within each school, and the need to ensure an adequate ample within each PSU, resulted in some substantial violations of this general goal.

For all three age classes, a sample of schools was fir drawn for the brideco assessments (see below). These schools were then exclued from the frame when the samples of schools were drawn for the main assessments. Adjus ts were made to reflect the appropriate probabilities of selection, and $t_{1}, \ldots, \ldots e$ sample weights, to yield unbiased estimates for both bridge and main samples. Schools colected for main assessments were further classified as belonging to the winter main assessment or the spring main assessment. For the schools in the PSUs assigned to a single season, this c?assification corresponded to the classification of the PSU containing the school. Halfsamples of the schools in each of the 18 largest certainty PSUs (those PSUs assigned to both seasons) were assigned to the winter and spring assessments respectively.

After selection of the initial sample of schools was completed, information was obtained to update the sample fo ${ }_{2}$ new eligible schools. Public school districts and Catholic dioceses of initially selected schools
were asked to give informatior about new schools and schools with changes in grade structure since tha 1986 date t.c, which the Quality Education Data lis related, for their district/diocese. Schools so identified were given an appropriate chance of inciusion in each of the samples for which they were eligible. The overall probability of inclusion for a given age class for each such school was determined by the estimated number of eljgible sc...ents enrolled in the schooi, and the within-PSU sampling rate used to select the initial sample of schools. The conditional probability of selection, used to draw the actual samples of new schools, was obtained by dividing the overail probability for the school by the probability that the school district was represented by a selected schcol in one of three initial main samples. These district level probabilities were obtained by recoastructing the sample selection rocedure to obtain the probability that at least one school from the district was included in a given age class sample, and then combining these independent probabili.ties across age classes. The process identified a total of 58 new schools, 44 eligible for age class 9,40 eligiole for age class 13, and 11 eligible for age class 17. Threa new schools were added to the sample in this way-two at age class 9 and one at age class 13. All three schools were found to have eligible students enrolled, and were invited to participate.

In a few PSUs where school refusals were relatively heavy for a particular sample, substitute school selections were made, replacing the refusals (tc the extent feasiols) with schools from within the same PSU and similar in size, affiliation (public, Catholic, or other private), grade span, and minority composition. In a very few cases, substitute schools were chosen from another PSU within the same stratum as the original. The goal of this procedure was to maintain the studeni sample sizes needed, while keeping variance and nonresponse bias at acceptable levels. 'rable 3-5 shows the number of in-scope schools selected, cooperating, and substicuted, in each of the school samples. The participation rates given are based on the initially selected samf ee of schools. These response rates are comparable with those of previous assessments conducted during the 1980s. Note that since the responst rates quoted do not include the sutstitute selections, the potential for nonresponse bias is likely to be somewhat less than these rates would indicate. This is because the substitute selections were chosen based on their similarity to the initially refusing selections.

The considerable numbers of schools selected with no eligible studenis enrolled resulted primarily from the fact that, for example, for ${ }_{5}$ rade $8 / a g e$ 13 , some schools with grades 6,7 , or 9 , but no grade 8 , were sampled. Such schools had a reasorable chanct of containing some age 13 students. Often they did have a number of eligible students, but sometimes they had none. Because of the grade structure of schools, this occurred most often for grade 8/age 13.

Table 3-6
School Sample Sizes, Refusals, and Substitutes
Main Samples

|  | Age Class 9 | Age Class 13 | Age Class 17 | Total |
| :---: | :---: | :---: | :---: | :---: |
| Selected, in scope | 373 | 506 | 383 | 1,262 |
| Kefusals | 42 | 68 | 66 | 176 |
| Participation rate of originally selected schools | -89\% | 87\% | 83\% | $86^{*}$ |
| 1986 participation rate | 89\%* | 89\%* | 81\%** | 81\% |
| $\begin{aligned} & \text { Participating; no eligible } \\ & \text { enrolled } \end{aligned}$ | 4 | 39 | 13 | 56 |
| Substitutes participating | 9 | 14 | 8 | 31 |
| Final assessed sample | 336 | 413 | 312 | 1,061 |

[^9]A school characteristics and policies questionnaire was mailed to every sampled school by Westat before the assessment. The Westat supervisor then collected the questionnaires and returned them to ETS. The school characteristics and policies questionnairs is described in Chapter 4.

A school principal's questionnaire, distributed to each sampled school by Westat before the assessment, was used to refine the estimate of the grade/age-eligible students and to determine in part the size and typt of community (STOC) codes (see Appendix G and Rust et al., 1990).

### 3.3 SELECTION OF SCHOOLS FOR BRIDGE SAMPLES; THE ASSIGNMENT OF SESSIONS TO SCHOOLS

Schools were selected for age class 13 bridge assessments (conducted in the fall of l887) fiom the .ubsample of 64 PSUs that had been designated as the age ،lass 13 bridge PSUs. One school or school cluster was selected in each PSU, except that three schools or school clusters were selected from each of the two largest PSUs (which were substantially larger than the remainder). Initially, four types of bridge sessions were to be adminis ered, and the sample was selected so as to meet this requirement, with a maximum of four sessions to be administered in a schcol, with each session type to be administered in each PSU. How ar, a fifth session type was added too late to
amend the school sample (although the total required sample size of students was not changed). Thus the requirement that each session type 'e admiristered at least once in each PSU was modified so that each session type would be administered at least once in at least 52 PSUs. To avoid the possibility that a particular bridge session might be assigned to a single school witt. only one or very few eligibles, small schools were grouped with other schools in the same PSU to form clusters of a specified minimum number of eligibles. Bridge sessions wert then assigned within each PSU by selecting a school or school ciuster with probability proportional to the estimated number of age and grauz eligibles within the school(s).

Schools were selected for the age class 9 bridge assessment. (conducted in the wintar of 1988) from the subsample of 56 PSUs desirnated for the winte. assessment. Fur types of bridge sessions were to be administered. The selection was such that each of the session types used in the bridge assessments would be administered in at least one school within each of the 56 PSUs designated as wirter or a; winter and suring. Schools or school clusters were sampled in the same manner as for age class 13 excef that two schools or school clusters were selected per PSU, with six schools or school clusters drawn from each of the two largest PSUs.

In a like manner, schools were selected for the age class 17 bridge assessments (conducted in the spring of 1988) from the subsample of 56 PSUs designated for the spring assessment. Three session types were to be administered. Each of the session types was to be administered within at least one school or school cluster in each of the 56 PSUs. Two schools (or school clusters) were selected per PSU, with six selections being made from each of the two largest PSUs.

Substitute selections were made for nonparticipating bridge sample schools in certain PSUs in similar manner to the approach used for the main sample schools. In the case of the bridge samples, however, no samples of new schools were selected. For the bridge samples, the smaller sample sizes involved meant that the biasing effect of failing to represent such new schools was relatively less, as a component of total error. For the age class 13 sample in particular, there was insufficient time available between the point when districts were contacted and when assessments were scheduled (midOctober through early December, 1987) to ascertain the existence , new schools, sample them, and obtain the participation of the schools.

Table 3-7 shows the school sample sizes and participation rates for tie bridge samples for each age class. School participation rates are similar to those seen in comparable samples in 1986-the fall and winter bridges and $e$ grade 11 /age 17 spring main sample.

Table 3-7
Sclıvol Sample Sizes, Refusals, ard Substitutes Bridge Samples

|  | rade 4/Age 9 (Winter) | $\begin{gathered} \text { Grade 8/Age } 13 \\ \text { (Fall) } \end{gathered}$ | $\begin{gathered} \text { Grade } 11 / \text { Age } 17 \\ \text { (Spring) } \end{gathered}$ | Total |
| :---: | :---: | :---: | :---: | :---: |
| Selected, in scope | 180 | 219 | 155 | 554 |
| Refusals | 23 | 16 | 34 | 73 |
| Participation rate of originally selected schools | s 87\% | 93\% | 78\% | 87\% |
| 1986 participation rate | 87\% | 84\% | 81\% | 83\% |
| Participating; no eligibles enrolled | 3 | 30 | 7 | 40 |
| Substitutes participating | 2 | 8 | 6 | 16 |
| Final assessed sample | 156 | 181 | 120 | 457 |

For all three age classes, sessions were assigned to bridge sample scrubls in the following manner. First, the number of sessions per school was established. Thi ; was the maximum number of sessions (up to four) that could be administered without creating unduly small session sizes with few eligibles. Thus, in most bridge sample schools, four sessions werz conducted. However, schools with fewer chan 20 eligibles, for example, were asked to conduct only a single session.

The number of session types conducted in the assessment varied by age class. Table 3-8 in the folloring section shows, among other things, the various bridge sample session types conducted for each age class, and the year of the corresponding assessment to which these session types provided a bridge.

The assignment of sessions to schools maximized the number of session types conducted within each PSU. Thus, to the extent feasible, session assignment was delayed until after it was determined that a selected school would participate. On a few occasions, a session could not be conducted in a school that, at the time of session assignment, was expected -0 paricipate but subsequently did not. As a result, two types of school nonresponse adjustment factors, denoted school and session, were required for the bridge samples (see Chapter 8).

This procedure was intended to assure that each session type was assigned in each PSU at lenst once for the age class 9 and age class 17 samples. At age class l? however, often a PSU was represented in the sample by a single large school. Since it was not feasible to administer each of
five different. session types in a single school, not all session types were administered in all 64 PSUs, but each session type was administered in at least 52 PSUs for this age class.

### 3.4 SAKPLING STUDENTS

In the fourth stage of sampling, a consolidated list was prepared For each school of all grade-eligible and age-eligible scudents for the age class for which the school was selected. A systematic selection of eligible students was made from this list (unless all students were to be assessed) to provide the target sample size. For bridge sample schools assigned to more than a single session type, students were assigned by Westat district supervisors to print or paced-tape sessions using specified procedures. Students assigned to paced-tape sessions who were not age-eligible were dropped from the assessment.

The maxima established for the number of students to be scheduled for assessment were 150 for age class 9, 220 for age class 13, and 200 for age class 17. The limit of 220 for age class 13 was raised from an initial limit of 200 owing to concern that the selected sample of schools would not yield sufficient assessed students. Note that at all three age classes the rumber of students invited to the assessment in larger schools (those with numbers of enrolled eligibles in excess of these limics) was likely to be significantly below these specified limits. This was because not only were excluded students not invited, but those students in the modal grade who were not age eligible but were selected for assessment in the tape sessions (the majority of the sample at ages 9 and 13) were not invited to participate (unless specifically requested by the school for operational reasons).

The sample for students to be selected in each school was derived in the following manner, both for main and for bridge samples. On the basis of data obtained from the principal questionnaire (or the sample frame when the principal questionnaise data were not obtained in time) an estimate of the number of grade- plus age-eligible students was established for each school. .) Session Assignre nt Form was generated for each school, showing the line numbers (described below) of the students to be selected (and in the case of the bridge samples, indicating the type of session to be taken by each sich student). These line numbers were generated using a sampling interval designed to give the appropriate sample size for each school. Thus the overall sampling interval was 1.0 for schools in which all eligible scuderis were to be assessed. The appropriate sampling interval was specified for schools with larger numbers of eligible ccudents, such as to give the appropriate maximum sample size (described above fur each age class) in the case that the school had an enrollment of eligible students exactly equal to that predicted.

If the Westat supervisor found that, when applied to the numbered list of eligible students assembied in the field for each school, the line numbers generated gave rise to a sample in excess of 120 percent of the appropriate maximum sample size limit specified above, he or she called Westat's central office. By use of a personal computer, new line numbers bast 1 on the actual
number of eligible students were generated and relayed to the supervisor. A similar revision to the line numbers was made in the case of a school with a sampling interval in excess of 1.0 , and eligible enrollment less than 80 percent of that initially estimated. Ir this latter case the sample si- was increased to the appropriate level. This procedur gave a suitable comp mise between control over the sampling rate within each school and operational autonomy and flexibility for Westat field supervisors. Note chat in all cases, sampling intervals were gene cated in Westat's central office, and stored for use in saple weighting. Supervisors were not required $t$ deri.a or record within-school sampling rates.

Table 3-8 shows the number of students per school who were assessed for each session type. Note that, for the various spiral samples, the number of students assessed per item per school is quite low, even though $t_{;}$pically dozens of students were assessed in total in a particular school. Tr $s$ the extent of clustering of the sample is in general quite modest, becaust most bridge sample schools conducted a few different types of sessions with a moderate number of students in each, and more importantly because the use of BIB spiraling in the main samples and print-administered bridge sample sessions greatly alleviated the effects of clustering the samples of students within schools.

### 3.5 EXCLUDED STUDENTS

Some students selected for the sample were deemed unassessable by school authorities because they had limited English language proficiency, were judged as being mildly mentally retarded (educable), or were functionally disabled. In these cases, school staff completed an excludt $i$ student questionnaire, listing the reason for exclusion and providing some background information. For the excluded students, no distinction was made as to the season of the year in which their school was assessed, since the timing was unimportant for these students. For age class 9 and age class 13, no distinction was made between students excluded from bridge assessments and s+udents excluded from the main assessment, since the same grade and age eligibility definitions applied in each case. Conversely, for age class 17, the excluded students from the bridge assessments (with an October-September age definition and modal grade of ll) were treated as separate irom the excluded students in the main assessment (with a calendar-year age definition and modal grade of 12).

For all samples, all selected students, whether eligible by age, grade, or both, were considered for possible exclusion, on the grounds that they would not ${ }^{\text {' }}$ able to participate meaningfully in the assessment. All students so identified were included in the sample of excluded students. This occurrea even if the student, had he or she been assessat i $\epsilon$, would have subsequently been dropped from a bridge tape session sanple recause of age ineligibilicy. This represented a change from the 1986 procedure, where only students who would otherwise have been invited (i.e., met the specific age or grade requirements for the particular type of session for which they were selected) were included in the sample of excluded students. The procedure for 1988 provided consistency in the definition of the excluded : dent samples (all

Table 3-8
Number of Students per School for Each Session Type

| Sample |  |  |  | Session Type | Bridge Type | No. of Schools | No. of Studen*s per Session Type per School |  | No. of Students per Item per School <br> Mean <br> Max. $^{1}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age Class 9 Bridges |  |  |  | Spiral booklets 5l-5E | to 1986 | 152 | 34.1 | 81 | 5.7 | 14 |
|  |  |  |  | Tape booklet 91 | to 1984 | 112 | 11.4 | 39 | 11.4 | 39 |
|  |  |  |  | Tape Booklet 92 | to 1984 | 111 | 11.2 | 37 | 11.2 | 37 |
|  |  |  |  | Tape booklet 93 | to 1984 | 112 | 10.7 | 22 | 10.7 | 22 |
| A) | Class | 9 | Main | Spiral | - | 334 | 68.9 | 219 | $8 . c^{\text {b }}$ | $26^{\text {b }}$ |
| Age | Class |  | 3 Bridges | Spiral booklets 51-56 | to 1986 | 143 | 38.5 | 135 | 6.4 | 23 |
|  |  |  |  | Tape booklet 90 | Civics | 105 | 18.5 | 55 | 18.5 | 55 |
|  |  |  |  | Tape booklet 91 | to 1984 | 73 | 19.2 | 36 | 19.2 | 36 |
|  |  |  |  | Tape booklet 92 | to 1984 | 73 | 17.5 | 36 | 17.5 | 36 |
|  |  |  |  | Tape booklet 93 | to 1984 | 71 | 17.7 | 56 | 17.7 | 56 |
| Age | Class | 13 | 3 Main | Spiral | - | 410 | 89.5 | 22.1 | $6.2^{\text {b }}$ | $16^{\text {b }}$ |
| Age | Class | 17 | 7 Bridges | Spiral booklsts 51-56 | to 1986 | 107 | 43.2 | 84 | 7.2 | 14 |
|  |  |  |  | Spiral booklets 61-67 | to 1984 | 119 | 59.3 | 140 | $6.6{ }^{\text {c }}$ | $10^{\text {c }}$ |
|  |  |  |  |  |  |  |  |  | $19.8{ }^{\text {d }}$ | $47^{\text {d }}$ |
|  |  |  |  | Tape booklet 90 | Civics | 97 | 18.4 | 27 | 18.4 | 27 |
| Age | Class | 17 | 7 Main | Spiral | - | 312 | 104.8 | $241^{*}$ | $7.9{ }^{\text {b }}$ | $18^{\text {b }}$ |

[^10]age- or grade-eligibie students were considered; and also increased the sample size of grade-onty-eligible excluded students.

### 3.6 STUDENT PARTICIPATION AND EXCLUSION RATES

Table 3-9 summarizes the rates of exclusion of selected students and the rates of participation of invit.ed students. The set of invited students consists of the selected students, after removing the excruded students and, in the case of bridge samples, removing those students selected for tape sessions who were not age eligible. For a given session, a makeup session was called for when, for various reasons, more than a tolerable number of invited students failed to attend the originally scheduled session to which they were invited. The participation rates given in the table express the $n$ aber finally assessed as a percentage of those initially invited in the participating schools. The rates for bridge and main samples are combined for age class 9 and age class 13, since the student eligibility criteria were the same in bridge and main samples for these age classes. For grade llage 17 samples, predominantly eleventh graders were selected, whereas for the grade 12/age 17 sample predominantly twelfth graders were selected. For each age class, Table 3-9 presents comparison rates for the most recent assessment (indizated in parenthesis) in which a sizeable sample from the corresponding grade/age cohort was samples. Note that 1988 was the first year in which a sample of predominantly twelfth graders was assessed.

Table 3-9
Exclusion and Participation Rates by Age Class, Unweighted

|  | Excluded ( $x$ ) | $\begin{gathered} \text { Previous } \\ \text { Excluded ( } \\ \hline \end{gathered}$ | Number <br> Invited | Participation Rate ( I ) | Previors Participation Rate ( $z$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Grade 4/age 9 | 6.3 | 3.8 (1984) | 34,535 | 92.6 | 91.3 (1984) |
| Grade 8/とge 13 | 5.3 | 3.6 (1984) | 54,466 | 88.4 | 87.3 (1984) |
| Grade 11/age 17 | 3.0 | 3.4 (1986) | 17,000 | 79.2 | 78.9 (1986) |
| Grade 12/age 17 | 3.7 | - | 41,681 | 78.5 | - |

The major change from previous assessments is in the proportion exclucied at lower ages (in 1986, the exclusion rate for grade $3 / a g e$ o was 3.9 percent, while for grade 7 /age 13 it was 3.7 percent). The reason for this increase in the rate of exclusion, at least for grade 4/age 19, is the result of an increase in the proportion exciuded for reason of limited English language proficiency. In large part this appears to be attributable to the increased practice of educating native Spanish speakers in Spanish in elementary schools. In a few selected schools for the grade 4/age 9 samples, for example, more than 50 percent of selected students were excluded from the assessment for reason of limited English language proficiency. The reasons for the increased level of exclusion for 13-year-olds are less clear.

### 3.7 OVERALL STUDENT PARTICIPATION RATES

The combined impact of school nonparticipation ant student absenteeism from sessions within participating schools is summarized in able 3-10. Th. table shows the percentages of students asjessed, from among those who would have been assessed if all initially selecter schools had participated, and if all invited students had attended either an initial or make-up session. The results show that, consistent with earlier rounds of NAEP, the overall level of nonresponse increases substantially with the increase in age and grade of the students. Levels of nonresponse at the -welfth grade, assessed for the first time in 1988 as part of the main sample for age class 17 , were not appreciably higher than for the eleventh grade, assessed as part of the bridge sample for this age class.

The procedures for substituting for nonparticipating schools, or imputing for them (see section 8.1.2.1), and the procedures for imputing for absent students (see section 8.1.2.4) were designed (so far as feasible) to reduce the biases resulting from school ard student nonparticipation.

### 3.8 SAMPLING TEACHERS

The teacher questionnaire was administered to the reading teachers of fourth-grade students sampled for the main assessment of reading and to the writing teachers of eighth-grade students sampled for the main assessment of writing. The purpose of drawing these samples was not to estimate the attributes of the teacher population, but to estimate the number (proportion) of students whose teachers had various attributes and to correlate student characteristics and performance with the characteristics of their teachers

The reading te ers of every fourth-grade student assessed for reading in the main assessment (i.e., respondents to booklets 8 -14) were identisied in each school. Up tc seven of these reading teachers in each school were selected to complete the teacher questionnairc; in schools with more than seven reading teachers with assessed students, a random sample of five of thesa teachers was selected. Every selected reading teacher was provided a list of all his or her students. (up to a maximum of 10 ) who had been assesse: for reading in the main assessment; if more than 10 students firted the criteria, a random sample of 3.0 such students was provided. The selected teachers were asked to complete a questionnaire about the reading abilities of each selected student and the kinds of reading instruction the student received. The analysis of the read_ng teacher questionnaire data is discussed in $s e$ ion 10.3.

Similarly, the writing teachers of every eighth-grade student assessed for writing in the main assessment (i.e., respondents to booklets 1.7) were eligible to complete a teacher questionnaire. Up to seven teachers were selocted in each school and each selected teacher was provided with a list of all his or her students (up to a maximum of 10) who had been assessed for writing. The selected teachers were asked to complete a questionnaire dbort the writing capabilities of each selected student and about the writing instruction the student received. The analysis of the writing teacher questionnaire data is discussed in section 11.2.

Table 3-10
Overall Participation Rates (School and Student Combined) by Age Class

|  | Age Class 9 | Age Class 13 | Ȧge Class 17 | Overall |
| :---: | :---: | :---: | :---: | :---: |
| Main Samples |  |  |  |  |
| School participation | 88.74 | $86.6 \%$ | 82.8\% |  |
| Student participation | $92.8 \%$ | 87.8\% | 78.5\% | 85.4\% |
| Overall student participation | 8\%.3\% | 76.0\% | 65.0\% | $85.4 \%$ $73.0 \%$ |
| Number of participating students | 23,092 | 36,699 | 32,710 | 92,501 |
| Bridge Samples |  |  |  |  |
| School participation | $87.2 \%$ | 92.7\% | 78.1\% | 86.8\% |
| Student participation | 92.2\% | 90.0\% | 79.2\% | 85.9\% |
| Overall student participation | 80.4\% | 83.4\% | 61.9\% | 72.6\% |
| Number of participating students | 8,899 | 11,423 | 13,460 | 33,782 |
| Overall |  |  |  |  |
| School participation | 88.3\% | 87.8\% | $31.4 \%$ | 86.3\% |
| Student participation | 92.6\% | 88.4\% | 78.7\% | 85.5\% |
| Overall student participation | $81.8 \%$ | $77.6 \%$ | 64.1\% | 72.9\% |
| Number of participating students | 31,991 | 48,122 | 46,170 | 126,283 |
| 95 |  |  |  |  |
|  |  |  |  |  |

Chapter 4

# ASSESSMENT INSTRUMENTS ${ }^{1}$ 

Janet R. Johnson<br>Educational Testing Service

The 1988 assessment incorporated four types of instruments: student assessment booklets, a questionnaire aboct excluded students, a teacher questionnaire (grades 4 and 8), and a school characteristics and policies questionnaire. The data collected from these instruments are available on the 1988 NAEP public-use data tapes. This shapter describes the assessment instrumerts and begins with a discussion of the way in which the item, were orgarized into blocks to create the student assessment instruments.

### 4.1 MAIN SAMFiL STUDENT ASSESSMENT INSTPUMENTS

Student assessment booklets contained both cognitive and nonsognitive items. Cognitive items were used to assess student achievement in she subject areas of reading, writing, civics, U.S. history, and geography. Noncogntive items were used to gather student background and attitude information. Some noncognitive items were presented to every studer $t$; these were placed together in a block called the common baci:ground block or common core and covered such topics as race/ethnicity, leveis of parental education, iters in the home, homework, and television watching habits. Other noncognit..e items were specific to one of the five subject areas. These items appeared together in a block and were presented in booklets that contained olocks of cognitive items rtlatiod to the same subject area.

Main assessment focused-BIB booklets achieved a certain degree of uniformity in that each booklec contained five discrete blucks of items: the .irst hlocr. contained the common core block of background items; the second block sontained the subject-specific attitude items; the remaining three blocks each contained cognitive items specific to a particular subject area. Each stucient at all three grade/ages was administered a single booklet.

Main assessment intercorrelation booklets resembled the focused-"IB booklets except that the three blocks containing cognitive items each covered a cifferent suhject area: reading, civics, and U.S. history (as well as some geography at ade 12/age 17).

[^11]Main assessment special booklets were designed to allow special studies relating to achievement. To measure the relationship between time allocated to the writing task and writing performance, each of three booklets at each grade/age contained the common background block plus two writing blocks, the second of which was allocated twice as much time as the first. In additi in, there were two special study booklets created for grade 8/age 13 and grade 12/age 17 that were composed of the common background block, the reading noncognitive block and three cognitive blocks that were combinations of reading and decument liceracy blocks. These booklets were designed to allow the assessment of document literacy and its relation to reading proficiency.

## Block Tireing

The common core background question block appeared first within every booklet. It was read aloud to grade 4/age 9 students and took approximately 10 minutes to complete. The ocher grade/ages were given five minutes in which to complete this section and only the first question, regarding scudent race/ethnicity, was read aloud.

At each grade/age, the common core block wis followed by a five-minute block of subject-specific background questions about students' experiences and instruction in the subject area. All students read these questions on their own.

The remai..der of each student booklet was composed of three more blocks. These were assembled from the pool of cognitive items within a subject area. Students at grade 4/age 9 were given blocks that were each 10 minutes in length, while the other two grade/ages were given three 15 -minute blocks.

The overall assessment tirue was approximately 45 minutes for grade 4/age 9 students and ${ }^{5} 3$ minutes for grade $8 / a g e 13$ and for grade 12 /age 17 students.

## Item Arrangement

For the 1988 assessment, blocks of cognitive items wera assigned to booklets in such a way that each subject area block appeared in the same number of booklets and each possible pait of blocks within a subject area appeared in at least one booklet. The č^sl pool of items was so 'arge that no individual student coulf have received all items.

The assessment bockleis thems? ves were ordered in such a way that typically only several scudents in any assessment session in any school received the same booklet.

Table 4-1 shows the total number of cognitive blocks created for each subjest area in the main sample.

Table 4-1
Number of Main Sample Subject Area Cognitive Blocks Administere

| Subject Area | Grade 4/Age 9 | Grade 8/t $\geq 13$ | Grade 12/Age 17 |
| :---: | :---: | :---: | :---: |
| Reading | 7 | 7 | 7 |
| Writing | 7 | 7 | 7 |
| Civics | 3 | 7 | 7 |
| History | 3 | 7 | 7 |
| Geography | - | - | 3 |
| Intercorrelation | 9 | 9 | 9 |
| Long Writing |  | 6 | 6 |
| Document Literacy | - | 3 | 3 |
| Total | 20 | 31 | 34 |

Tables 4-2, 4-3, and 4-4 show which subject area blocks were contained in . a ach booklet for each grade/age, how many of each booklet were administered, and the booklet response method (circling the answer in the booklet, filling in scannable ovals in the booklet, or filling in ovals on a scannable answer sheet).

Tables 4-5, 4-6, and 4-7 display the composition of individual blocks of items adminiscered in the main NAEP assessment. These tables provide the item placement number within each blcck as well as the item type (e.g. background, subject, multiple-choice cognitive, or open-ended cognitive).

The focused-BIB design of these blocks and booklets generated a total of 22 different booklets for grade 4/age 9, 36 different booklets for grade 8/age 13 , and 37 different booklets for grade 12/age 17.

### 4.2 BRIDGE SAMPLE STUDENT ASSESSMENT INSTRUMENTS

The 1988 assessment included four distinct bridge (or trend) studies. These are each described below. Tables $4-8,4-9$, and $4-10$ show which subject area blocks were contained in each bridge booklet, how many of $\epsilon$ ach bocklet were administered, and the booklet response method.

## Civics Bridge (Booklet 90)

The civics bridge sample links the 1988 main assessment data to data from citizenship/social studies assessments conducted in 1976 and 1982. The sample consists of one booklet each for ages 13 and 17. (Because there were no cognitive civice items per se from 1976 and 1982 for age 9, a trend sample for that age was not necessary.) Booklet 90 for both ages contains the common backgzound block (Bl), the civics background and attitude block from the main assessment ( Cl ), and three blocks of cognitive items ( $\mathrm{C}, \mathrm{Cl}, \mathrm{C}$, and Cl ). Blocks Bl and Cl each tr k five minutes of assessment time; the three cognitive blocks were administered in 45 minutes. The cognitive blocks

Table 4-2
Booklet Contents and Number of Booklets Administered Main Sample, Grade 4/Age 9

| Subject Area | Booklet | Response Method $\dagger$ | Comon Background Block | Subject Area Background Block | Cognitive Blocks |  |  | Number of Booklets Admanxstered |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Writing | 1 | B | B1 | W1 | W2 | W3 | W5 | 896 |
|  | 2 | B | B1 | W1 | W3 | W4 | H6 | 892 |
|  | 3 | B | B1 | W1 | W4 | W5 | W7 | 894 |
|  | 4 | B | B1 | W1 | W5 | H6 | W8 | 900 |
|  | 5 | B | B1 | W1 | 1.3 | W7 | W2 | 901 |
|  | 6 | B | B1 | W1 | W7 | W8 | W3 | 882 |
|  | 7 | 3 | B2 | W1 | W8 | W2 | W6 | 882 |
| Reading | 8 | R | B1 | R1 | 82 | R3 | R5 | 889 |
|  | 9 | 13 | B1 | R1 | R3 | R4 | R6 | 879 |
|  | 10 | \% | B1 | R1 | R4 | R5 | R7 | 876 |
|  | 11 | B | B1 | R1 | R5 | R6 | R8 | 885 |
|  | 12 | B | B1 | R1 | R6 | R7 | R2 | 883 |
|  | 13 | B | 31 | R1 | R7 | R8 | R3 | 884 |
|  | 14 | B | B1 | R1 | R8 | R2 | R4 | 881 |
| U.S. History | 15 | B | B1 | H1 | H2 | H3 | H4 | 2664 |
| Civics | 16 | B | B1 | Cl | C2 | C3 | C4 | 2652 |
| Intercorrelation | 17 | B | B1 | X1 | H2 | C2 | R2 | 869 |
| (Readine, | 18 | B | B1 | X1 | R3 | H3 | C3 | 884 |
| U.S. History, Civics) | 19 | B | B1 | X1 | C4 | 97 | H4 | 885 |
| Lons Writing | 20 | B | B1 | W1 | W6 | WS |  | 880 |
|  | 21 | B | B1 | W1 | W8 | W10 |  | 877 |
|  | 22 | B | B1 | W1 | 115 | W11 |  | 877 |

[^12]Table 4.3
booklet Contents and Number of Booklets Administered Main Sample, Grade 8/Age 13

| Subject Arec | Booklet | Respo se Methodt | Common Background Block | Subject Area Background Block | Cosnitive Blocks |  |  | Nutper of Booklets Administered |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Writing | 1 | B | B1 | W1 | W2 | W3 | W5 | 866 |
|  | 2 | B | B1 | W1 | W3 | W4 | H6 | 854 |
|  | 3 | B | B1 | W1 | W4 | W5 | W7 | 862 |
|  | 4 | B | B1 | W1 | W5 | W6 | W8 | 960 |
|  | 5 | B | B1 | W1 | W6 | W7 | W2 | 848 |
|  | 6 | B | B1 | W1 | W7 | W8 | W3 | 862 |
|  | 7 | B | B1 | H1 | W8 | W2 | W4 | 859 |
| Reading | 8 | A | B1 | R1 | R2 | R3 | R5 | 855 |
|  | 9 | A | B1 | R1 | R3 | 84 | R6 | 856 |
|  | 10 | A | B1 | R1 | R4 | R5 | R7 | 849 |
|  | 11 | A | B1 | R1 | R5 | R6 | R8 | 845 |
|  | 12 | A | B1 | R1 | R6 | R7 | R2 | 855 |
|  | 13 | A | E1 | R1 | R7 | Ri | R3 | 795 |
|  | 14 | A | B1 | R1 | R8 | R2 | R4 | 857 |
| U.S. History | 15 | A | B1 | H1 | H2 | H 3 | H5 | 854 |
|  | 16 | A | B1 | H1 | H3 | $\mathrm{H}_{4}$ | : 5 | 872 |
|  | 17 | A | B1 | H1 | H4 | H5 | d7 | 851 |
|  | 18 | A | 1 | H1 | HS | H6 | ก8 | 357 |
|  | 19 | A | 21 | H1 | H6 | H7 | H2 | 865 |
|  | 20 | A | B1 | H1 | H7 | H8 | H3 | 854 |
|  | $\because$ | A | B1 | H1 | H8 | H2 | $\mathrm{H4}$ | 835 |
| Civics | 22 | A | B1 | C' | C2 | C3 | C5 | 859 |
|  | 23 | A | B1 | C1 | C3 | C4 | C6 | ¢55 |
|  | ? 4 | A | B1 | C1 | C4 | C5 | C7 | 845 |
|  | 25 | A | B1 | C1 | C5 | C6 | C8 | 823 |
|  | 26 | A | B1 | C1 | C6 | C7 | C2 | r7s |
|  | 27 | A | B1 | C1 | C7 | C8 | C3 | ,1 |
|  | 28 | A | B1 | C1 | C8 | C2 | C4 | 863 |
| Intercorrelation | 29 | A | B1 | X1 | H6 | C7 | R3 | 859 |
| (Reading, | 30 | A | B1 | X1 | R5 | H5 | C2 | 858 |
| U.S. Bistory, Ci-fics) | 31 | A | B1 | X1 | C6 | R6 | H2 | 873 |
| Long Writing | 32 | B | B1 | W1 | W6 | W9 |  | 858 |
|  | 33 | B | B1 | H1 | W8 | W19 |  | 869 |
|  | 34 | B | B1 | W1 | W4 | W11 |  | 859 |
| Document Literacy | 35 | B | B1 | R1 | R2 | D2 | R5 | 1267 |
|  | 36 | $\pm$ | B1 | R1 | D3 | R7 | D4 | 1266 |

TOIL MAIN SAMPLE BOOKLEIS.
f $A=$ acannable answer sheet, $B=$ scannable booklet

Table 4-4
Booklet Contents and Number of Booklets Administered Main Sample, Grade 12/Age 17

| Subject Area | Bookl6t | Response Method $\dagger$ | Common Eackground Block | Subject Area Background Block | Cognitive Blocks |  |  | Number of Booklets Administered |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Writisa | 1 | B | B1 | W1 | H2 | W3 | W5 | 827 |
|  | 2 | B | B1 | W1 | W3 | W4 | W6 | P35 |
|  | 3 | B | B1 | W1 | H4 | W5 | W7 | 813 |
|  | 4 | B | B1 | W1 | W5 | W6 | W8 | 827 |
|  | 5 | B | B1 | W1 | H6 | W7 | H2 | 821 |
|  | 6 | B | B1 | W1 | W7 | W8 | H3 | 315 |
|  | 7 | B | B1 | W1 | W8 | W2 | W4 | 802 |
| Reading | 8 | A | B1 | R1 | R2 | R3 | R5 | 822 |
|  | 9 | A | B1 | R1 | R3 | R4 | R6 | 814 |
|  | 10 | A | B1 | R1 | R4 | R5 | R7 | 824 |
|  | 11 | , | B1 | R1 | R5 | R6 | R8 | 826 |
|  | 12 | A | B1 | R1 | R6 | R7 | R2 | 823 |
|  | 13 | A | B1 | R1 | R7 | R8 | 113 | 838 |
|  | 14 | A | 31 | R1 | R8 | R2 | R4 | 821 |
| U.S. History | 15 | A | B1 | H1 | H2 | H3 | 85 | 831 |
|  | 16 | A | B1 | H1 | 83 | H4 | H6 | 827 |
|  | 17 | A | B1 | H1 | H4 | H5 | 日7 | 830 |
|  | 18 | A | B1 | H1 | 85 | H6 | H8 | 820 |
|  | 19 | A | B1 | H1 | H6 | H7 | $\mathrm{H2}$ | 829 |
|  | 20 | A | B1 | H1 | H7 | \$8 | 83 | 824 |
|  | 21 | A | B1 | H1 | H8 | H2 | $\mathrm{H}_{4}$ | 819 |
| Civies | 22 | A | B1 | C1 | C2 | C3 | C5 | 818 |
|  | 23 | A | B1 | C1 | C3 | C4 | C6 | 809 |
|  | 24 | A | B1 | C1 | C4 | C5 | C7 | 817 |
|  | 2.5 | A | B1 | C1 | C5 | C6 | C8 | 807 |
|  | 26 | A | 81 | C1 | C6 | C7 | C2 | 810 |
|  | 27 | A | B1 | C1 | C7 | C8 | 73 | 814 |
|  | 28 | A | B1 | C1 | C8 | C2 | C4 | 808 |
| Geography | 29 | $h$ | B1 | G1 | G2 | G3 | G4 | 2446 |
|  | 30 | A | B1 | X1 | R2 | H6 | G4 | 817 |
| (Reading, U.S. History | 31 | A | B1 | X1 | H2 | R5 | C4 | 815 |
| Civics, Georraphy) | 32 | A | B1 | . 1 | G2 | C6 | R8 | 806 |
| Long Writing | 33 | B | B1 | H1 | W6 | W9 |  | 799 |
|  | 34 | B | B1 | W1 | W8 | W10 |  | 811 |
|  | 35 | B | B1 | H1 | W4 | W11 |  | 820 |
| Document Literacy | 36 | B | B1 | R1 | R2 | D2 | R5 | 1217 |
|  | 37 | B | B1 | R1 | D3 | R7 | D4 | 1208 |

Table 4-5
1988 Main Sample Block Information, Grade 4/Age 9

| Block | Type | Order of Background Items | Order of Cognitive Items | Total <br> Items | Total Cognitive Items | Total <br> Open-ended <br> Cognitive <br> Items |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 Bl | Common Bkgd. | 1-21 |  | 21 |  |  |
| 9R1 | Rdg. Bkgd. | 1-10 |  | 10 |  |  |
| 9R2 | Reading |  | 1-14 | 14 | 14 |  |
| 9R3 | Reading |  | 1-7 | 7 | 7 |  |
| 9R4 | Reading |  | 1-7 | 7 | 7 |  |
| 9R5 | Reading |  | 1-15 | 15 | 15 | 1 |
| 9R6 | Reading | 14 | 1-13 | 14 | 13 |  |
| 9R7 | Reading |  | - 15 | 15 | 15 |  |
| 9R8 | Reading |  | 1-11 | 11 | 11 | 1 |
| 9W1 | Wrt. Bkgd. | 1-10 |  | 10 |  |  |
| 9W2 | Writing |  | 1 | 1 | 1 | 1 |
| 9W3 | Writing |  | 1 | 1 | 1 | 1 |
| 9 W 4 | Writing |  | 1 | 1 | 1 | 1 |
| 9WS | Writing |  | 1 | 1 | 1 | 1 |
| 9W6 | Writing |  | 1 | 1 | 1 | 1 |
| 9W7 | Writing |  | 1 | 1 | 1 | 1 |
| 9W8 | Writing |  | 1 | 1 | 1 | 1 |
| 9W9 | Long Writing |  | 1 | 1 | 1 | 1 |
| 9W10 | Long Uriting |  | 1 | 1 | 1 | 1 |
| 9W11 | Long Writing |  | 1 | 1 | 1 | 1 |
| 9 Cl | Civics Bkgd. | 1-9 |  | 9 |  |  |
| 9 C 2 | Givics |  | 1-15 | 15 | 15 |  |
| 9 C 3 | Civics |  | 1-16 | 16 | 16 |  |
| ? 64 | Civics |  | 1-20 | 20 | 20 |  |
| ! 41 | Hist. Bkgd. | 1-9 |  | 9 |  |  |
| 9 H 2 | History |  | 1-15 | 15 | 15 |  |
| 9 H 3 | History |  | 1-15 | 15 | 15 |  |
| 9 H 4 | History |  | 1-15 | 15 | 15 |  |
| 9X1 | Intercorr. B | d. 1-10 |  | 10 |  |  |

Table 4-6
. 388 Main Sample Block Information., Gr de 8/Age 13

| Block | Type | Order of Background Items | Order of Cognitive Items | Total <br> Items | Totál Cognitive Items | Total <br> Open-ended <br> Cognitive <br> Items |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13B1 | Common Bkgd. | 1-21 |  | 21 |  |  |
| 13R1 | Rdg. Bkgd. | 1-20 |  | 20 |  |  |
| 13R2 | Reading |  | 1-14 | 14 | 14 |  |
| l3R3 | Reading |  | 1-9 | 9 | 9 |  |
| 13R4 | Reading |  | 1-10 | 10 | 10 |  |
| 13R5 | Reading |  | 1-14 | 14 | 14 |  |
| 13R6 | Readi: |  | 1-18 | 18 | 18 |  |
| 13R7 | Reading |  | 1-19 | 19 | 19 |  |
| 13R8 | Reading |  | 1-15 | 15 | 15 | 1 |
| 13W1 | Wrt. Bkgd. | 1-24 |  | 24 |  |  |
| 13W2 | Writing |  | 1 | 1 | 1 | 1 |
| 13W3 | Writing |  | 1 | 1 | 1 | 1 |
| 13W4 | Writing |  | 1-2 | 2 | 2 | 2 |
| 13W5 | Writing |  | 1 | 1 | 1 | 1 |
| 13W6 | Writing |  | 1 | 1 | 1 | 1 |
| 13W7 | Writing |  | 1 | 1 | 1 | 1 |
| 13W8 | Writing |  | 1 | 1 | 1 | 1 |
| 13W9 | Long Writing |  | 1 | 1 | 1 | 1 |
| 13W10 | Long Uriting |  | 1 | 1 | 1 | 1 |
| 13W11 | Long Writing |  | 1 | 1 | 1 | 1 |
| 13Cl | Civic: Bkgd. | 1-25 |  | 25 |  |  |
| 13C2' | Civics |  | 1-26 | 26 | 26 |  |
| $13 \mathrm{C3}$ | Civics |  | 1-24 | 24 | 24 |  |
| $23 \mathrm{C4}$ | Civics |  | 1-30 | 30 | 30 |  |
| 13C5 | Civics |  | 1-27 | 27 | 27 |  |
| 13 C 6 | Civics |  | 1-24 | 24 | 24 |  |
| 13C7 | Civics |  | 1-22 | 22 | 22 |  |
| $13 \mathrm{C8}$ | Civics |  | 1 | 1 | 1 | 1 |
| 13H1 | Hist. Bkgd. | 1-27 |  | 27 |  |  |
| 13H2 | History |  | 1-26 | 25 | 26 |  |
| 13H3 | History |  | 1-26 | 26 | 26 |  |
| 13 H 4 | History |  | 1-26 | 26 | 26 |  |
| 13H5 | History |  | 1-26 | 26 | 26 |  |
| 13H6 | History |  | 1-28 | 28 | 28 |  |
| 13H7 | History |  | 1-28 | 28 | 28 |  |
| 13H8 | History |  | 1 | 1 | 1 | 1 |
| 13D? | Doc. Lit. |  | 1-10 | 10 | 10 | 7 |
| 13D3 | Doc. Lit. |  | 1-14 | 14 | 14 | 10 |
| $\underline{13 D 4}$ | Dce. Lit. |  | 1-13 | 13 | 13 | 10 |
| 13X1 | Intercorr. Bk | d. 1-25 |  | 25 |  |  |

Table 4-7
1989 Main Sample Block Information, Grade 12/Age 17

| Block | Type | Order of Background t.ems | Order of Cognitive Items | Total <br> Irems | Total <br> Cognitive <br> Items | Total <br> Open-ende. <br> Cognitive <br> Items |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17B1 | Common Bkgd. | 1-33 |  | 33 |  |  |
| 17R1 | Rdj. Bkgd. | 1-32 |  | 32 |  |  |
| 17R2 | Reading |  | 1-14 | 14 | 14 |  |
| 17R3 | Reading |  | 1-11 | 11 | 11 | 1 |
| 17R4 | Reading |  | 1-19 | 19 | 19 |  |
| 17R5 | Reading |  | 1-14 | 14 | 14 |  |
| 17R6 | Reading |  | 1-15 | 15 | 15 | 1 |
| 17R7 | Reading |  | 1-19 | 19 | 19 |  |
| 17R8 | Reading |  | 1-18 | 18 | 18 |  |
| 17W1 | Wrt. Bkgd. | 1-35 |  | 35 |  |  |
| 17W2 | Writing |  | 1 | 1 | 1 | 1 |
| 17W3 | Writing |  | 1 | 1 | 1 | 1 |
| 17W4 | Writing |  | 1-2 | 2 | 2 | 2 |
| 17W5 | Writing |  | 1 | 1 | 1 | 1 |
| 17H6 | Writing |  | 1 | 1 | 1 | 1 |
| 17W7 | Writing |  | 1 | 1 | 1 | 1 |
| 17W8 | Writing |  | 1 | 1 | 1 | 1 |
| 17W9 | Long Writing |  | 1 | 1 | 1 | 1 |
| 17W10 | Lung Writing |  | 1 | 1 | 1 | 1 |
| 17W11 | Long Writing |  | 1 | 1 | 1 |  |
| 17C1 | Civics Bkgd. | 1-34 |  | 34 |  |  |
| 17C2 | Civics |  | 1-26 | 26 | 26 |  |
| 17c3 | Civics |  | 1-26 | 26 | 26 |  |
| $17 \mathrm{C4}$ | Civics |  | 1-25 | 25 | 25 |  |
| 17C5 | Civics |  | 1-27 | 27 | 27 |  |
| 17c5 | Civics |  | 1-24 | 24 | 24 |  |
| $17 \mathrm{C7}$ | Civics |  | 1- ${ }^{2}$ | 22 | 22 |  |
| 17C8 | Civics |  | 1 | 1 | 1 | 1 |
| 17H1 | Hist. Bkgd. | 1-36 |  | 36 |  |  |
| 17H2 | History |  | 1-28 | 28 | 28 |  |
| 17H3 | History |  | 1-25 | 25 | 25 |  |
| 17H4 | Histo: y |  | 1-25 | 25 | 25 |  |
| 17H5 | History |  | 1-26 | 26 | 26 |  |
| 27H6 | History |  | $1-28$ | 28 | 28 |  |
| 17117 | History |  | 1-28 | 23 | 28 |  |
| 17H8 | History |  | 1 | 1 | 1 | 1 |
| 17G1 | Geog. Background | d 1-28 |  | 28 |  |  |
| 17G2 | Geography |  | 1-26 | 26 | 26 |  |
| 17G3 | Geography |  | 1.26 | 26 | 26 |  |
| 17G4 | Geography |  | 1-26 | 26 | 26 |  |
| 17D2 | Doc. Lit. |  | 1-10 | 10 | 10 | 7 |
| 17D3 | Doc. Lit. |  | 1-14 | 14 | 14 | 10 |
| 17D4 | Doc. Lit. |  | 1-13 | 13 | 13 | 10 |
| 17X1 | Intercorr. Bkgd. | 1-36 |  | 36 |  |  |

Table 4-8

## Booklet Contents and $\mathbb{1}$ mber of Booklets Administered Bridge Samples, Age Class 9

BRIDGE TO 1984, GR.JE 4/AGE 9

| Subject Area | Pooklat | Rosponse Mothod | $\begin{gathered} \text { Common } \\ \text { Background } \end{gathered}$ Block | Subjoct Arga Background Hlock | Cosnitivo Blopiks |  |  | Number of Booklets Adninistored |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reading and | 51 | C | CC | ¢ | C | 1 | Q | 884 |
| Writing | 52 | c | cc | + | \% | E | R | 879 |
|  | 53 | C | cc | 4 | c | K | J | 860 |
|  | 54 | c | cc | \# | G | 0 | E | 853 |
|  | 55 | C | cC | + | M | 9 | N | 861 |
|  | 36 | c | cc | + | v | R |  | 851 |

8RIDGE TO 1986, AGE 9

| Subloct Area | Book st | Resporse Mothod $\}$ | Comron Background Block | Subject Area Easksround glock | Cosnitivo Blccks |  |  | Number of Bookiats Admintutored |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reiding, Mathomatics. and Science | 91 | B | B1 | \$ | 81 | M1 | S1 | 1274 |
|  | 92 | B | B1 | 1 | S2 | R2 | 1\%3 | 1240 |
|  | 93 | B | B1 | \$ | M2 | S3 | R3 | 1197 |

[^13]Table 4-9
Booklet Contents and Number of Booklets Administered Bridge Samples, Age Class 13

BRIDGE TO 1984, GRADE 8/AGE 13

| Subject Area | S iklet | Responé Mest.od | Common Background B3ock | Subject Area Background Block | Cognitive Blocks |  |  | Number of Booklets Admanistered |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Readins and | 51 | C | CC | $\ddagger$ | M | K | D | 907 |
| Writing | 52 | C | Cr | $\ddagger$ | C | L | Q | 915 |
| Wating | 53 | C | CC | $\ddagger$ | $r$ | E | R | 924 |
|  | 54 | c | CC | $\ddagger$ | N | C | D | 927 |
|  | 55 | c | CC | $\ddagger$ | G | 0 | E | 906 |
|  | 56 | C | CC | $\ddagger$ | G | $J$ | F | 921 |

CIVICS BRIDGE, AGE 13

| Subject Area | Booklet | Respon:Method $\dagger$ | Common E ackground Block | Subject Area Background Block | Crizil | ive B | ocks | Number of Booklets Administered |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Civics | 90 | B | 81 | C1 | C9 | C10 | C11 | 1938 |

BRIDGE TO 1986, AGE 13

| Subjoct Area | Eooklet | Response Method | Cormon Background Block | Subject Area Background Block | Cosnitive Blocks |  |  | Number of Booklets Administered |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reading, Mathematics, and Science | 91 | B | B1 | $\pm$ | R1 | M1 | S. | 1405 |
|  | 91 92 | B | B1 | \# | S | R2. | 13 | 1281 |
|  | 93 | B | B1 | \# | M2 | S3 | R3 | 1256 |

[^14]Table 4-10

## Booklet Contents and Number of Booklets Administered Bridge Samples, Age Class 17

BRIDGE TO 1984, GRADE 11/AGE 17


BRIDGE TO 1986, GRADE 11/AGE 17


CIVICS BRIDGÉ, AGE 17

| Subioct Azot | Booklet | Response Method | Ccomon Background Block | Subject Area Background Block | Cos | Ive | cks | Number of Booklets Administered |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Civies | 90 | B | B1 | Cl | C9 | C10 | C11 | 1786 |

TOTAL CIVICS BRIDGE BOOKLETS. . . 1786

[^15]contained items that were used in the 1982 assessment of citizenship and social studies as well as several items that were newly developed for the 1988 assessment for the purpose of maintaining consistent timing across blocks of items.

In order to match the 1976 and 1982 assessment characteristics, age-only samples of students were defined using the 1976 and 1982 age definitions, 13-year-olds were tested in the fall, 17-year-olds were tested in the spring, and administration of the civics booklets was paced with an audiotape.

Bridge to 1984 (Reading and Writing, Booklets 5l-56)
The 1984 bridge samples are comparable to the 1984 main assessment of reading and writing. Samples of students at grade 4/age 9, grade 8/age 13, and grade $11 /$ age 17 (the same age and grade target populations assessed in 1984) were determined using the 1984 age definitions and were assessed during the same time of the year as in 1984. The assessment booklets (six at each grade/age) were administered without an audiotape.

At each grade/age, booklets 51 through 56 all contain a common background block (CC) and three cognitive blocks, either two reading and or writing, or one reading and two writing. All blocks are identical to tho. used in the 1984 assessment. Blocks C, D. E, and G are writing hlocks; ..uck's $\mathrm{H}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}, \mathrm{Q}$, and R are reading blocks. At grade 4/age 9, block $V$, a double-length block, contains both writing and reading items. All writing and reading blocks also contain subject-related background and attitude questions.

The common background block was administered in approximately 15 minutes to grade 4/age 9 and six minutes to the other grade/ages; 14 minutes were allowed to complete each cognitive block (except for block V, which was allowed 28 minutes).

Bridge to 1986 fir Ages 9 and 13 (Reading, Mathematics, and Science, Booklets 91-93)

These bridge samples are comparable to those used for the measurement of trends in reading, mathematics, and science in 1986. Three assessmerit booklets each were administered to samples of 9 -year-old and 13-year-old students. The age-only samples were obtained using the same age definitions and times of testing as were used for both the 1984 main assessment and the 1986 bridge to 1984. The mathematics and science blocks were administered using an audiotape; the reading blocks were administered without an audiotape.

The contents of booklets 91 through 93 are identical to booklets used in the 1986 assessment. Each booklet contains a common background block (Bl) and three blocks of cognitive items-one reading block (Rl-R3), one science block (Sl-S3), and one mathematics block (Ml-M3). The cognitive blocks also contain subject-related background and attitude questians.

The common background block took approximately 15 minutes at age 9 and six minutes at age 13 . The reading blocks took 13 minutes each at age 9 and 16 minutes at ages 13 and 17.

Bridge to 1986 for Grade 11/Age 17 (Reading, Mathematics, Science, and U.S. History-Booklets 61-67)

These bridge samples are comparable to the 1986 main assessment. Seven assessment booklets were administered to samples of grade 1l/age 17 students. The grade/age samples were obtained using the same age definitions (not calendar year) and time of testing (spring) used for both the 1984 and 1986 nain assessments. The booklets were administered without an audiotape.

Booklets 61 through 66 all contain a common background block (Bl) and three blocks of cognitive items in various combinations of reading (Rl-R6), science (S1-S4, Sll), and/or mathematics (M1-M3, M9). Booklet 67 contains a common background block (B1) and three history blocks (H2-H4). The cognitive blocks aisc contain subject-related background and attitude questions. The booklets were constructed and cycled fos administration using the BIB sfiral design.

The common background block took five minutes of assessment time; each cognitive block took 16 minutes of assessment time.

### 4.3 QUESTIONNAIRES

In addition to the student assessment booklets, three questionnaires were administered to collect data about school characteristics, teachers associated with sampled students, and students excluded from the assessment.

## The Teacher Questionnaires

NAEP gathered information on curricula and teaching mettans from two distinct samples of teachers. The teacher questionnaires were administered to a sample of the reading teachers of fourth-grade students who were assessed in reading for the main assessment and a sample of the writing teachers of eighth-grade students who were assessed in writing for the main assessment. (The method by which teachers were sampled is described in Chapter 3.) These teachers completed a questionnaire that surveyed years of teaching experience, course curriculs: use of classroom time, instructional practices, hone srk assignments, and teaching materials used.

Note: The purpose of this questionnaire was to collect additional information about students by gathering information about their teachers, not to describe the attributes of the teacher population.

The school characteristics and policies questionnaire was completed by the school principal or his or her representative for every school includad in any of the 1988 samples. The questionnaire was used to gather information about school administration, staffing patterns, special programs, subject requirements, a'd school resources.

## The Excluded Student Questionnaire

This questionnaire was complet.ed by school personnel for every student selected for inclusion in the NAEP sample who was unable to respond to items because he or she was classified by the school as being limited in English language proficiency, mildly mentally retarded (educable), or functionally disabled. The questionnaire was used to gather information about special education, language, and other student programs.

## Chapter 5

# EIELD ADMINISTRATION 

Nancy Caldwell and Renee Slobasky

Westat, Inc.

As a subcontractor to ETS, Westat, Inc., was responsible for field activities that included contacting selected districts and schools, administering the assessment sessions, and delivering completed booklets and questionnaires to ETS. This chapter summaries the Westat field organization and operations for the 1988 assessment. Details of field administration activities are available in the Westat Report on Field Operations and Dati Collection Activities-NAEP 1988 (Caldwell, Moore, \& Slobasky, 1989).

This chapter begins with an overview of the field organization, followed by discussions of the training of supervisors; procedures for gaining cooperation of districts and schools; the supervisors' responsibilities, including making arrangements for the assessment, sampling, conducting the assessments, and collecting questionnaires; and the results of the assessments.

### 5.1 ORGANIZATION OF THE FIELD OPERATION

The field operation was organized around a core group of home office and field staff supplemented by additional staff in preparation for and during the winter and spring assessment. The core home office staff consisted (f the field director and assistant field director. Throughout the study, the field director coordinated all activities in the home office related to field operations. The assistant field director coordinated the distribution of materials and the receipt of reporting forms. During the fall, the supervisors were assigned for routine reporting to the assistant field director. When the size of the field staff tripled for the winter/spring assessment, two more assistant field directors were added to the home office staff to share telephone-reporting and trouble-shooting responsibilities.

The sample of schools for the 1988 assessment was selected from eligible schools in selected geographic areas. These aleas were a county or group of counties, called primary sampling units (PSUs). The sample of areas -onsisted of 94 PSUs, including a core group of 64 PSUs used for the fall bridge samples plus 30 additional PSUs for the winter and spring samples. The field staff was similarly organized around a core group of 11 supervisors who were respensible for fall pre-assessment and assessment activities in the 64 core PSUs. Fre-assessment activities in the 94 PSUs for the winter and spring assessments were conducted by 37 supervisors, including the original 11 , in the late fall after the awarding of the new contract.

For the winter and spring, when the number of PSUs increased and the worklcad in terms of both the number of schools and students to be assessed within each PSU also increased significantly, supervisory regions were rearranged and expanded in number from 11 to 37 . During the fall, each supervisor was responsible for assessments in an average of 5-6 PSUs. During the winter and spring, supervisors worked in an average of l-2 PSUs.

Of the 11 fall supervisors, six had worked on NAEP during at least one of the pas: ass issments. With the awarding of the new contract and expansion of work for the winter and spring, 26 additional super:isors were required. To fill these positions, we rehired five supervisors who had worked on NAEP in the past. To find the remaining supervisors for the winter/spring, we first searched Westat supervisory files, and then recruited from outside the company.

During the field period, supervisors were replaced in four of the 37 supervisory regions. Two of the supervisors resigned because of personal problems, the other two because the position was more demanding than they had anticipated.

Each district supervisor was responsible for a variety of different tasks. During the fall pre-assessment phase, the 11 supervisors contacted school districts with schools scheduled to be assessed in che fall to follow up on introductory materials that had been mailed earlier explaining the assessment program. During these calls, supervisors also scheduled introductory meetings with representatives of the sampled schools. The purposes of the introductory meetings were to explain the program in greater detail and to set a schedule for the assessment in each school. While in the area conducting meetings, the supervisors recruited exercise administrators to work with them in administering the assessment sessions.

Except for the introductory materials mailed by ETS, no contact was made with districts containing schools scheduled only for the winter and/or spring until the new contract was awarded in September, 1987. In October, 26 supervisors and two alternates were hired and trained. They followed the same process described above in contacting the winter/spring school districts and conducting introductory meetings during the months of November and December, 1987. Also during this time, the 11 fall supervisors who were in the process of conducting the fall assessments expanded their schedules to include the contacts with the districts in their regions in which there were winter/spring schools.

### 5.2 SUPERVISOR TRAINING

The 11 fall supervisors came to Bethesda, Maryland, for a four-day training session from September 2-5, 1987. Also in attendance were representatives from the ETS Princeton and regional offices who were there to help the supervisors gain cooperation fron schools and districts. The training was conducted by the Westat proje at director and field director. ETS Princeton office staff also made presentations and provided explanatory notes thrcughout the session.

With the awarding of the new NAEP contract, 26 additional supervisors and two alternates were hired and brought to Rockville, Maryland. for training on October 26-27, 1987. This training session, conducted by the Westat project director and field director, focused only on scheduling and conducting introductory meetings for the winter/spring assessments.

To assist supervisors in conducting their introductory meetings, a slide presentation with a script for the supervisor to read was developed and implemented for the first time during the fall introductory meetings for the 1988 assessment. The slides and script formalized the supervisors' presentations on background information of National Assessment, the general stages of sampling schools and students, the role of the school in the assessment, criteria for student eligibility, and questionnaires to be completed by school personnel. Supervisors reported that the slide presentations were well received at introductory meetings attended by several school representatives. However, they often chose not to use the presentation during small, one-on-one meetings.

Procedures for conducting the winter/spring assessments were the focus of a three-day training session attended by all supervisors on December 16-18, 1987.

### 5.3 OBTAINING COOPERATION OF SCHOOL DISTRICTS AND SAMPLE SCHUOLIS

### 5.3.1 Preliminery Contacts

During June, ruly, and August 1987, while Westat was recruiting supervisors and develc, ing materials, ETS was making preliminary contacts preparatory to obtaining school cooperation. The schedule of these preliminary activities is outlined below and discussed in mor detail following the outline.

| Date | Contact <br> Made By | Activity |
| :--- | :--- | :--- |
| June 29 | ETS | An initial letter was mailed to Chief State School <br> Officers informing them that schools within their <br> states had been selected for NAEP. |
| July 22 | ETS | A secord letter was sent to Chief State School <br> Officers containing a list of the school districts and <br> private schools selected within the state. |
|  | An initial letter and a NAEP report were mailed to <br> superintendents of public and parochial schools and <br> principals of private schools selected for the entire <br> l98 assessment within the state. |  |

A followup letter and NAEP materials were mailed to superintendents and private school principals. The materials included

- a cover letter explaining that the supervisor would contact them to discuss NAEP and schedule an introductory meeting;
- a list of the selected schools in the official's jurisdiction;
- a fact sheet on NAEP; and
- examples of assessment items.

As can be seen from the outline, recruiting of schools for NAEP actually began in June, once the sample of schools had been selected and their corresponding school districts identified. ETS contacted the Chief State School Officers in each state and asked them to notify the school district superintendents. In July, ETS sent a letter to the superintendents and heads of private schools inviting their participation. Informational materials on NAEP and a list of the sampled schools in the district were also sent. These initial contacts, which were completed prior to supervisor training, paved the way for the telephone contacts to follow.

Once the supervisors and ETS regional office staff had been trained, they began working $: o$ obtain cooperation. The schedule of these contacts follows.

Date $\quad$| Contact |
| :--- |
| iade by |

Sept. 8- District supervisors
Oct. 9 for fall assessment, with ETS assistance

## Activity

Calls were made to districis with schools selected for fall assessments. The calls were made to introduce the 1988 assessment, establish participation, and make arrangements for introductory meetings. The supervisor filled out the Introductory Meeting Form(s) and the School Update Form and summarized the conversation in the Results of Contact forin. Copies of the forms were sent to the home office. Districts that had schools selected for winter/spring as well as fall assessments were told that further contact concerning innter/spring assessments would occur later.

Oct. 9

Sept. 8- Westat home office Oct. 9

Sept. 14- Fall district
Oct. 9

Oct. 28
Dec. 4
supervisors and ETS
District supervisors for winter/spring assessment, with ETS assistance

Oct. 28- Westat home office

Calls were made to districts with four or more schools seliscted only for winter/spring assessments, and were told that the supervisor would contact the district in October-November.

A confirmation letter was sent to superintendents after the Introductory Meeting Form was received from the supervisor. Principals of selected schools within the superintendent's district were sent a paciage containing

- a cove: memo introducing the study and confirming the meeting date;
- a memo to the principal giving the assessment schedule and outlining the school's role;
the principal's questionnaire: and
other informational materials (the same as those sent to superintendents).

Introductory meetings were conducted for schools in the fall assessment.

Calls were made to districts with scnools selected for winter/spring assessments. The supervisor filled out the Introductory Meeting form, the School Update Form, and the Results of Contact form. If the district had schools in the fall assessment, the primary purpose of the call was to make arrangements for introductory meeting with winter/spring schools; the School I'pdate Form would rave alreidy breen filled out by the fall supervisor.

A confirmation letter was sent to superintendents when the Introductory Meeting Form was received from the supervisor. Principals of selected schools in the superintendent's district were sent a package containing information similar to that sent to principals with schools in the fall assessment.

Contacting districts to solicit cooperation and schedule the meetings was primarily the responsibility of the district supervisor, unless we had some reason to believe that getting the cooperation of a particular district or school was going to be a problem. In those cases, ET's regional or national staff made the initial contacts. An ETS representative also made the initial call to all districts costaining four or more schools in the assessment.

During these calls to establish cooperation and to set up the introductory meeting, supervisors also updated our information on schools in the district. Topics raised with school district staff included school creation and closing, and changes in enrollment and grade span. Three forms were used to recerd this informati n: the School Update Form, the Introductory Meeting Form, and the Results of Contact form. The originals of these forms were mailed to the home office and then used as the basis for mailing packages of materials to the persons scheduled to attend the meeting. Information from the School Update Form was used to revise and update information in the home office files on the schools in the sample. New schools identified were.also given a chance to be selected for the study.

There were basically two waves of telephoning and introductory meetings-one for districts with schools in the fall assessment and another for districts with schools only in the winter/spring. For the jistricts that had schools in the winter/spring as well as the fall assessment, a second telephone call was made to arrange for an introductory meeting for winte $/$ /spring schools, sad to obtain any updated information about schools in the district not obtained by the fall supervisor.

### 5.3.2 Schools Added to the Oziginal Sample

Due to a variety of factors, described in The 1988 National Assessment of Educational Progress-Sampling and Weighting Procedares, Final Report (Rust, Bethel, Burke, \& Hansen, 1990), it was sometimes necessary to add schools to the original sample. Since the process of adding schools did not begin until October, while introductory muetings were taking place, the procedures for contacting and gaining cocperation from these schools necessarily differed from those described for the original sample. For the added schools, ETS first mailed a letter to the district superintendents and heads of private schools. Then, the district supervisor telephoned the contact person in the superintendent's office and asked him or her to notify the sample schools. If convenient, the supervisor then met with school representatives in person. If it was not possible to meet in person because of scheduling problems, the supervisar conducted the introductury meeting by telephone. ETS regional and national staff pr sided assistance as needed in contacting districts and schools.

### 5.3.3 Results of School Cooperation Effort ${ }^{1}$

There were 1,776 schools originally selected for one or more grade/age samples in 1988. This is comparable to the 1,682 schools selected for 1984 , but less than the original sampl for 1986 of 2,309 . The 1986 sample was made larger to accommodate inclusion of the language minority component and because of the number of different subject areas assessed that year.

Table 5-1 presents the results of the school cooperation effort. Of the 1,776 schools originally selected for the 1988 ascessment, 1,412 cooperated. An additional 88 would have cooperated, but they dic not have any eligible students enrolled and 230 refused. The other 46 schools were closed or out. of-scope.

The coo.jeration rate ( 86.7 percent) for the 1988 assessment was about the same as in 1986 but less than in 1984 ( 88.1 prircent).

As Table 5-2 indicates, the school cooperation rata varicd among the three age classes and, more noticeably 'etween the main NAEP and bridge assessments. For the main NAEP assessments, the rate varied from 88.7 percent for grade 4 /age 9 schools to 82.8 percent for grade 12 /age 17 schools.

The bridge assessments for age class 13 were held in the fall cf 1987 and had the highest school cooperation rate ( 92.7 percer.t). The bridge assesswents for age class 9 were held in the winter and had a school sooperation rate of 87.2 percent. The bridge assessments for age class 17 , held in the spring of 1988, had a school cooperation rate of only 78.1 percent.

### 5.4 OVERVIEW OF THE SUPERVISORS' MAJOR TASKS

During the assessment phase of the project, the supervisors wera responsible for carrying out the tasks listed below.

- Recruit and train exercise administrators.
- Check each shipment from ETS for quantities of assessment booklets and excluded student questionnaires and, in the winter/spring, teacher questionnaires. Check shipment from Westat for the other supplies needed.
- Review the Session Assignment Forms for the PSU and formulate a plan for scheduling assessment activities in each school.

[^16]Täole 5-1
Summary of NAEP 1988 School Participation
Number of Schools
Total original sample ..... 1,776
Out-of-range or closed ..... 46
No eligibles enrolled ..... 88
District refused ..... 149
School refused ..... 81
Cooperating ..... 1,412
Cooperation rate* ..... 86.72
[1986] ..... 86.4\%
[1984] ..... 88.1\%
Replacement sample for refusals ..... 86
Out-of-range or closed ..... 4
No eligibles enrolled ..... 0
District refused ..... 24
School refused ..... 11
Cooperating ..... 47

Table 5-2
NAEP 1988 School Cooperation Rate* by Age Class and Type of Assessment

| Number | Number of | Cooperation |
| :---: | :--- | :---: |
| Cooperating | Kefusals | Rate |


| Age class 9 main NAEP | $3 \_7$ | 42 | $88.7 \%$ |
| :--- | :--- | :--- | :--- |
| Winte: bridge | 1.54 | 23 | $87.2 \%$ |
|  |  |  |  |
| Age class 13 main NAEP | 399 | 68 | $86.6 \%$ |
| Fall bridge | 173 | 16 | $92.7 \%$ |
|  |  |  |  |
| Age class 17 main NAEP | 304 | 66 | $82.8 \%$ |
| Spring bridge | 114 | 34 | $78.1 \%$ |

[^17]- Contact each school one week before the assessment week and confirm the exact days for the assessment; remind the school coordinater that the Student Listing Forms must be completed before the supervisor arrives.
- Contact each school two days before the sample selection was to begin to be sure the school was prepared.
- Contact exercise administrators to inform them when and where to meet on the first day in a PSU.
- Collec: school characteristics and policies questionnaire from each schcol.
- Complete the sample selection of students in each school a few days to a week before the assessment began. Arrange with the school coordinator the exact time and place for each session and complete an Administration Schedule for each session.
- Prepare an excluded student question.aire for each student who had been sampled from the Student Listing Form but had been excluded from the assessment by the school. Give the school coordinator the excluded student questionnaires.
- Supervise and coordinate the assessment process.
- In the winter/spring, complete sample selection of teachers for the teacher questionnaires and distribute the teacher questionnalres.
- Perform quality control checks on each exercise administrator.
- Collect, or have the exercise administrator collect, completed excluded student questionnaires (and teacher questionnaires in the winter/spring).
- Complete Roster of Questionnaires for school characteristics and policies questionnaire and excluded student questionnaire and, as appropriate, the Teacher Survey Roster for the teacher questionnaire.
- On a daily basis, take back completed work from exercise administrator and distribute new materials for the next day.
- Make arrangenents for makeup sessions as needed.
- Review each booklet to make sure that all coding was accurate. Compare the front cover to the Administration Schedule and make any corrections needed.
- Complete the School Worksheet.

Ship materials to ETS and mail appropriate reports to Westat.

- Call the field director immediately if there was any problem completing the assessments in a PSU.


### 5.5 HAKING ARRANGEMENTS FOR THE ASSESSIENTS

To make arrangements for the assessments, the supervisors worked with the schools to accomplish the following:

- Schedule the date and time for the assessment sessions.
- Make sure that appropriate space would be available.
- Identify a sciool staff member to be the school coordinator who would work with the supervisor on assessment arrangements.
- Arrange for the necessary number of exercise administrators and, if recessary, additional school staff to monitor the sessions.
- If the school required any parental notification or permission, make sure that the appropriate letters or forms were distributed to the students.
- Select the sample and prepare all assessment materials.


### 5.6 SELECTING THE SAMPLE OF STUDENTS

At the introductory meetings, schools received instructions and forms to be used to prepare lists of eligible students. The instructicns specified who should be listed and the information (birth date, gender, race/athnicity, and grade) to be provided. The forms were to be used if the school shose to do so. Since experience in previous years showed that an increasing number of schools could, and preferred to, produce computer-generated lists of eligible scudents, a set of instructions for computer listing of students was also made available. The instructions made it clear that computer lists were perfectly acceptable as $l_{\dot{E}}$ as the necessary information on each student was included.

Two weeks prior to a school's assessment date, the supervisor contacted the school coordinator to make sure that the lists of eligible students were prepared and that all arrangements were set as agreed. The supervisor then visited the school (or district office) to select the sample of students to be assessed. The time interval between the selection of the sample and the assessment varied, depending on several factors; howeve=, the averag e elapsed time was about a week. Schools with large assessments anc those requiring parental notification generally preferred that the sampling be done as early as possible to give them time to make final arrangements.

In scheduling sample selection, the supervisors had to balance several, often competirg, concerns. Their own time constraints and travel schedule linited their flexibility in scheduling sampling. Also, the schools' preference for early sampling had to be balanced against the importance of having an up-to-date sample. The more time that elapsed between sampling and assessment, the more likely that the sample wouid include students why had dropped out and that it wold exclucie newly enrolled students. These problems weie most severe in the large urban high schools.

Once the supervisor hari revewed the lists for completeness and accuracy, he or she selected the sample following the instructions on the Session Assigmant Form. In wost cases the supervisors worked from lists prepared by the school and did the sampling in the schools. In some instances, districts prepared computer lists for their schools and some of these districts required that the sampling be done in the district office rather than at the school.

Because of the complexity of the sampling, supervisors were required to do all sampling themselves, although they could use exercise administrators to help check the $\mathrm{sam}_{2}$ ling lists and to fill out forms. Having exercise administrators pacticipate in the sampling was very helpful to the supervisors and expedited the sampling process.

Once sampling had been completed, the supervisors and exercise administrators could make out the lists of student:; to attend each asses ment session. The supervisor reviewed the plans for the assessment with the school coordinator befcre making oui the lists or Administration Schedules. At this time, and for the first time, the exact number of students sampled was known. Working with the coordinator, the supervisor updated the plans for the assessment and Cetermined which students would go to which sessions. Sometimes the coordinator had very specific ideas about the organization of the assessment. In elementary schools, for example, the usual preference was for all students in a particular teacher's class to be assessed together and, if possible, in their own classroom.

The supervisor had a great deal of flexibility in arranging spiral assessments in main NAEP schools to suit the needs of the school. There was not as much flexibility with the bridge spiral or tape sessions because each student was sampled for particular type of session had to attend the session when that booklet type has administered.

Once the arrangements had been set and the Administration Schedules filled out, the supervisor distribuced the excluded student questionnaires.

### 5.7 DISTRIBUTING AND COLLECTING NAEP QUESTIONNAIRES

The school characteristics and policies quest..onnaire, excluded student quastionnaire, and teacher survey questionnaire were distributed in the schools to be completed by school personnel.

All schools were mailed the school characteristics and policies questionnaire by Westat prior to the assessment. This form was to be filled out by the principal or another staff member knowledgeable about the school's administrative policies and staff characteristics. The supervisors picked up che questionnaire when at the school for sampling or for the assessment.

An excluded student questionnaire was to be filied out for every student who was sampled for the assessment but excluded by the school. Schools could exclude students with limited English speaking ability and those who were mildly mentally retardec (edscatls' or functionally disabled, if in the judgment of school staff or if a review of the schooi records indicated that they were unable to take tr y assessmen .

Main NAEP schools selected for the grade 4/age 9 and grade 8/age 13 assessments were asked to participate in a post-assessment teacher survey. The supervisor used the cunipleted Administration Schedules to identify those fourth-grade students - o completed reading booklets and eighth-grade students who completed writing sooklets. To identify the teachers for the survey, the school coordinator was asked to identify the reading/English teachers of those students. These were the teachers selected fo: the survey. The super:isor gave the school coordinator a teacher questionnaire to distribute to each selected teacher. The sufervisor (or exercise administrators) returned to these schools to pick uf the teacher questionnaires a few days after the assessment.

The supervisor attempted to collect all the completed questionnaires on the assessment day exeept for the teacher questionnaires. If the questionnaires were not ready on the assessment day, and it was convenient for the supervisor or an exercise administrator to return to the school later to pick up the questionnaires, they would do so. Otherwise, the supervisor gave the coordinator a postage-paid envelope to be used te mail the forms to ETS.

### 5.8 PREPARING REPORTS AND SHIPPING MATERIALS

Once the assessments were finished in a school, the supervisor and exercise administrators ediced the booklets, filled out the necessary forms and shipped the booklets and forms to ETS. A copy of all forms was sent to Westat so that progress in the field cotld be monitored.

### 5.9 RESULTS OF THE FALL ASSESSMENT

Table 5-3 shows data on the namber of students who were sampled, invited and assessed during the fall assessment of 13 -year-olds.

The original sample included 13,494 students. Of these, 806 students were sampled but excluded from participation by the school bacause of they had limited English speaking ability, were mildly mentally retarded (educable) or were functionally disabled. The rate of exclusion ( 6.0 percent) is somewhat higher than in the previous assessment, when it was 5.4 percent. The number.

Table 5-3
Students Sampled, Invited, and Assessed During the Fall Assessment

| Number of Students | Bridge <br> to 1984 | Civics <br> Bridge | $\begin{gathered} \text { Bridge } \\ \underline{91} \end{gathered}$ | $\text { to } \begin{gathered} 1986 \\ \underline{92} \end{gathered}$ | Booklets $\underline{93}$ | Overall |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Invited | 6,189 | 2,165 | 1,534 | 1,377 | 1,423 | 12,688 |
| Assessed | 5,500 | 1,938 | 1,405 | 1,281 | 1,256 | 11.380 |
| Percent Assessed | 88.8\% | 89.5\% | 91.6\% | 93.0\% | 88.3\% | 89.7\% |

Table 5-4
Students Sampled, Invited, and Assessed During the Winter and Spring Assessments

| 1988 | $\begin{gathered} \text { Age } \\ \text { Class } 9 \\ \hline \end{gathered}$ | $\begin{gathered} \text { - Winter } \\ \text { Age } \\ \text { Class } 13 \\ \hline \end{gathered}$ | $\begin{gathered} \text { pring } \\ \text { Age } \\ \text { Class } 17 \\ \hline \end{gathered}$ | Overall |
| :---: | :---: | :---: | :---: | :---: |
| Number sampled | 36,961 | 44,118 | 60,833 | 141,912 |
| Number excluded | 2,253 | 2,213 | 2,065 | 6,531 |
| Number invited | 34,708 | 41,905 | 58,768 | 135,381 |
| Number assessed | 31,911 | 36,699* | 46,170 | 114,780* |
| Percent assessed | 91.9\% | 87.6\% | 78.6\% | 84.3\% |

[^18]of students invited to the assessment was 12,688 . Of these, 11,380 actually were assessed.

The overall attendance zate ( 89.7 percent) is the same as in 1986 ( 89.7 percent) and slightly higher than in 1984 ( 87.3 percent, and 1982 ( 85.5 percent).

### 5.10 RESULTS OF THE WINTER/SPRING ASSESSMENT

Table 5-4 provides information on the number of students sampled, invited to assessment, and assessed during the winter and spring.

Of the almost 142,000 students sampled for assessment, 6,531 , or 4.6 percent were excluded by their schools. Of those students invjted to assessment, just under 85 percent were assessed. During the 20 weeks of the winter and spring assessment, 114,780 students were assessed. Overall, the assessment rates for the three age classes have remained relatively stable over the past few assessments.

# OVERVIEW OF 1988 NAEP MATERIALS PROCESSING ANI DATABASE CREATION 

John L. Barone<br>Educatinnal Testing Service

Chapters 6.1 through 6.7 detail the receipt, processing, and final disposition of the 1988 NAEP assessment materials at ETS. These processes resulted in the integration of all respondent data collected during the 1988 assessment into a NAEP database-a database that ensures data quality and provides for efficient analysis and reporting.

Chapters 6.1 through 6.4 describe the methods used to transcribe the materials to computer-readable form. Chapter 6.5 discusses the quality control processes that were followed during data transcription and provides a summary of quality control error analyses. Chapter 6.6 discusses the integration of the transcribed NAEP data into the NAEP database/information system that was used for data analysis and reporting. Chapter 6.7 describes the database products that result from the NAEF information system.

This chapter describes the flow and evolution of the operational procedures used to process the 1988 NAEP data, and provides some detail on the amounts of materials that were processed.

Also described in this chapter are the three distinct data units that make up the intagrated NAEP database:

1) the item information database, which contains information about every assessment item used in a 1988 assessment booklet;
2) the restricted-use data files, which contain all data collected from the 1988 NAEP respondents; and
3) the public-use data files, which contain a nonconfidential subset of the restricted-use data files, and are available to external users via the 1988 NAEP public-use data tapes package.

The flow of materials, creation of data files, and creation of the NIEP database are depicted as an ondered set of: processes that are applied either to the assessment materials or to the transcribed data. Chapters 6.1 through 67 describe these processes in detail.

### 6.0.1 THE 1988 ASSESSMENT: SCOPE OF WORK

The scope of the effort required to process the 1988 assessment materials is evidenced by the following numbers.

For the 1988 assessment,

- more than 130,000 assessment booklets or questionnaires were received and process?d.

This processing included

- opiically scanning more than 1 million double-sided pages from test booklets and questionnaires;
- professionally scoring more than 300,000 student responses from 130 open-ended items;
- manually key-entering and verifying more than 15,000 assessment booklets;
= using the NAEP minicomputer-based transcription system to track, audit, edit, and resolve more than 22 million characters of information;
- selecting and comparing a quality control sample of more than 160,000 characters of transcribed data to the actual responses in assessment booklets;
- cataloging more than 1.5 million characters of information on a total of 3,800 assessment items and derived variables, as part of a comprehensive item information database;
- developing a public-use data tape package containing more than 160 million characters of useful information.

These numbers alone indicate the staggering size of 1988 NAEP materials processing and database operations. However, the full extent of this effort becomes clearer when one considers that over 90 percent of the data transcription activities described in this chapter were completed within six months, with a conservatively estimated accuracy rate of fewer than 2.5 errors for every 10,000 charac eers of information transcribed.

### 6.0.2 NAEP DATA IROCESSING SYSTEMS

Materials processing and database creation for the 1988 assessment closely paralleleu the processes used in the 1984 and 1986 assessments. This allowed the use of in-place, proven operational procedures and computer svstems. This fact will be emphasized and highlighted throughout the
:lowing chapters.

A major improvement in the 1988 assessment was the introduction of scannable answer sheets. This innovation greatly reduced the amount of paper handling and scanning required to process assessment materials. The NAEP data systems were adapted to accept this type of answer document.

The large volume of collected data and the complexity of the NAEP design, with its spiraled distribution of many booklets, required the development and use of NAEP-specific data entry and management systems, including carefully planned and well-defined editing, quality control, and auditing procedures. This chapter discusses the original 1984 design and implemer.tation of these systems, and the adaptation and use of these systems and processes as applied to the 1986 and 1988 assessments. The result was effective, resprasive data management procedures that ensured the quality and integrity of NAEP fata. And, a NAEP database that met the orig'nal objectives of integrity and usefulness, while exceeding stringent standards for accuracy and quality.

## Types of Assessment Booklets and Answer Documents Used in NAEP

NAEP data processing flow and systems are determined to a large extent by the type of ascossment booklets and answer documents that need to be processed. As a consequence of the 1988 NAEP design, three types of answer documents were used and processed for the assessment. key-entered booklets, scannable booklets, and scannable answer sheets. The evolution of these response documents is described below.

In the 1984 assessment, students circled their responses in their test booklets. These responses were then manually transcribed, item by item, to a computer file. In 1986, because of a higher volume of data and a shorter time period for processing, a new type of ooklet was introduced in which students filler in ovals to indicate their responses. Each page of these booklets was entered into a computer scanning device to ereate the data file. The NAEP data transcription systems were modified to accept the output of the scarning devices.

As part of the continual effort to improve the efficiency of NAEP data processing, the use of separate, scannable answer sheets was introduced in the 1988 assessment. Main sample students in grade 12/age 17 and grade 8/age 13 filled in ovals corresponding to their responses to multiple-choice items on a separate answer sheet, instead of in the test booklet. Because the answer sheets were only one or two pages in length-versus a test booklet, the 'ength of which could be up to 30 double-sided pages-the amount of paper hand? ng and scanning required to process these samples was substartially reduced. The NAEP data transcription systems were adapted to accommodate the new answer sheets in addition to the scannable booklet and direct entry methods that were already in place.

For those booklets that contained open-ended response items, students recorded their written responses on the answer document. Later, professional scorers at ETS scored the items and, depending on the type of answer document,
wrote, circled, or filled in an oval for the students' scores on the answer document. The document was then transcribed to a computer file.

Students in some of the 1988 samples did not receive separate answer sheets. Main sample grade 4/age 9 students filled in ovals next to responses in the test booklet, becarse there was some concern that separate answer sheets would be confusing to them. Bridge sample students (students in samples selected to link 1988 results with past results) were given instruments that matched those used in the corresponding previous assessments.

In addition to the student assessment booklets, three questionnaires were administered to collect data about school characteristics, teachers associated with sampled students, and students excluded from the assessment. The excluded student quesiionnaire was a scannable document. The school and teacher questionnaires were manually transcribed, item by item, to a computer file.

### 6.0.3 pROCESS FLOW OF NAEP MATERIALS AND DATABASE CREATION

Figure $6-1$ is a flow diagram that shows the conceptual framework of ordered processes that were applied to the NAEP materials and data files. The vertical line through the center of the figure divides the processes into two sets-processing assessment materials and database creation-both of which a e described below.

The processes represented by rectangular boxes in the flow diapram were performfid at ETS on the paper materials or computer files. The three processes enclosed in rounded boxes (assembling the sample of schools, planning and conducting the field administration, and deriving the sampling weights) were performed by Westat and are discussed respectively in Chapters 3, 5, and 8. Two Westat reports, the Report on Field Operations and Data Collection Activities-NAEP 1988 (Caldwell, Moore, \& $\mathrm{S}^{\top}$ obasky, 1989) and The 1988 National Assessment of Educational Progress-Sam_ ling and Weighting Procedures, Final Report (Rust, Bethel, Burke, \& Hansen, 1990) discuss the field operations and sampling procedures in detail.

## Processing Assessment Materials

The left side of Figure 5-1 depicts the flow of NAEP printed materials. Chapter 6.1 describes this flow in detall and discusses how information from the field rosters, schedules, and worksheets was used to control the processing of materials. The figure follows the path of each assessment instrument (student test booklets, school characteristics and policy questionnaires, teasher questionnaires, and excluded student questionnaires), absentee rosters, school worksheets, and administration schedules as they are tracked through the appropriate processes that result in the final integrated NAEP database.

The following is a brief description of the materials processing activities as shown on the left side of Figure 6-1. Each description refers

Figure 6-1
Data Flow Overview

the reader to the section(s) or chapter(s) $j_{1}$ which the activity is discussed in detail.

Field Administration is the col..act and monitoring of the NAEP assessment in the schools. Chariter 5 summarizes this process.

Receipt of Materials refers to receipt and processing of assessment materials at ETS. Section 6.l.l describes the procedures and forms that were used to check and verify the receipt of iocuments from the field. It also discusses the follow-up procedures that were initiated when discrepancies were identified and the subsequent assembling of NAEP materials for further processing and data transcription.

The Professional Scoring process was carried out for responses to oyenended items for reading, writing, civics, U.S. history, mathematics, and science. Chapter 6.2 describes the items, types of scoring used, scoring operation, reliabillty checks, and resolution of scoring discrepancies. Entry and editing of these data are discussed in sections 6.1.4 and 6.4.4.

Data Transcription Systems refers to the methods used to transcribe NAEP materials into computer-readable form. The transcription method used for each type of NAEP instrument is discussed in Chapte, 6.1. Chapter 6.3 describes the design, structure, and development of the data entry system used to transcribe most of the NAEP materials to computer files; it also discusses the tracking and audit mechanisms that were built into the system $t$. ensure that all data were properly processed and accounted for.

Originally implemented for the 1984 assessment, NAEP's data transcription system has proven to be accurate, efficient, and flexible. In 1984, mat al key entry and verification was the primary method of entering data. In the 1986 assessment, the system was modified to accept scannable booklets as the main source of input. For the 1988 assessment, the system was modified to accept scannable answer sheets as a third method of data entry.

Ediring refers to the ETS procedures that ensur d the corrtictness and integrity of the NAEP data files by (l) validating every field of NAEP data that was entered into computer-readable form, (2) identifying any invalid or inconsistent values, and (3) correcting or flagging as unresolvable those values identified as invalid or inconsistent. Chapter 6.4 describes these procedures.

ETS Quality Control procedures were used to assess the accuracy of the data transcription and editing operations. Chapter 6.5 discusses the quality control procedures used in NAEP data processing and provides a summary of the likeiy error rates.

Storage of Materials refers to the final disposition of NAEP printed materials after processing had been completed. Chapter 6.1 discusses materials storage.

## Database Greation

The right-hand side of Figure 6-1 depicts the evolution of the integrated NAEP database from the transcribed data to the final database, available to exteraal users vis the public-use data tapes. Chapter 6.6 describes the processes through which the database nvolved.

The remainder of this section contains a bricf description of each process involved in database creation as shown on the figure. Fach description also refers the reader to the sec: .on(s) or chapter(s) in which the process is discussed in detail.

Sample of Schools refirs to the process performed by Westat to select the schools to be included in the assessment. This process is discussed in Chapter 3.

Data Files =effrs to (l) the data files created by the ETS/NAEP data transcription, editing, and resolution systems and (2) the labeling files (discussed in Chapier 0.6 ) that contain descriptive information on every item used in NAEP.

Extract is the process (discussed in section 6.6.1) that created data files containing specific demographic data fields extracted from the ETS/NAEP data files. These files were required by Westat to derive sampling weights.

Sample Weights Derivation was performed by Westat and is discussed in Chapter 8. This process produced computer tape files containing sampling weights for every student and school assessed by NAEP.

Merge refers to the final integration of NAEP dat. files into the NAEP database. This process, discussed in section 6.6.2, merged the NAEP data £'les, labelirig files, and sampling weights into one database.
' AEP Database is the final, integrated $N / E F$ database that contains all 1988 NAEP data and is made available to external users via the public-use data tapes. The structure of the internal NAEP database is discussed in Chapter 6.6; the moblic-use data tapes, which contain all of the nonconfidential data fields from the internal database, are discussed in Chapter 6.7.

### 6.0.4 NAEP DATABASE: DESCRIPTION AND HISTORY

The 1988 NAEP data collection resultec in seven classes of data file (student, school, teacher, excluded student, sampling weight, item information, and derived variable files). These files are operationally merged into an integrated database that efficiently lia...s student, school, and teacher data in ways that permit simultaneous analysis. The database system can operationally aggregate data while avoiding the necessity of creating interl diate files.

The structure and internal data format of the 1988 NAEP database is a continuation of the integrated design originally developed by ETS in 1983.

Structure of the NAEP Database

ETS has placed all NAEP infcrmation from the 1970-1988 assessments into three data systems that make up the complete NAEP database:

The item information database contains all of the descriptive, processing, and usage information for every item developed and administered for NAEP. This database functions as a resource for test development activities, data system control operations, and item linkage to past assessments. A complete description of the contents, documentation, and uje of this database is found in A Guide to the NAEP Item Information Database (Rogers, Barone, \& Kline, 1989) and A Primer for the NAEP Item Information Database (Rogers, Kline, Barone, Mychajlowycz, \& Forer, 1989).

The restricted-use data files contain all NAEP respondent data, including "secure" files. These files function as NAEP data archives for responses from students, teachers, and school administrators from the booklets and questionnaires used in NAEP from 1970 to 1988. The contents, documentation, anc use of these files for trend anclyses are described in $A$ Guide to the NAEP Resiricted-use Data Files (Rogers, Barone, \& Kline, 1989).

The public-use data tapes contain all nonconfidential respondent and item information for public dissemination. Their contents and use are documented in The 1988 NAEP Fublic-use Data Tapes Version 2.0 User Guide (Rogers, Kline, Johnson, Mislevy, \& Rust, 1990).

These three database products, developed by ETS, are especially useful because

- They are portable and can be use'י on a variety of hardware systems. They can be accessed by a variety of software systems, including SAS and SPSS.
- They are in a "rectangular" file structure that is easy to understand and use. This data structure eliminates the need for complex data retrieval processes from dissimilar file formats.
- They have standardized documentation, including complete data layouts and codebooks.
- They are supported by user guides that have been published by ETS/NAEI.

The complete NAEP database is massive. Spanning the years 1970 through 1988, NAEP has:

- collected data on the performance of over 1.6 million students and young adults, and background information about their teachers and schools;
- collected data on over 10,000 cognitive, background, and attitude items in 14 subject areas and on several special topics; and
- derived over 3,000 variables (composites, transformations, scale scores, sampling weights) and added them to the data files.

These data are maintained as part of the NAEP item information or restricted-use data files. Except for a small percentage of personal or secure item information, all data are made available to the public on the public-use data tapes.

While the selection of data from a given subject area or assessment year for analysis and reporting is straightfor d (documentation, user guides, and data-variable codebooks are available for every NAEP data file), the fullowing table puts the to ${ }^{2}$ al size of the NAEP database into perspective.

Approximate Size
NAFP Database
1970-1986
1988

Item Information Database Restricted-use Data Files Public-Use Data Files

$$
\begin{array}{r}
81,000,000 \text { bytes } \\
2,000,000,000 \text { bytes } \\
2,000,000,000 \text { bytes }
\end{array}
$$

4,000,000 bytes 100,000,000 bytes 100,000,000 bytes

# PROCESSING ASSESSMENT MATERIALS 

Alfred M. Rogers and Norma A. Norris

Educational Testing Service

This chapter describes t.: procedures through which NAEP insizuments, schedules, and worksheets were raceived at ETS, and the methods used in the subsequent scoring, scanning, loading, editing, and resolution of NAEP data.

### 6.1.1 RECEIPT OF MATERIALS

dt the completion of the assessment administration in each school, it was the responsibility of the Westat district supervisox to complete and mail a postcard to ETS containing the assessed school identification, the number of boxes shipped, and the mode of shipment. The receip of this card at ETS alerted staff to expect arrival of the shipment within seven working days. If after seven days the shipment had not arrived, ETS staff were directed to notify Westat, who in turn would initiate a trace of the shipment.

The shipment from each school contained the school worksheet; administration schedule; questionnaire roster; school, teacher, and excluded student que tionnaires; and assessment booklets, bundled by session. The format and content of these instruments are documented in the Westat Field Administration Report. The following discussion of check-in procedures presumes an understanding of the information contained in and the interrelationships amorg these instruments.

The school worksheet contained summary counts of the booklets used in all assessment sessions in each school. The booklets used withir each session were counted and checked against the count written on the school worksheet. All discrepancies in the counts were referred to the administration schedules for resolution. The booklet numbers from the bundle in question were compared against the listing of booklet numbers on the schedule. If the discrepancy could not be resolved by this process, Westat was notified, and they in turn contacted the appropriate district supervisor for resolution of the discrepancy.

- Two identification codes, the session code and the batch code, were then assigned to each culumn on the worksheet and to the corresponding bundle of booklets. The two-digit session code distinguished main sessions from bridge sessions and regular sessions from makeup sessions.

The use of a batch identification code was necessitated by the use of machine-scannable documents in this assessment. A preprinted, scannable header sheet was attached to each bundle of student booklets to be used to
identify the bundle through all subsequent scoring, scanning, entry, and resolution processing. This batch headei sheet was pregridded with a unique four-digit sequence code. As each header sheet was drawn from the pile, it was gridded with the age group code, the school and session codes, the current batching date, and the number of booklets to be processed. The age group code was either " N, , "T," or "S corresponding to the 9-, 13-, or 17-year-old cohorts. The batch identification code, which consisted of this age group code and the sequence number from the header sheet, was then recordea at the botton of the session information on the sclivol worksheet.

From the aspect of materials processing, a significant difference of the 1988 assessment from the 1986 assessment was the introduction of student instruments with rewovable, machine-scannable answer sheets. For the grade 8 /age 13 and grade 12 /age 17 cohorts these instruments were spiraled with the machine-scannable inct.uments whose format was used in the 1986 assessment (the grade 4/age 9 cohort were administered only these machine-scannable instruments). The bundles of student materials for each spiral session for these older cohorts thus contained a mixture of scanrele booklets and scannable answer sheets.

The scanning machine program, which had been written for the 1986 asses.ment, was used again to scan the booklets; a new program was written for scanning the answer sheets. Since these programs could not be run concurrently, the bundles of instruments had tu be split into separate batches of booklets and answer sheets, and a batch header sheet assigned to each. In order to maintain the integrity of each session throughout the processing phase, the same batch identification number had to be assigned to each pair of booklets and answer sheet bundles from the same session.

The teacher questionnaires and the excluded student questionnaires were then counted and compared against the questionnaire roster. All discrepancies in the teacher ouestionnaires and the excluded student questionnaire counts were referred to Westat and again, in turn, to the district supervisor for resolution. As the field administration procedures permitted a separate shipment of these questionnaires, the questionnaire roster listed questionnaires not included in the shipment, alerting the receiving staff to expect a later shipment.

If the supervisor was unable to collect the questionnaires on the day of the assessment, a pre-addressed envelope was left at the school so that the school coordinator could mail the questionnaires directly to ETS. There was no other follow-up activity to obtain uncollected questionnaires from school personnel; efforts to encourage school cooperation were focused primarily or. student assessment activities.

When all of the student-related matırials for a school had been received and checked in, the administration schedults, school worksheet, assessment booklets, and questionnaires were forwarded to the data operations coordinator for transcription processing. The operations coordinator separated these materials accurding to the appropriate data entry procedures: the administration schedules, the school worksheet and the teacher and school questionnaires were sent directly to data entry systems; the excluded stursnt
questionnaires were accumulated and shipped in batches to the optical scanning area; and the assessment session bundles were forwarded to the professional scoring area.

The absentee data from the administration schedules and the school worksheet data were entered into the data entry system on a daily basis. The teacher and school questionnaires were batched and held for data entry until scheduling permitted.

### 6.1.2 SCHONL WORKSHEETS

Each column of the school worksheet contained information pertaining to the administration activity of each session within a school. This information included the date, time, and location of the adrinistration, the exercise administrator code, and the counts of the studel.ts who were sampled, those who were absent, and those who vere assessed. Additionally, each column contained a session code and batch identification code that were recorded by receipt processing staff. This information was entered into the sy.stem by selecting the first option on the main data entry menu (Figure 6.1-1).

Figure 6.1-1
Main Menu for the NAEP Data Entry System

NAEP ENTRY SYSTEM MENU

OPTION:
1 School Worksheet Entry
2 Student Data Entry/Verification/Resolution
3 Questionnaire Data Entry/Verifisation/Resolution
4 Absentee Data Entry
5 Questionnaire Roster Entry
X Quit

Enter Option Code:

The worksheet entry pr^gram seceived its input through two entry screens. The first entry screen (Figure 6.1-2) requested school-level information, namely, the PSU and school codes and the total number of assessment sessions that were conducted in that school. This count was further broken down into the four types of session administration: regular spiral, makeup spiral, regular bridge, and makeup bridge. The program would then display the second entry screen (Figure 6.1-3) once for each session, requesting the session-level information. When all sessions for a school had been entered, the program would redisplay the first entry screen, ready to process the next worksheet. The operator could either enter new information or press ENTER to return to the main menu.

The assessment session was the primary unit at which the entry system controlled the processing of student data and maintained statistics on data entry activity. A separate tracking file was established for this purpose, each record of which contained all control and reporting information for one sessi~... The entry of the school worksheet infc.rination thus generated a new record on the tracking file for each session, setting initial values for those parameters that would control entry processing and record entry events.

The operations coordinator was provided with procedures for periodically monitoring and reporting activity on the data entry system. These procedures compared the counts of booklets processed at each stage with the initial counts from the works'reet, and flagged discrepancies. This, in turn, alerted the coordinator to possible missing or extra booklets. If the school worksheet information was determined to be in error, the operations coordinator had the facility to correct the tracking file data to prevent reappearance of the discrepancies in the activity report.

The school worksheets were retained by the operations coordinator in anticipation of later querias, since they couid be stored conveniently and referenced easily.

### 6.1.3 ADMINISTRATION SCHEDULES

The administration schedules contain the demographic characte_istics of the students selected for the assessment. This information, which included the gender, race/ethnicity, grade, and birth date of the sampled students, was used by Westat in the derivation of sampling weights. The booklet numbers of the students who participated were transferred to the schedule at the time of the assessment, and the demographic information was in turn transferred to the front covers of the booklets after the assessment.

The demographics of the students who were sampled but did not participate in the assessment (exclusions and absentees) were used to adjust the sampling weights of the students who did participate. The excluded student information could be obtained from the excluded student questionnaire data, but the information on absentees could be found only on the

Figure 6.1-2
First School Worksheat Data Entry Screen

SCHOOL WORKSHEET

PSU \#: $\qquad$
SCHOOL \#: $\qquad$

TOTAL NUMBER OF SESSIONS: $\qquad$
NUMBER OF SPIRAL SESSIONS (0-10): $\qquad$
NUMBER OF MAKEUP SPIRAL SESSIONS (0-10): $\qquad$ NUMBER OF ORIGINAL TAPE SESSIONS ( $0,1,2$ ): NUMBER OF MAKEUP TAPE SESSIONS ( $0,1,2$ ): $\qquad$

Figure 6.1-3
Second School Worksheet Data Entry Screen

SCHOOL WORKSHEET

PSU \#:
SCHOOL \#: $\qquad$
TAPE/SESSI.ON \#: $\qquad$
DATE:
TIME:
$\qquad$
$\qquad$ :
EA'S INITIALS:
EA'S ID: $\qquad$
\# TO BE ASSESSED: $\qquad$
\# ASSESSED: \# ABSENT: $\qquad$

BATCH NUMBER: $\qquad$
awainistration schedules. It was therefore necessary to transcribe the AnEcrmation for these absentees to computer-readable media and combine it with vise assessed and excluded student data.

The absentee data were entered into the system by selecting the fourth uption on the main data entry menu. The system then presented a screen for the entry of all absentee information for a single session (Figure 6.1-4). ithe program fir,t requested entry of the batch identificatio: number and the ¿SU, school and session codes. The batch code was used to locate the corresponding session record in the tracking file and the remaining codes were shecked for correctness against the corresponding fields in the tracking record.

Figure 6.1-4

## Absentee Data Entry Screen

## NAEPABSENTEE ENTRY



The remainder of the screen could accommodate data entry for 75 abseat students. Only three data fields were required for each absentee: g:3de, gender and birth date. These data were ultimately used by Westat to edjust the sample weights. As each field was entered, the program checked for appropriatenes, of range according to the age cohort and session :ype. At the completion of data entry for an assessment session, the operato: pressed ENTER and the program would present a fresh screen for the entry of another session's complemeat of absentee data. The operator could then tithei enter another batch identification code or press ENTER again to return to the main menu.

If the operator entered a session codo frif which absentee data had already been entered, the program would display the data for all absentees in
the record for that session at that time. The operator then had the facility to correct, delete, or add new data. When the ENTER key was pressed, the data displayed on the screen were transcribed to the current session record and the record was rewritten to the absentee data file.

The assessment scheduins were retained by the operations coordinator in anticipation of future questions about and references to the sample. As the schedules for all three grade/age assessments could be contained in three storage boxes, their retention proved to be the most efficient and compact means of referring to the relevant raw data.

### 6.1.4 STUDENT ASSESGMENT INSTRUMENTS

The student assessment booklets were forwarded directly to the scoring area as the complete set of materials was received from each school. The booklets and answer sheets were batched separately for each session, with a batch header sheet attached to the top of each bundle. This preprinted, scannable sheet contained the PSU, school, and session codes, and a unique batch identification code to identify each session. The header sheets were retained with the batchss throughout entry processing.

### 6.1.4.1 Professional Scoring

The batches of strient booklets and answer sheets were sent from the receipt processing area to the scoring area where the open-ended reading, writing, mathematics. and civics items were read and scored by trained readers. The procedures and guidelines followed in scoring these items are more fully described in Chapter 6.2.

Each open-ended item was provided with a set of scannable ovals to be filled in by the reader. The ovals were usually at the bottom of the page on which the item was printed to avoid distracting or confusing the student. All open-ended items were provided with an extra set of cials to permit secondary scoring of the primary trait scores for interrat.r reliability analysis. Ceveral of the reading and writing items that were to be evaluated for secondary traits had an additional set of ovals for each secoudary trait score.

The primary reader would examine each booklet in a batch and determine if it contained any open-ended items. If so, the reader wrote in his or her identification code and gridded in the first column of ovals in the reader identification area on the inside frotit page. The leader would then locate and read each of the open-ended items for that booklet and grid the first primary trait score and all secondary trait scores into the appropriate ovals. On every fifth booklut read, the reader would place a piece of tape over each set of primary trait score ovals and designate this book for secondary scoring. The sampling rate of one in five assured a 20 percent rate of secondary scering, and the tape was a device to avoid influencing the secondary reader. The completed booklets were stacked in the same orcer in
which they were received and the completed batch was placed it. a designated area.

The secondary reader selected the designated booklets from each batch and entered his or her identification code into the second column of the reader s.dentification irea. The reader then located the items with concealed primary trait scores, read and scorec them, and removed the pieces of tape. The completed batch was placed in a second holding area, whence it would be forwarded to the scanning processing area.

### 6.1.4.2 Scanning

The heart of the scanning process was a programmable compuring machine that could "read" the pencil marks from $b$ ' sides of a cheet of paper at a very high speed, convert those readj.ngs tc response" codes, and transcribe those codes to a magnetic computer tape in specified format. This section addresses the functions that constitute the uody of the scanning process: the preparation of the scannable material.s, the operation of the scanning machine, and the accivity of the scanning machine operator.

Before the batches of scored booklets and scorsd answer sheets were senc to the scanning area, they were grouped by age cohort and placed into "capsules" the: were then arranged sequentially on "carts." The capsules were cardboard boxes with one side open to facilitate access by the scanning and resolution staff, and che other side equipped with hangers to pe.mit removal from the carts. The carts were transportable, two-sided hanging shelves with sloping sides to permit the capsules to hang with the open sides out while keeping the documents $i n$. The carts were shipped to the scanning area.

The first step in the scanning process was to separate each booklet into its component pages for single-sheet processing by the scanner. Each booklet was secured by three staples along the left edge. Each answer sheet was a large, single sheet of paper folded along the left edge. The timing marks for the scanner were also printed along this edge. Two special machines were used to cut off the stapled edge without demaging the ciming marks. The sutting machine could cut three or four booklecs at a time but required a slower, manual setup process. The slitting machine was more automatic, processing one booklet at a time, but was less precise than the cutting aachine. Careful handling of these booklets was imperative once they were cut, as the scanning program depended on the correct sequencing of pages within each booklet. The cut booklets were placed back in their capsules and the completed cart sent to the scanning machine.

The scanning machine operator first determined which scanning program to be used according to the age cohort and instrument type booklet or answer sheet), mounted a fresh magnetic tape on the machine's tape drive, and started running the program. Scanning was initiated by placing the sheets from the first capsule into the input hopper of the scanning derice. The scanner then read both sides of each sheet and placed it into one of two hoppers. If no errors in readability or sequencing were datectsd, the sheet went into the output hopper and the next sheet was read from the input hopper. If an error
was indicated, the sheet was diverted '.to the shunt hopper, the program wrote a message to the operator's console, a.d the scanner stopped processing while the operator took appropriate action.

Each page of every booklet and answer sheet had been printed with a set of identification marks next to the timing marks. The front cover of sach booklet $n t$ thin a numbered type was assigned a unique set of these marks, and the pages within each item block type were sinilarly identified by block code and sequence number. As the scanner read a cover sheet, the program identifie, the booklet number and referred to an internal table to determine which blocks should follow and which page formats should appear within each block.

If the program indicated a page sequence error, the operator instructed the program to treat the page as missing and placed the shunted page into the input hopper to be read again. If a page within a block was unreadable, che operator instructed the program to treat it as missing and placed the sheet perpendicularly on top of the output stack. If a block sequence error or unreadable booklet cover was indicated, the operator instructed the program tu insert a dummy record and removed the remaining pages of that booklet and placed them perpendicularly on top of the output stack.

As the scanning program completed scanning each batch, the batch was removed from the output hopper and placed back ir its capsule. The next batch was taken from its capsule and placed into the input hopper and the machine resumed processing. When the machine had completed processing the last batch, the operator terminated the program, dismounted the ape, and removed the listings from the printer.

The output data tapes were forwarded to the VAX computer area for locding processing. The scanned documents were returned in their original cartons to the resolution processing area.

### 6.1.4.3 Loses ng

The scanning tapes were recei and checked in by an operator at the VAX computer area. The operations coordinator, having received notification of the tape's transmittal, initiated the data eitry management procedure on the VAX computer from which the "Load Scanning Tapes" option was selected (Figure 6.1-5). A second menu provided the supervisor with the choice of loading the scannable booklets, answer sheets, or excluded student questionnaires (Figure 6 '-6).

The program's first input request was the tape number, a six-digit code printed on an external label on the tapt and coded internally by the scanning program. The $V A \because$ operator then mounted that tape on the tape drive and put the drive online, which logically connected the tape to the program. The program checked that the right tape number and type had been mounted and proceeded with the loading process. As it processed the tape, the program

Figure 6.1-5
Main : Cenu for Management of the NAEP Daca Entry System

```
NAEP DATA ENTRY HANAGEMENT
                    OPTION:
                        _
    1 Tracking & Data File Management
    2 Status Reports
    3 Questionnaire Audit
    4 Load Scanning Tapes
    5 \text { Quality Control}
    6 Spool Data for Final Edits
    X Quit
```

    Enter Option Code:
    Figure 6.1-6
Menu for Loading of Data Tapes into NAEP Data Entry System

```
NAEP DATA TAPE LOADING FUNCTIONS
```

OPTION:
1 Load Tape of Scannable Booklets
2 Load Taye of Scannable Answer Sheets
3 Load Tape of Excluded Student Questionnaires
X Quit
Enter Option Code:
printed the batch code and record count for each batch to the operator's terminal to assure the operator that the program was running prorarly when the program reached the end of the tape file, it prinzed out three listings, rewound and dismuunted the tape, and returned to the main menu. The three listings consisted of an error log, a batch listing, and an audit listing.

The error $\log$ was a running commentary and summary of the processing of the tape. Each log was identified with ihe tape number, file name, and date of the loading run. The start of each batch was recorded with the batch number and its corresponding school and sessica codes. Any disagreement between these codes and those entered from th.e school worksheet was recorded at this point. Any booklets that did not belong to the session type (e.g., bridge booklets ir a spiral session) were also listed here as well as all unscannable booklets. At the end of processing each batch, the program printed the number of scannable and unscannable booklets it had counted in that batch.

The batch listing reported the information from the front cover fields of each booklet within each batch. This listing could be checked against the administraticn schedules for discrepant or missing information.

The audit listing identified the data problems found within each batch. Each data anomaly was identifiec by the batch sequence number, booklet number, section, and item number to facilitate location of the data in the actual instruments by resolution staff.

The printed output was forwarded to the resolution arca to be joined with the scanned materials. The tape was retained in the VAX computer area.

### 6.1.4.4 Resolution Processing

The error $\log$ and batch listing were retained by the operations coordinator. The audit listings were separated by batch number and matr d with the appropriate scanned naterials. If the error log indicated any unscannable booklets within a batch, they were identified and extracted from the bundle and manually entered and verified through the data entry system. Upon completion of verification processing, the system produced an updated audit listing to replace the one output from the ioad process.

Resolution processing was not permitted to proceed unti? all materials from a session had been scanned, loaded and received, after wh...h the separate booklet and answer sheet batches from a seswion were matche'!, combined, and forwarded to resolutions staff.

Staff assigned to resolution processing reviewed the audit listing, checked the actual responses in the documents wherever asterisks or quesion marks were indicated, determined the appropriate value(s) to be coded in the data file, and wrote these new codes on the audit listing. The asterisks indicated multiple gridding of a single-response item, question marks flagged critical fields from the front cover, such as gender or birth date, that were incorrectly gridded, and fields from unscannable pages.

Access to the student data for entry, verification, or resolution processing was gained through the second option on the main data entry menu The first screen (Figure 6.1-7) requested the identification number of the batch to be processed; the PSU, school, and session codes as a secondary check on the batch code; and a code for the processing mode: entry, verification, or resolution. The second entry screen (Figure 6.1-8) prompted for input of the batch serial number and for the student ID number as a secondary check.

The processing mode was a program state that determined how much data the terminal operator would see, how to process data entered by the operator, and the management of data within the program. The entry mode permitted the creation of a new data record by the operator. The verification mode presumea the existence of a data record, permitted the "creation" of a second dara record, and performed a field-by-fieid comparison of the two records, alerting the operator of data disagreements. The rescimtion mode displayed the entire contents of a data record and interpreted any data er.ered b; the operator as a correction of a data field.

The resolution mode of the entry system permitted the operator to read verified or loaded data records, display the field values, and make corrections to individual fields. A change in any data field under resolution mode also generated a record for the audit file, and the program produced an updated audit listing at the completion of resolution processing for each batch. There was no limit to the number of times a session or data record could be processed under resolution. On completion of resolution processing, each session bundle was stored in a labeled box and held for final editing and quality control processing.

If the program was ir the entry mode and no data record for the booklet could be found, the program would prepare to create a new record and request ently of the booklet cover data. If in verification mode and the data record had not been already verified, the program would request re-entry of the cover data and compare them against the data record. If in :esolution mode and the data record had been through verification or loading processing, all data fields were displayed and tie operator could either modify these fields or advance to the rest of the entry screens for that booklet.

A final validation was performed when the data entry work flles were $\mathrm{n}=\stackrel{\mathrm{g}}{\mathrm{g}} \mathrm{d}$ and copied, c : spooled, onto a master student data file. This spooling program checked every data field of every student record for $0:: t-o f-r a n g e$ values and question marks. A listing similar to the audit listings for each session was produced, which the resolution staff then used to identify and correct the remaining data anomalies.

The quality control procoss first selected a random sample of each booklet type from the master student file, idencifying them by batch and sequence number. The designated booklets were located, extracted from their storage boxes, and forwarded to the quality control staff. The responses in each booklet were then compared with their coded data values in the dita file On completion $r^{-}$quality control processing, the booklets were returned to

Figure 6.1-7
Student Session Data Entry Screen

NAEP YEAR 19 STUDENT DATA
BATCH: $\qquad$
PSU:
SCHOOL: -
SESSION: -
MODE: _

Figure 6.1-8
Student Booklet Cover Data Entry Screen

STUDENT ASSESSMENT BOOK

BATCH SERIAL \#: $\qquad$

their boxes. The full details and results of the quality control process are presented in Chapter 6.5.

At the completion of resolution processing of the student data, the session bundles were separated by booklet or answer sheet and sorted into individual stacks by instrument number. These stacks were then placed into storage boxes, identified by age cohort and instrument number, and shipped to the ETS lata retention area for long-term storage.

### 6.1.5 QUESTIONNAIRES

The questionnaire instruments were separsted by type and accumulated by the operations coordinator as they were received from mail processing. The teacher and school questionnaires were eventually transcribed through the NAEP data entry system, but on a lower priority basis than the student booklets. The excluded student questionnaires were batched and sent to scanni: o at regular intervals, since the demographics of the excluded students were ust 1 in deriving the sampling weights of the assessed students. In order to allow the two files to be completed at the same time, every effort was made to keep the process'ng rate of these instruments in pace with the student data entry.

Processing of the questionnaire data was initiated by selecting the third option on the data entry menu. The first entry screen (Figure 6.1-9) prompted for input of the questionnaire type, age group, and processing mode. The questionnaire entry programs followed the same model as the student entry program with the absence of a tracking file and session batching. Entry, verification, and resolution modes were available; audit reports were initiated by the operations coordinator.

Figure 6.1-9
Primary Menu for the Entry of Questionnaire Data

NAEP YEAR 19 QUESTIONNAIRE MENU

|  | TYPE: | AGE: |  |  | MODE: _ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | SCHOOL | 1 | AGE 9 | 1 | ENTRY |
| 2 | TEACHER | 2 | AGE 13 | 2 | VERIFICATION |
| 3 | EXCLUDED STUDENT | 3 | AGE 17 | 3 | RESOLUTION |

The data for the excluded student questionnaires for the age 13 bridge sample were entered through the data entıy system. The program for entry of the excluied student questionn:ire data first displayed a screen for entry of the front cover data. The operator was prompted for the serial number of the booklet to be processed. An error condition occurred when either a record with that serial number was found under entry mode or when no record was found under the verification or resolution mode. In either case, the operator was asked to verify that the corract number had been entered. If the problem persisted, it was referred to the operations coordinator for resolution. The remaining cover information, including PSU and school code, student gender, race/ethnicity, grade, and birth date, was processed accoiding to the same criteria as were the data from the student booklet covers. The program then displayed a single screen for processing the responses within the questionnaire. When the operator pressed ENTER to terminate processing for that booklet, the program redisplayed the cover entry screen, ready to process another booklet. A blank field entered in the serial number field returned the program to the primary menu.

The excluded student questionnaires for the age 9 bridge, age 17 bridge, and all main samples contained detachable machine-scannable answer sheets for the recording of identification information and responses to the questions. These sheets were checked for correctness and completeness of identification information, separated from their questionnaires, and placed on one $\mathrm{f} f$ three piles, according to age cohort. On a weekly basis, the operations coordinator would grid a batch header sheet for each pile with the appropriate age cohoit information, place it on the appropriate pile, and send these batches to the scanning area.

The scanning program for the excluded student answer sheets was executed once for each batch, creating a separate output tape for each age cohort. At the completion of scanning processing, the tapes were sent to the VAX computer area and the batches sent back to the data entry area. Upon notification of the tape serial numbers, the operations coordinator started the data entry management procedure on the VAX computer, selected the "Load Scanning Tapes" option, and chose the third option to initiate loading of the excluded student data.

The loading program for the excluded student data performed many of the same functions as the progia... for loading the assessed student ciata: checking the demographic information for appropriateness to age cohort and sample, validating the questionnaire responses for range, ard reformatting the output records for compatibility with the data entry system. The entry system maintained a single excluded student data file and a single audit file for each age cohort. The load program wrote the edited lata records to the appropriate data file, using the unique book serial number as an indexing k.y for insertion into the file, and for later retrieval by the resolution program. The program also wrote the audit records to the appropriate audit file for each age cohort, "appending" them to the end of the file. When the program completed loading the data, it produced an audit listing of data anomalies found in that batch.

Resolution processing started by comparing the anomalous data in the audit listing with the mesked responses on the answer sheets. All corrections we, e recorded on the listing, which was given to a data entry operator. The operator selected the third option from the main menu to display the questionnaire data entry menu, then indicated resolution of excluded student questionnaire data for the appropriate age cohort. After entering the identification number for $t$ ! reco $i$ to be corrected, the operator confirmed that the right record had been retrieved and made the corrections to the erroneous data. An account of each data correction was written to che audit file.

The operations coordinctor had the ability to produce, either as needed or at the conclusion of all resolution processing for an age cohort, a complete audit listing for any questionnaire. This listing was organized by transaction within data field within identification number, to facilitate visual analysis of resolution activity. At the conclusion of the excluded student dat.a processing for an age cohort, a special summary prog, am was executed that listed and counted the processed questionnaires within each school. This listing was compared against the individual questionnaire rosters for each school to determine if any shipments were still incomplete. The rosters contained enough information to generate "dummy" records for each missing questionnaire, which were designated with a special code for use by Westat in deriving the sample weights. These records were added to the file that was sent to Wescat along with the absentee and assessed student data files.

The program for entry of the teacher questionnaire data first displayed a screen for entry of the cover information. It processed the serial number in the same fashion as did the entry program for the excluded student questionnaire. The cover information included only the PSU, school, and teacher codes. As the longest questionnaire instrument, the teacher questionnaire required three screens for entry processing. Completion of processing for each booklet returned the program to the cove: entry screen, where the entry of a blank serial number returned the program to the primary menu.

The program for entry of the school questionnaire data also scarted with a display of the cover entry screen. The only information requested for this instrument, however, was the PSU and schcol code, which also served as the booklet identirication number. Beciuce of the large number of questions in this questionnaire, entry processing required two screens. Completion of pri essing for each booklet returned the program to the cover entry scieen, where the entry of a blank PSU and school code returned the program to the primary menu.

After all questionnaires had been received and processed through the encry system, a validatic: program was run against all data values in all records. All remaining data errors or discrepancies were then correct ${ }^{\text {d }}$ d using the resolution mode of the entry system. A Iinal audit listing was generated, recording all entry activitias for each questionnaire.

The questionnaires were subjected to the same quality control procedures received by the student data. The details of the sampling rates and results are discussed in sections 6.5.2 through 6.5.4.

At the completion of quality rontrol processing, the questionnaires were packed into boxes and shipped to the ETi data retention arez for long-term storage.

Chapter 6.2
PROFESSIONAL SCORING ${ }^{1}$

Lynn B. Jenkins and Anne Campbell

Educational Testing Service

Like previous NAEP assessments, the 1988 assessment included a variety of open-ended items-or items that ask scudents to provide written responses. Open-ended itcms were administered as part of the main assessments in reading, writing, document literacy, civics, and U.S. history, and the bridge assessments in reading, writing, civics, mathematics, and science. Some of the items requested extended writing, and these appeared alone in a block so that students had 10 to 15 minutes to respond. Others requested shorter written responses; these were interspersed with other items in a block.

The 1988 main and bridge (or trend) assessments included the foliowing, numbers of open-ended items.

1988 Main Assessment
Grade 4/Age 9 Grade 8/Age 13 Grade 12/Age 17

| Reading | 2 | 1 | 2 |
| :--- | :--- | ---: | ---: |
| Writing | 7 | 8 | 8 |
| Document Literacy | N/A | 27 | 27 |
| Civics | 0 | 1 | 1 |
| U.S. History | 0 | 1 | 1 |

## 1988 Bridge ( ${ }^{-r}$ rend) Assessments

Age Class $9 \quad$ Age Class $13 \quad$ Age Class 17

| Reading | 5 | 8 | 12 |
| :--- | ---: | ---: | ---: |
| Writing | 6 | 6 | 6 |
| Civics | 0 | 1 | 2 |
| Science | 0 | 0 | 2 |
| Mathematics | 28 | 27 | 54 |

${ }^{1}$ The authors would like to acknowledge Debra Kline, Walter MacDonald, and Ina Mullis for their contributions to the text of this chapter and Bruce Karilan, David Freund, Rebecca Zwick, and Jim Ferris for providing statistical data.

In both the bricge and main assessments, some of the same items were administered at more thar. one age class. Tables 6.2-1 and 6.2-2 give an overview of the main and bridge assessment items, including their NAEP identification numbers, respense time provided, age classes, and score ranges.

In the 1988 assessment, three types of answer documents were used: keyentered booklets, scannable booklets, and scannable answer sheets. The placement of the scores and the manner in which the scores were recorded varied according to the type of answer document that was used. Scores for open- ended items in the bridge to 1984 were recorded on the back covers of the booklets and subsequently key-entered. Machine-scanrable booklets were used for the bridge to 1986, for the main assessment of grade 4/age 9 students in all subject areas, and for the main assessment of grade 8/age 13 and grade 12/age 17 students in writing and document literacy. Scores for open-ended items in these samples were gridded in ovals at the bottom of the pages on which the items appeared. Scannable answer sheets were used for the main reading, civics, and U.S. history assessments of students in grade 8/age 13 and grade 12/age 17. Scores for open-ended items in these samples were gridded on the page of the answer sheet where the response was written.

Three teams of readers worked simultaneously to scere the open-ended items. One team scored responses to the mathematics bridge items, while a second team scored responses to the bridge items in the other subject areas. A third team scored all open-ended item responses from the main assessment.

The rest of this chapter includes a description of the scoring operation, including scoring guides, training, work flow, and the measures used to monitor the reliability of the scoring procedures.

### 6.2.1 DESGRIPTION OF SCORING

Each open-ended iten included in the 1988 assessment had a unique scoring guide that identificd the range of possible scores for the item and defined the criteria to be used in evaluating students' responses. To enable NAEP to accurately measure changes in performance across time, the scoring guides for open-ended trend items readministered in 1988 were identical to those used in the previous assessments. The following sections summarize the scoring guidelines used to evaluate responses to the open-ended items for each subject area assessed in 1988.

## Reading and Document Literacy

The scoring guides for the open-ended reading items incl ded in the bridge and the main assessments focused on students' ability to perform various reading tasks-for example, identifying the author's message or mood and substantiating their interpretation, making predictions based on given details, supporting an interpretation, and comparing and contrasting information.

Table 6.2-1
NAEP 1988 Main Sample Open-ended Items*

| NAEP ID | Description | Response Time (Mins,) | $\begin{gathered} \text { Age } \mathrm{Cl}_{8} \\ \underline{9} \underline{13}] \end{gathered}$ |  | Score Range | Secondary Trait |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Writing |  |  |  |  |  |  |
| N000311 | Recreation Opp. | 15 | X | X | 0-4, 7-9 | Yes |
| N000331 | Recreation Opp. | 30 | X | X | 0-4, 7-9 | Yes |
| N000411 | Food on Frontier | 15 | X | X | 0-4, 7-9 |  |
| N000551 | Dissecting Frogs | 73/2 | X |  | 0-4, 7-9 |  |
| N000941 | Radio Station | 10 | X |  | 0-4, 7-9 |  |
| N000951 | Radio Station | $7 \frac{1}{2}$ | X |  | 0-4, 7-9 |  |
| N007711 | Ghost Story | 15 | X | X | 0-4, 7-9 | Yes |
| N007721 | Ghost Stozy | 20 | X |  | 0-4, 7-9 | Yes |
| N007731 | Ghost Story | 30 | X | X | 0-4, 7-9 | Yes |
| N007741 | Ghost Story | 10 | X |  | 0-4, 7-9 | Yes |
| N014741 | Plants | 10 | X |  | 0-3, 7-9 |  |
| N014821 | Spaceship | 20 | X |  | 0-4, 7-9 | Yes |
| 11014841 | Spaceship | 10 | X |  | 0-4, 7-9 | Yes |
| N018051 | Space Program | $73 / 2$ |  | X | 0-4, 7-9 |  |
| N021051 | Bike Lane | 7\% |  | X | 0-4, 7-9 |  |
| W000141 | Summary of Story | 10 | X |  | 0-4, 9 |  |
| W000221 | Favorite Animal | 20 | X |  | 0-4, 9 | Yes |
| W000241 | Favorite Animal | 10 | X |  | 0-4, 9 | Yes |
| W000341 | Three Wishes | 10 | X |  | 0-4, 9 |  |
| W000411 | Favorite Story | 15 | X | X | 0-4, 9 |  |
| W000511 | TV Habits | 15 | X | X | 0-4, 8, 9 | Yes |
| W000531 | TV Habits | 30 | X | X | 0-4, 8, 9 | Yes |
| W000611 | Memorable Event | 15 | X | X | 0-4, 9 |  |
| Reading |  |  |  |  |  |  |
| R000206 | Dove and Ant | (I)** | X |  | 0-5, 9 |  |
| R000807 | Grandpa and Wind | (I) | X X |  | 0-5, 9 |  |
| R002406 | Small Fruits | (I) |  | X | 0-2, 9 |  |
| N015905 | High Tech Pizza | (I) |  | X | 0-4, 7-9 |  |
| U.S. History |  |  |  |  |  |  |
| H024901 | Settlers | 15 | X |  | 0-5, 9 |  |
| H025302 | Presid. Power Part 1 | 15 |  | X | 0-2 |  |
| H025003 | Presid. Power Part 2 | 215 |  | X | 0-4, 9 |  |
| Civics |  |  |  |  |  |  |
| P018201 | Presid. Resp. Part 1 | 15 | X | X | 0-1 |  |
| P018202 | Presid. Resp. Part 2 | 215 | X | X | 0-4, 9 |  |

* Not includir.z open-ended items scored as right/wrong.
** ( $I$ ) denotes that the item appeared ia a 10 -minute block at grade 4 or a 15 -minute block at grades 8 and 12 that contained several multiple-choice content items.

Table 6.2-2
NAEP 1988 Bridge Sample Open-ended Items*

| NAEP ID | Description | Response ime (Mins,) | $\begin{gathered} \text { Age Cl } \\ \underline{9} \quad 13 \end{gathered}$ |  | Score <br> Range | Secondary <br> Trait | Holistic |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Writing |  |  |  |  |  |  |  |
| N000302 | Recreation 0pp. | 15 | X | X | 0-4, 7-9 | Yes | Yes |
| N000402 | Food on Frontier | 15 | X | X | 0-4, 7-9 |  | ies |
| N000502 | Dissecting Frogs | $71 / 2$ | X |  | 0-4, 7-9 |  |  |
| N000602 | XYZ Company | $7{ }^{1 / 2}$ | X X |  | 0-3, 7-9 |  |  |
| N000902 | Radio Station | 15 | X X |  | 0-4, 7-9 |  |  |
| N0@1002 | Appleby House | 15 | X X | X | 0-4, 7-9 |  |  |
| N007602 | Flashlight | 15 | X |  | 0-4, 7-9 |  | Yes |
| N014702 | Plants | 15 | X |  | 0-3, 7-9 |  |  |
| N014802 | Spaceship | $71 / 2$ | X |  | 0-4, 7-9 |  | Yes |
| N018002 | Space Program | $7 \frac{1}{2}$ |  | X | 0-4, 7-9 |  |  |
| N019002 | Job Application | 71/2 |  | X | 0-4, 7-9 |  | Yes |
| N021002 | Bike Lane | 1.5 |  | X | 0-4, 7-9 |  |  |

## Reading

W001507
N001904
N002302
N002804
N003104
N003704
N004303
N004605
N008905
NOisg05 High Tecl. Pizza
N021301 Jacab
N021801 Eggplant I
N021805 Eggplant II
(I) *
(I)

## Civics

| P021001 Democracy | (I) |
| :--- | :--- |
| P021101 Newspaper Publishers (I) |  |

Science
$\begin{array}{ll}\text { N430801 } & \text { Pendulum } \\ \text { N437001 } & \text { Battery/Bulb }\end{array}$
(I)
(I)
$\begin{array}{ll} & \mathrm{X} \\ \mathrm{X} & 10-15,20-24,77,88 \\ \mathrm{X} & 10-16,20-21,7,8\end{array}$
Yes
Yes
Yes
Yes

| $0-6,7-9$ | Yes |
| :--- | :--- |
| $0-5,7-9$ | Yes |
| $0-9$ |  |
| $0-5,7-9$ |  |
| $0-4,7-9$ |  |
| $0-4,7-9$ |  |
| $0-4,79$ |  |
| $0-5,7-9$ |  |
| $0-6$ |  |
| $0-4,7-9$ | Yes |
| $0-4,9$ | Yes |
| $0-5,9$ | Yes |
| $0-4,9$ | Yes |

The guides for the raading items varied somewhat, but typically included the distribution of score points shown below.

Outline for Scoring of Open-Ended Reading Items

Score

5 Definition

Elaborated reference or interpretation. These responses exceeded the requirements of the task by including illustrative examples or details and demonstrating a high level of cohesiveness.

4 Satisfactory reference or interpretation. These responses identified at least two relevant examples or reasons to support a given interpretation.

3 Minimal reference or interpretation. These responses identified at least one relevant example or reason to support a given interpretation.

2
Unsatisfactory reference or interpretation. These responses did not give evidence to support a stated interpretation.

1 No reference or interpretation. These responses did not provide an interpretation, but instead digressed or avoided the task.

0, 7, 8, 9 These responses were, respectively, blank, irdecipherable, completely off-task, or included a statement to the effect that the student did not know how to do the task. (In the scorirg guides for the main asses rent, scores of $7, v$, and 9 were collapsed into the score point of 9 ).

Some of the guides for the main assessment items included secondary scores, which typically involved categorizing the kind of evidence or details the student used as support for an interpretation. The document literacy items, most of which required short answers, were scored on a right-wrong basis.

## Writing

There are widely divergent views as to what constitutes good writing. In response to these different conceptions, writing researchers have devel pped a variety of methods for evaluating students' writing abilities.

To provide multiple perspectives on students' writing performance, NAEP uses three scoring approaches-primary trait, holistic (oz general impression), and mechanics scoring-to evali ie responses to the writing assessment L.sks. Selected writing items in che bridge assessment were scored using all three approaches, while the remaining items were scored using the primary trait method only. The primary trait method was used to score items in the main assessment.

As described in the sections that follow, the purposes of the three scoring approaches used by NAEP are quite different. Primary trait scoring focuses on students' ability to accomplish the core purpose of a particular writing task, holistic scoring focuses on overall fluency, and mechanics scoring focuses on students' grammar, punctuation, and spelling. Previous research has revealed moderate correlations between the results from holistic and primary trait scoring (ranging from . 29 to .60); however, the two approaches evidently capture different aspects of writing performance (Applebee, Langer, \& Mullis, 1989). The range of the correlation coefficier.as between the two sc' . p approaches was from .39 to .66 for the trend results for the 1984 and 1988 writing assessments (Applebee, Langer, Mullis, \& Jenkins, 1990).

Primary Trait (or Task Accomplishment) Scoring. As noted above, the primary trait scoring method focuses on the writer's effectiveness in accomplishing specific tasks. It is sensitive to the writer's understanding of the audience as well as to the inclusion of specific features needed to accomplish the specific purpose of a task. The primary trait scoring criteria defined five levels of task accomplishment: not rated, unsatisfactory, minimal, adequate, and elaborated. The scorıng guide for each item described these levels in detail. A general explanation of the score points is given below.

## Levels of Writing Task Accomplishment

## Score Definition

4
Elaborated. Students providing elaborated responses went beyond the essential, reflecting a higher level of coherence and providing more detail to support the points made.

3
Adequate. Students providing adequate responses included the information and ideas necessary to accomplish the underlying task and were considered likely to be effective in achieving the desired purpose. (For two of the items, this was the highest possible score.)

2 Minimal. Students writing at the minimal level recognized some or all of the elements needed to complete the task but did not manage these elements well enough to assure that the purpose of the task would be achieved.

1 Unsatisfactory. Students who wrote papers judged as unsatisfactory provided very abbreviated, circular, or disjointed responses that did not even begin to address the writing task.
$0,7,8,9 \quad$ Not Rated. A small percentage of the responses were blank, indecipherable, or completely off task, or contained a statement to the effect that the student did not knor how to do the task; these responses were not rated.

Some items also were scored for secondary traits, which involved indicating the presence or absence of elements that were of special significance to a particular item (e.g., whether notes were made before writing or whether critical information was filled out on a form).

Mechanics Scoring. Mechanics scoring focuses on the extent to which che writer can control the conventions of written English-specifically, grammar, punctuation, and spelling. In additica, the procedures include identifying ssentence structures and computing sentence length to gauge the sophistication of students' syntax. In the mechanics scoring, conducted after the main scoring effort had been completed, two teams of readers joined together to score a subset of responses to selecied open-ended items from the writing bridge assessment. One item was chosen at grade 4 ("Spaceship") and a second item was chosen at grade 8 and grade 11 ("Recreation Opportunities"). A random probability sample of approximately 500 essays was selected from each grade level for the 1984 and the 1988 assessments, for a total of 1,000 essays at each grade level. The set of essays selected from each grade level for each year included responses from upproximately 200 students who were Black and approximately 300 students who were not. Black students were oversamp? ed to ensure that the comparisons of performance between Black and White students were reasonably rrecise.

Prior to the scoring, the responses were duplicated with the student's identification number shown on the copy. The essays were then bundled by grade by assessment year. As $:$ readers selected bundles to score, they alternated among the different grade levels and years.

Rather than assigning a single score to each paper, as was done in the primary trait scoring, the mechanics scorers marked each paper with a series of symbols, addressing the elements of sentence construction, word choice, spelling, punctuation, and capitalization. These symbols, written in red ink, designated each word $\because$ punctuation mark in error and indicated sentence type or faulty sentence construction.

To analyze the mechanics data, criteria were devised to derive information from "coring codes (see Campbell, 1987 for a description $n f$ these criteria). The analyses included calculations of:

1) the average number of words in an essay;
2) the average number of sentences in an essay;
3) the average number of letters in a word;
4) the average number of eriors in an essay;
5) the percentage of different types of sentence construction: and
6) the rate of punctuation errors and omissions.

Holistic Scoring. In holistic scoring, readers evaluate the fluency of each student's writing compared to the writing of other students at the same grade or age level who responded to the same task. Unlike primary trait or mechanics sccring, where the reader focuses on the presence or absence of
particular elements, holistic scoring takes a global view of the ideas, lenguage facility, organization, mechanics, and syntax of each paper taken as a whole-as its name implies. "The chief assumption that underlies holistic scoring of essays is that the whole text or composition is more than the sum of its parts...To look at a composition as a whole in order to judge its quality as an entity in itself is to score it holistically" (Ereland, Camp, Jones, Morris, \& Rock, 19877, p. 18).

The holistic scoring was conducted by a large group of readers ir a session that was conducted separately from the primary trait and mechan: -s scoring sessions. The tasks scored holistically were "Spaceship" and "Flast.light" at grade 4, and "Recreation Opportunities" and "Food on the Frontier" at the upper grade levels (8 and ll). Trained readers evaluated the relative fluency of students' writing on a 6 -point scale. A small percentage of papers-such as those that were blank or indecipherable-were not rated.

The holistic scale was anchored by chief readers and table leaders chosen for their expertise in holistic scoring. This group studied the pool of student responses to select papers that represented each point on the holistic scale, then used these sample papers to train a group of approximately 50 raters. Using the sample pripers as a guide, the raters wer trained to determine whether papers corresponded to the top half or the bottom half of the holistic scale, then to make finer distinctions between adjacent points on the scale.

To conduct the scoring, the readers were divided into two group One large group was responsible for evaluating eighth and eleventh graders. responses to the two tasks common to those grade levels, while a smaller second group was responsible fo: evaluating fourth graders' responses to he two tasks given only at that grade level. Because the emphasis of the holistic scoring was on detecting trends across time at each of the thre grade levels assessed, the tasks given at grades 8 and 11 were rated separately, although by the same readers. A treining session preceded the scoring of responses to each task at each grade level.

Student papers are evaluated relative to one another in holistic scoring, rat:er than against specific criteria, us with primary trait scoring. Therefore, for each task at each grade level, the distribution of scores for the total sample of papers should be approximately normal, with scores renly distributed around the center of the scale. To detect changes in writing fluency across time at each grade level, papers from the 1984 and 1988 assessments were randomly mixed prior to scoring. Thus, if more papers from either assessment were judged to be in the top half of the scale, the results would indicate changes across time in overall writing fluency.

## Mathematics

Because the open-ended mathematics items in the 1988 assessment ten''d to focus on computational skills, all were scored on a right-wrong basis, where l-correct and 2-incerrect. Omitted responses were scored as 0. Answers written on the answer lines were the primary basis for the scores; however, if
the student left the answer line blank, consideration was given to answers written under the item or answers written where che student had worked out the item.

## Science

The scoring guides ior the two open-ended science items ("Pendulut." and "Batteries and Bulbs") focusei on how correctly the stadent answered the questions. The following outline summarizes the guidell.nes used to swore these items.

Outline for Scoring $u \mathfrak{r}$ Oper,-Ended Science Items
Score Definition
4 This score indicated a corract, detailed answer. (Only one of the scoring guides included this score point.)

3 This score irdicated a correct arswer.
2 This score indicated an answer that was correct to a point but either contained some uisinformation or was too general.

1 This score ind. . ated an incorrect response in the question.
$0,7,8,9$ These scores were given to responses that were, respectively, blank, indecipherable, or off-task (not relevant), or contained a statement to the efrect that the student did not know how to do the task.

Givics and U.S. History
The first part of the scoring standard for the open-ended civics item ("Presidential Responsirilities") included in the main assessment asked readers to distinguish vetween correct and incorrect responses to the initial part of the task, in which students were asked to, ame the current president. The second part of the task asked students to describe the prerident's responsibilities, and the accompanying zuide defined the teria for each score point, as shown below.

In contrast, the scoring rubrics for the two civics trend items ("Newspaper" and "Democracy") defined specific ciiteria for acceptable and unacceptable responses. Many types of acceptable responses were possible, and each type was given a separate score.

Score Definition
4 Elaborated. These responses provide a mix of specific examples and thoughtful discussion.

3 Adequate. These responses provide one or two examples of responsibilities with little discussion.

2 Minimal. These responses consist primarily of generalities or contain a list of information that contains errors.

1

9
Unacceptable. These responses digress from the topic, give incorrect information, or do not attempt to respond to the question.

Not Rated. No response or totally off-task.

As shown below, the scoring guides for the two open-ended U.S. history items included in the main assessment ("Settlers" and "Presidential Powers") focused on the accuracy and elaboration of students' responses to the questions. As with the civics item ("Presidential Responsibilities") previously described, the first part of the "Presidential Powers" task dus scored dichotomously. Students were asked to state who was more powerful-the presidents of today or of Washington's era, and raters marked whether or not the student took a position. In the second part of the task, students were asked to support the pusition they stated.

Outline for Scoring of Open-Ended U.S. History Items
Score Description
5 These responses contain several reasons supported by appropriate, specific examples. (Only the scoring guide for the "Settlers" item specified this score point.)

These responses contain at least two reasons with explanations and may also give a iengthy list with an explanation of at least one icerg.

These responses give a list of reasons without any explanation or one reason with an explanation. They contain no significant errors.

2

1

9
These responses provide only one correct reason, repeat a single point, or include incorrect or insignificant reasons.

These responses do not answer the question correctly or reiterate the question. No response or totally off-task.

## 6．2．2 THE SCORZゴ心 OPERATION

## Orerview of the Scoring Operation

For the main assessment，a group of eight persons scored the open－ended items for all subject areas．For the bridge assessment，three persons scored all the open－ended items in all subject areas．A majority of the readers had at least bachelor＇s degrees in education，English，or history．The two persons assigned to the scoring of the mathematics items at all three levels had at least a high－school education．The readers included men and women of various ages and racial，ethric，and geographical backgrounds．

The NAEP scoring supervisor ctly monitored the scoring of the mathematics items and managed the cueration of the other two groups．The scoring supervisor also reviewed discrepancies between readers in the scoring of responses to the bridge items．To facilitate the scoring proce：s，the supervisor delegated the responsibility of re iewing scoring discrepancies between readers for the main assessment items to two of the best scorers in the group．However，the scoring supervisor was always available to consult with these individuals when they encountered responses that were particularly difficult to score．

## Training：Machematics

Because the mathematics items were scored as right，wrong，or onitted， lengthy training for scoring these items was unnecessary．In an orientation period，the readers were trained to follow the procedures for scoring the mathematics items and became familiar with the scoring guides，which l．sted the correct answers for the items in each of the blocks．

## Training：Reading，Writing（Primary Trait），Civics，U．S．History， and Science Scoring

Before the training program started，the NAEP scoring supervisor worked with NAEP test developmenc staff to prepare uraining sets（or sets of sample responses to accompany the scoring guides）and to refine the scoring guides for newly developed items．

For the main assessment，readers were trained on all the writing， reading，civics，and U．S history items at all three grade／age levels． Training involved explaining the item and its scoring guide and discussing responses that were representative of the various score points in the guide When this process was complete the readers scored and then discussed approximately 65 to 100 randomly selected＂practice papers＂for each item． The purpose of the training was to familiarize the group with the scoring guides and to reach a high level of agreement among the readers．When the group craining had been completed，each reader scored all the open－ended items in each of nine bundles of booklets，after which a follow－up session was hel：
to discuss responses that received a wide range of scorts. Once the follow-up session was completed, the formal scoring process began. The initial training was completed in approximately four weeks.

The training program for the bridge assessment was carried out on all the items at one age class at a time, starting with age class l3, followed by age class 9 , and ending with age class 17 . (This order corresponds to the order in which the bridge assessments are conducted.) The training program followed the same procedures used for the main assessment scoring. In order to ensure continuity with the past scoring of the bridge items, at least half the sample papers in the training sets were taken from the 1984 training sets. The training program for each age level took approximately two weeks.

As a follow-up to the training program, notes on various items were compiled for the readers of each group for their reference and guidance throughout the scoring process. In addition, short training sessions were conducted when the scoring supervisor ascertained in reviewing discrepancies that certain items were causing difficulties for the scorers. The scoring supervisor also sonsulted with individual readers as the scoring progressed. When a reader's score vas judged to be discrepant with that of another reader, the supervisor discussed the response and its score with tiat reader.

## Training: Writing Mechanics Scoring

To prepare for the mechanics training, the NAEP scoring supervisor selected papers to be used in training. The training itself involved discussing the scoring guidelines and procedures and reviewing sample responses that had already been scored. The readers then practiced scoring other papers, and discussions were held when any discrepancies occurred. '.en the readers were comfortable with the guidelines, the actual scoring began. Several follow-up training sessions were held as problems arose.

## Training: Holistic Scoring

The training for the holistic scoring of writing bridge items involved several stages. First, NAEP staff developed guidelines describing six levels of prof iciency for each task. Then, NAEP staff and two chief readers-both of whom were expersenced holistic readers-surveyed the pool of pc.pers from the assessments and selected anchor papers, or papers representative t the six levels of proficiency. The guidelines were mudified accordingly and criteria were established for distinguishing between top-half and tottom-half papers. A session was then held for the table leaders-who were also experienced hoiistic readers-te familiarize them with. the guidelines and sample papers.

The training of the readers began with some discussion of the guidelines and the anchor papers and included several practice scorings of other papers to resolve discrepancies among raders. When all the readers wre comfortable with the guidelines, they scored papers for an hour, after which they discussed additional anchor papers. Throughout the subsequent scoring, here
were periodic discussions of papers $t$ ensure that readers continued to adhere to the same standards.

## Assignment of Work

The two groups of readers for the bridge assessment began scoring the age class 13 items in November 1987. These same two groups started scoring the age class 9 items in February 1988, and the age class 17 items in April. The readers for the main assessment started scoring in March. Each group of readers received the booklets in batches as they were received from the schools. Because of the spiral design, a reader would receive many, if not all, of the items at a particular age class as he or she scored a batch of booklets. In scoring the main assessment items, the scorers alterna气ed through the three age classes so that they were continually exposed to responses from .!l age classes chroughout the scoring.

### 6.2.3 RELIABILITY AND RESOLUTION

## Trend Assessments

Twenty fercent of the 1984 and 1986 responses to the open-ended reading items in the bridge assessments were retrieved, the scores were masked, and the responses were discrisuted to and rescored by the readers. This rescoring was performed concurrently with the scoring of the 1988 responses. Because of differences in the way that scoring guidelines were applied to open-ended reading and writing responses in 1988 and previous assessments, the 1988 results for the professionally scored items are not directly comparable to past results. Changes in percents correct for these items are not appropriate for inferences about changes in reading or whining achievement. (See Chapters 10 and 11 for further discussion.)

Main Assessments: Reading, Writing, U.S. History, Civics, and Science
Twenty percent of the items in the other subject areas were subjected to a reliability check, which entailed a scoring by a second reader. To prevent a second reader from being influenced by the first reader's scores, the first reader masked the scores in every fifth booklet in a batch. These booklecs were passed along to a secund reader. All discrepancies were then reviewed by the scoring supervisor or those designated by the scoring supervisor

## Mathematics

Ten percent of the mathematics items were subjected to a correctness check in which a second scorer verified that the first scorer had correctly scored the items. If the second scorer found a mistake in scoring, he or she corrected it. To assess the reliability of each scorer, the second scorer kept count of the number of times he or she checked each of the other scorers and the number of times he or she had to correct a score. This procedure was
follewed because the mathematics items were scored as right, wrong, or omitted and because the scoring guides were exact as to the correct answers. Results of this correctness check showed that the first scorer was correct 99 percent of the time.

Two statistics were used to report reader reliability: the percent of exact agreement and the reliability coefficient. The percent of exact agreement is the percentage of times that the two readers agreed exactly in their ratings. The reliability coeffici: t. is the intraclass relation between readers. ${ }^{2}$ The results for each age ciass are shown in au' 2 s 6.2-3 and 6.2-4. The first column lists the $r$ - mber of responses analyzed; the second columr. lists the percentage of exact agreement between the first and second readers; and the third column is the reliability coefficient.

The reliability results generally show a high level of agreement between readers. The percentage of exact agreement among readers was at or above 70.7 percent for all but the trend holistic scoring, and several items showed agreement as high as 99 percent. The reliability coefficients were also high, ranging from . 64 to . 99 .

The percentage of exact agreement between the first and second readers tended to be slightly lower in the holistic scoring than in the other types of scosing. However, the reliability coefficients (ranging from .65 to . 83) did not differ substantially from those for the primary trait scoring and are generally as high or higher than those reported for other studies (Breland et al., 1987). Also, when agreement between adjacent score points was taken into consideration-that is, when readers did not differ by more than one score point on the 6 -point scale-the percent of agreement for holistic scores ranged from 88 to 94 percent.
${ }^{2}$ The intraclass correlation coefficient (ICC) is calculated as

$$
r(I C C)-\frac{M S S-M S R}{M S S+\operatorname{MSR}(K-1)}
$$

where MSS and MSR are the mean squares for subjects (ratees) and the mean square residual obtained from a one-way ANOVA, and $K$ is the number of raters. (In the present application, $\mathrm{K}-\mathrm{l}=1$. ) This provides a consistent (but biased) estimate of

$$
\rho(I C C)=\frac{\sigma_{\mathrm{S}}^{2}}{\sigma_{\mathrm{S}}^{2}+\sigma_{\mathrm{R}}^{2}}
$$

and is therefore interpretable as the proportion of total variance due to differences among subjects. The rror term contains the rater effects, which cannot be estimated separately because subjents were not rated by the same set of raters.

Table 6.2-3
Percentages of Exact Score Point Agreement and Intraclass Correlation Coefficients
for Open-ended Itens in the 1988 Main Samples

NAEP ID
上escription

Grade 4/Age 9
$N$ Z Agree Rel.

Grade $8 /$ Age 13
N Z Agree Rel.

Grade 12/Age
17
N W Agree Rel.

## Writing

N000311 N000331
N000411
N000551 N000941 N000551 NC07711 N007721 N007731 N007741 N014741 N014821 N01\{841 N018051 N021051 W000141 W000221 W000241 W000341 W000411 W000511 W000531
W00061l Memorable Event ( 15 Min.)
Rec. Opp. (15 Min.)
Rec. Opp. ( 30 Min .)
Food on Frontier ( 15 Min.)
Dissecting Frog; ( 7 K Min.)
Radio Station ( 10 Min .)
Radio Station (7h Min.)
Ghost Story ( 15 Min .)
Ghost Stcry (20 Min.)

Plants (10 Min.)
Spaceship (i0 Min.)
Space Program ( $7 / 1 / \mathrm{Min}$.)
Bike Lane (7h Min.)

Favorite Story ( 15 Min.)
TV Habits ( 15 Min.)
TV Habits ( 30 Min. )

| 474 | 92.8 | 0.93 | 414 | 89.1 | 0.92 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 190 | 96.8 | 0.98 | 154 | 92.2 | 0.95 |
| 484 | 87.6 | 0.86 | 415 | 88.0 | 0.88 |
| 636 | 91.8 | 0.91 |  |  |  |
|  |  |  |  |  |  |
| 552 | 93.3 | 0.94 |  |  |  |
| 450 | 92.2 | 0.91 | 370 | 92.2 | 0.91 |
|  |  |  |  |  |  |
| 151 | 95.4 | 0.95 | 164 | 90.9 | 0.92 |

$709 \quad 94.9 \quad 0.96$
$\begin{array}{llll}\text { Ghost Story ( } 10 \mathrm{Min} .) & 400 & 90.0 & 0.80\end{array}$
$433 \quad 93.1 \quad 0.95$
Spaceship (20 Min.) $214 \quad 91.6 \quad 0.95$
433
$\begin{array}{lllll}\text { Summary of Story ( } 10 \mathrm{Min} .) & 649 & 88.9 & 0.87\end{array}$
Favorite Animal ( 20 Min.) $213 \quad 91.6 \quad 0.95$
Favorite Animal ( 10 Min.$) \quad 420 \quad 89.8 \quad 0.91$
$\begin{array}{llll}\text { Three Wishes (l0 Min.) } & 618 & 92.4 & 0.92\end{array}$
$164-90.9$
0.92

| 669 | 93.0 | 0.89 | 584 | 90.1 | 0.91 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 445 | 93.3 | 0.95 | 401 | 90.3 | 0.92 |
| 225 | -0.7 | 0.93 | 203 | 95.1 | 0.97 |
| 608 | 87.3 | 0.89 | 565 | 88.1 | 0.91 |

## Table 6.2-3 (:ontinued)

Percentages of Exact Score Point Agreement and Intraclass Correlation Coefficients for Open-ended Items in the 1988 Main Samples

## NAEP ID

Description

## Reading

| R000206 | Dove and Ant |
| :--- | :--- |
| R000807 | Grandpa and Wind |
| R002406 | Small Fruits |
| N015905 | High Tech Pizza |

U.S. History

$\begin{array}{lll}433 & 88.9 & 0.95 \\ 437 & 93.4 & 0.92\end{array}$
$470 \quad 97.5 \quad 0.95$

| 516 | 97.7 | 0.96 |
| :--- | :--- | :--- |
| 409 | 91.9 | 0.93 |


| H024901 | Settlers to America |
| :--- | :--- |
| HC25002 | Presidential Power Part 1 |
| H025003 | Presidential Power Part 2 |

$530 \quad 90.2 \quad 0.93$

| 423 | 92.7 | 0.78 |
| :--- | :--- | :--- |
| 403 | 87.6 | 0.92 |

Civics
P018201 Presid. Resp. Part 1
P018202
$\begin{array}{lll}623 & 99.5 & 0.97\end{array}$
574
$99.7 \quad 0.97$
$584 \quad 88.9$
556
90.8
0.91
.r 159

Table 6.2-4
Percentages of Exact Score Point Agreement and Intraclass Correlation Coefficients for Open-ended Inems in the 1988 Trend Samples

| NAEP ID | Description | Grade 4/Age 9 |  |  | Grade 8/Age 13 |  |  | Grade 1l/Age 1; |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | N | Agree | Rel. | N | Agree | Rel | N | Agree | Rel. |
| -Writing |  |  |  |  |  |  |  |  |  |  |
| NJ00302 | Recreation Opp. |  |  |  | 335 | 85.4 | 0.82 | 293 | 90.8 | 0.93 |
| N000371 | Recreation Opp. (holistic) |  |  |  | 290 | 56.2* | 0.76 | 239 | 47.3* | 0.66 |
| N000402 | Food on Frontier |  |  |  | 299 | 79.9 | 0.69 | 260 | 93.1 | 0.86 |
| N000471 | Food on Frontier (holistic) |  |  |  | 248 | 48.4* | 0.71 | 253 | 49.4* | 0.65 |
| N000502 | Dissecting Frogs |  |  |  | 335 | 76.1 | 0.64 |  |  |  |
| N000602 | XYZ Company | 275 | 97.1 | 0.99 | 325 | 93.5 | 0.92 |  |  |  |
| N000902 | Radio Station | 309 | 93.5 | 0.95 | 316 | 87.0 | 0.89 |  |  |  |
| N001002 | Appleby House | 227 | 90.3 | 0.92 | 288 | 75.4 | 0.69 | 253 | 89.3 | 0.89 |
| N007602 | Flashlight | 136 | 87.5 | 0.88 |  |  |  |  |  |  |
| N007608 | Flashlight (holistic) | 163 | $54.0 \%$ | 0.83 |  |  |  |  |  |  |
| \$.014702 | Plants | 350 | 94.3 | 0.95 |  |  |  |  |  |  |
| N014802 | Spacesinip | 306 | 91.8 | 0.25 |  |  |  |  |  |  |
| N01/4808 | Spaceship (holistic) | 236 | 52.1* | 0.59 |  |  |  |  |  |  |
| N018002 | Space Program |  |  |  |  |  |  | 296 | 89.9 | 0.93 |
| N019002 | Job Application |  |  |  |  |  |  | 286 | 92.3 | 0.92 |
| N02.1002 | Bike Lane |  |  |  |  |  |  | 298 | 84.9 | 0.87 |

* Note: Primary trait scoring was on a 4-point scale; holistic scoring was on a 6 -point scale. For the holistic scoring, percentages of agreement between adjacent score points-thal is, when readers did not differ by more than one score point on the 6-point scale-were as follows:

|  | Age 9 | Age 13 | Age 17 |  |
| :--- | :--- | :--- | :--- | :--- |
| N000371 | Recreation Opp. (holistic) |  |  |  |
| N000471 | Food on Frontier (holistic) |  | $93.8 \%$ | $94.1 \%$ |
| N007608 | Flashlight (holistic) | $93.9 \%$ |  | $80.3 \%$ |
| N014808 | Spaceship (holistic) | $94.1 \%$ |  |  |
|  | $161)$ |  |  |  |

Table 6.2-4 (continued)
Percentages of Exact Score Point Agreement and Intraclass Correlation Coefficients
for Open-ended Items in the 1988 Trend Samples


## Chapter 6.3

# data transcription Systems 

Alfred M. Rogers<br>Educational Testing Service

The transcription of the student response data intn machine-readable form was achieved through the use of three separate systems: scanning, loading, and resolution.

The student instruments were printed in a format chat allowed the transcription of marked responses in the booklets to comp ter readable form on a magnetic tape by a programmable optical scanning mach'. The first paxi if this chapter will. describe the scanning equipment, the programs and data used by the machinery, and the ETS quality control standards and procedures.

A second procedure "loaded" the data records from the scanring output tape into an interactive computerized data entry and resolution system. This loading procedure validated each scanned data field, reformatted the data records to be compatible with the resolution system, and reported all problens for subsequent resolution. The second part of this chapter details the loading procedure.
' moditied form of the data ertry system developed for the 1986 assessment was used for solution of the scanned data, entry of the documents rejected by the scanning .achine, and entry of the questionnaire instruments. The third part of this chapter will provide an overview of this system, which is described by Rogers (1987).

Figure 6.3-1 is a schematic diagram that represents the flow of student-related assessment materials through the data transcription system Figure 6.3-2 similarly represents the flow of quest.snnaire materials through the systew. The reader may refer to these diagrams for clarificaticn of the relationships among the components of this system.

### 6.3.1 SCANNTNG

The st.adent booklets se scanned on a National Computer System W201 scanning system. The scanner was controlled by a lewlett Packard 1000 minicomputer. This system also included a disk drive for stcrage of the scanning programs, a tape drive for the output of scanned date records, and a printer for the periodic listing of indivicual record contents $f$ er quality control checking. The scanning programs used were specifically written for NAEP using the assembler language of the Hewlett Packard.

Figure 6.3-1
1988 NAEP Data Transcription System
(Part 1: Student-Related Materials)
 185

Figure 6.3-2
1988 NAEP Data Transcription System
(Part 2: Questionnaire Materials)


An optical scanner operates by sweeping a horizontally oscillating light beam across a vertically moving sheet and detecting reflections of the beam from pencil marks. The har are logic of the scanner treats the page as a rectangular array of scannable areas, each of which is assigned a reflectance value from 0 to 15 . This array of values is passed to the scanning prryram software, to be translated into response data.

After the first side of a sheet has been scanned, it is pushed through a loop that brings the other side of the sheet to face the scanning beam. A similar array of reflectance values is passed to the progiam that must then not only translate it into data, but decide whether to route this page to the output hopper and read in the next sheet or route it to the shunt hopper and stop processing.

The paper and inks used in producing scannable documents are required to have very low reflectances. A special set of marks are printed down one side of each page at equally spaced intervals to enable the scanning hardware to align each sheet and adjust the scanning rate to the movement of the sheet. These timing marks are printed using a highly reflective ink.

Each page of each item blork has its own unique format in terms of the arrangement of the response and scoring ovals. The scanning program has to be able to identify a given page, decermine which parts of the returned array to process, interpret the refiectance values, and $t$ anscrive them to data codes on the outpat record. Each page is printed with a set of marks next to the timing marks that are used by the program co identify it uniquely by block code and page number. The booklet covers are similariy identified according to booklet number.

The scanning program logic uses two sets of tables to control scanning processing. When a booklet cover is scanned, the program uses the booklet number and the first table to d-termine which blocks are to bc processed. Each block code, in turn, is referred to the second table to detarmine the number, formats, and sequer.se of its constituent pages. By reading the booklei cover, the program "knows" which. pages would follow and in what order.

The scanning program rejects a page if it is unreadable or out of sequence. A page is unreadable if the timing or identification marks have been corrupted by either tearing, improper trimsing, or confusing stray peail marks. If the unreadable page happens to be a booklet cover, the operator instructs the scanner to send the ramaining pages of ti.at booklet into the shunt hopper, places the peges perpendicularly on top of the output stack, and resumes processing with the next booklet. For any other page type, the operator instructs the program to substitute question marks for the data value; on the unreadable page and proceed with the next page.

Pages out of sequence are generally atcributable to collating errors in printing. Whent the prograif encounters this type of error, the operator directs the ccanner to shunt the remaining pages of the booklet and places them perpendicularly on the output stack.

The scanning pzogram writes three types of data records onto the magnetic tape. The first is a batch header record, containing information gridded onto the batch header sheet by receipt processing staff. The second is a data record containing all of the translated marked ovals from all pages within a booklet The third type is a dunmy data record, serving as a place holder in the file for a booklet with an unreadable cover sheet. The origin code is a data field writcen in the same location on all records to distinguish them by type.

The batch header record pr"cedes all data records for a given batch. the scanning program processes the header sheet, it retains the batch identification code and initializes a sequence number or counter for that batch. The batch identification code and sequence number are written to each record; the batci header record always receives a sequence number of one, the first data record is assigned numbe two, and so forth. The scanning machine is directed to stamp the batch identification code and sequence number on each page of a booklet. This process greatly facilitates the location of individual pages within batches by resolution staff.

Each data record is formed by collecting the transcribed marked ovals from each page $o_{\perp}$ a booklet, placing them into a buffer area within the program, and writing the buffer to tape when the last page of the booklet has betn processed. Several options were considered in designing the format of the output data records. A format that requires a fixed column position for each item response value would be very large, because of the number of items in the assessment, and very sparse, because of the BIB spiral design. A format that has the response data strung out in contiguous fields across items and blocks is more consistent with the format of the data records in the NAEP data entry system, but would be difficult to check in listings for quality control. The format adopted for this assessment has fixed column positions for the booklet cover data fields and scorer identification codes. The response data starts at fixed positions for each block within an instrument, and the item responses are arranged in contiguous fields.

The data values from the booklet covers and scorer identification fields are coded as numeric data. Unnarked fields are coded as hyphens (-) except for the race/ethnicity, gender, grade, and birth date fields, which are returned as question marks (?) to alert processing staff of missing or uncoded critical data. Fields that have multiple marks are coded as asterisks (*). The data values for the item responses and scores are returned as alphabetic codes. The multiple-choice, single-response format items are assigned codes depending on the position of the response alternative; that is, the first choice is assigned the code "A", the second "B", and so forth. The circle-all-that-apply items are given as many data fields as response alternatives, the marked choices are coded as "A" and the unmarked choices as hyphens. The open-ended items have 10 ovals labeled from zero to nine; a marked zero is coded as "A", a marked one as "B", and so on up to "J". As with the corer data fields, unmarked responses are coded as hyphens and multiple marks .s asterisi s. The fields from unreadable pages are coded as question marks again as a flag for resolution staff to correct.

### 6.3.2 DATA LOADING SUBSYSTEM

Each magnetic tape produced by the scanning system contains data for one or more assessment sessions for one of the age groups. The data records or these tapes conform to a fixed format. These data now have to be edited for type and range of response, transformed to a compressed format compatible with the data entry system files, and loaded into the database for resolution processing. A procedure for accomplishing all of these tasks was designed and developed for this assessment.

The dats records on the scanning output tape are ordered in the same sequence as the paper materials were processed by the scanner. A rocord for the batch header precedes all data records belonging to that batch; each set of records belonging to one batch are separated from the others by its batch header record. The origin code field on each record serves to distinguish the header records from the data records.

The processing of each batch begins with the identification of the header record. The batch identification number on this header record provides the link between the subsequent data records on the tape and the tracking file generated by the school worksheet entry program in the data entry system. The load program uses the batch identification number to locate and retrieve the processing information for that batch from the tracking file. The program then verifies that it had the correct batcn by comparing the PSU, school, and session codes gridded on the header record with the same codes in the tracking record.

If a batch code can not be located in the tracking file, the program generates a new tracking record, using only the information contained on the ' , ader record, and records this condition on an error log file. If a batch code is located but the school or session codes do not agree, the program records this conflict in the error $\log$ and continues processing.

The batch header record also conta' s the date that the session materials were batched together, and th. ..mber of booklets batched by the receipt processor. This information is transferred to the tracking record for later processing and reporting.

The reading cf a betch header record also initiates the generation of two new files in the entry system datavase: the data file and the audit file. As the program processes each recrrd within a batch from the tape file, it writes the edited and reformatted data records to the data file and records all errors and special codes in the audit file. The data fields on an audit file record identify each data problem by the batch sequence number, booklei serial number, section or block code, field name or item number, and data value. The program generates a listing of the data problems after each watch has been processed, to be printed at the termination of the program.

As the program processes each data record, it first reads the booklet number aud checks it against the batch ission code for appropriate session type (main or bridge). Any mismatch is recorded in the error $\log$ and processing continues. The bootlet number is then compa: d against the first
two digits of the student identification number. If they disagree, because of improper gridding, a message is written to the error number is substituted for part of the student number iog and the booklet

The remaining booklet cover fields are then read and validated for range. The PSU and school codes must be identical to those on the tracking record; the range of grade codes is dependent on the age cohort being processed; and the range of birth dates is dependent upon the session type as well as the age cohort. All data values that are out cr range are replaced with question marks and recorded on the audit file. All data fields that are read in as question marks or asterisks are also recorded in the audit file. ine booklet cover data fields are written to a batch listing file that is printed at the end of load proesssing. This listing can be compared against the administration schedule to assist in resolving booklet cover data problems.

The scorer identification fields are processed at this point and certain checks are made. If a booklet contains any open-ended items, the first scorer field should be filled. If a booklet is part of the reliability sample, the second scorer field should be filled. The program has to determine from the booklet number whether the booklet contains any open-ended items. It then flags as erroneous any incomplete field that should be filled, or ary nonblank field that should be blank and records the error in the audit file. Further, it remembers how many scorer fields are marked for later processing of the open-ended j.te scores.

The edited booklet cover and scorer identification fields are appended to the batrh sequence number and transferred to an output buffer area within the program. As the program processes each block of data from the tape record, it appends the edited data fields to the data already in this buffer. ı ne output data record in this "compressed" format, is thus made compatible with the NAEP data entr; system.

The program is now prepared to cycle through the data areas corresponding to the item blocks. The task of translating, validating, and reporting errors for each lata field in each block is performed by a subroutine that requires only the block identification code, the string of input data, and the number of scorers who gridded the appropriate identification fields for that block. This routine has access $t$. in internal rable tha has, for each block, the number of fields to be processed, and, for each fiel't the field type (alphabetic or numeric), the fiald width in the data rece and the valid range of values. The routine then processes each field in sequance order, ferforming the necessary translation, validation, and reporting tasks.

The first of these tasks checks for the presence of hyphens, asterisks or question marks. Fields containing asterisks and question marks are recorded in the audit file and processing continues with the next field. No action is taken on hyphen-filled fields inasmuch as that code indicates a nonresponse. The field type code dictates whether numeric or alphabetic codes are to be output for a data field. The next step exdmines the type code and translates the input data from alphabetic $t$, numeric if so indicated. The field is then validated for range of response, recording anything outside of that range to the audit file. The field type code is used by the program tc
make a further distinction among open-ended item scores and other numeric data fields. If the data field is an open-ended item, the routine uses the passed value or the rumber of scorers to determine whether a score should be marked. If no scorer codes are indicated and the item is marked, or a scorer code was gridded and the item is not marked, the disparity is noted in t. ${ }^{\text {n }}$ audit file. The routine then look; ahead to the next field for a secondary scuring and compares its presence against the absence of a second scorer code, and vice versa, and again records a disparity in the audit file. Moving the translated and edited data field into the output buffer is the last task performed in this phase of processing.

The routine passes the edited data string back to the program, which then appeads it to the current output buffer and sets up to process the next block within the booklet. The completed string of data is written to the da 1 file, using the batch sequence number as the key for direct access by the entry system programs.

When the next batch header record or end of file is encountered, the program closes the data and audit files, generates an audit listing, and writes a count of the number of records processed to the message log. The program then updates the tracking record for that batch with the current date and time and the record count, and rewrites the record to the tracking file.

When the program encounters the end of the tape data file, it closes and rewinds the tape file, closes the tracking file, ant transmits the message log, the audit listing, and the batch listing to the printer.

### 6.3.3 DATA ENTRY AND RESOLUTION SYSTEM

The da a entry and resolution system is essentially the sane system as that used in the 1986 assessment, modified to accommodate changes in the assessment design and data entry operations. The modified system must be able to process the materials from three age groups simultaneously, accommodate the separation and merging of scannable booklets and answer sheets, and permit the loading of excluded student questionnaire data from scanning tapes.

The system comprised separate programs for each main function (school worksheet entry, student data entry/resolution, and questionnaire entry/resolution). This separation permits the modification or enhancement of one component while allowing the others to operate. Access to these programs is controlled through a menu-type procedure written in the VAX command language and using screen control directives.

The use of batch identification codes instead of PSU/school/session codes and of batch sequence nuabers for student identification codes as index keys for the tracking and data files, respectively, greatly facilitates the management of the system and correction of incorrectly gridded or keyed information.

Another addition to the batch data records is the data entry status codes. The records in a batch file are generated in one of two ways: the tape
loading program or the matual entry of the booklets rejected by the scinner. The manually entered records have to undergo the two-step entry and verification processes. because of the high accuracy rate of the optical. scanner, the loaded records are treated by the system as if they had undergone verification. The entry status code is used to distinguish between records that are undergoing manual processing and those that were loaded. The code on each record is tested and set by the different proresses: entry, verification, loading, and resolution.

The form parameters, which control processing of cach data entry screen, are maintained in a text library. Each set of parameters for each form are stored as a separate member or subfile within this 之ibrary. This format permits easy extraction, modification, anit replacement of parameter information as well as faster acce s by the entry programs. . et of programs was developed to facilitate the ?ntry, documentation, and editing of the form parameter data.

# EDITING DATA 

David S. Freund and A.lfred M. Rogers
Educational Testing Service

The data editing process is divided into three separate steps: validation, identification, and correction. Validation ens es that each data value in the compater file is of the correct type, falls within a range or set of ranges of values, and is consistent with other data values. All invalid data values are identified and located in the raw data and either ccrrected or flagged as unresolvable in the co.山puter file.

The errors uncovered by the editing process fall into two types: those made by the respondent (e.g.: choosing two responses for a multiple-choice exercise requiring only one response) and those made ${ }^{2} y$ data entry. The validation process reports both types of error with no knowledge of their source. The identification process determines the type of each error. The data entry errors are, for the most part, correctable; the correct value can be determined from an examination of the information on the respondent's booklet or answer sheet. Errors made by the respondent, however, are diff_cult, if not impossible, to correct. If the intent of the respondent cannot be determined, the error must remain unresolved, but must be fagged in some way to prevent incor-ect interpretation :n the analysis and reporting pro.edures.

### 6.4.1 ABSENTEE DATA

As described in section 6.1.3, the absentee data (data for those students who wele absent on the day of the assessment) were transcribed by the NAEP data entry system from the administration schedules. Validation of this data consisted of matching the school and session codes with those it the tracking file and checking that the sex, grade, and birth date codes w.re wi in the appropriate ranges for age cohort and session type. A further check performed on these files compared the number of absentee records within each session against the absentee count field on the corresponding tracking record.

The corrected file was again processed by the validation program to ensure that all errors had been fixed and that no new problems were created in the process. If further errors were uncovered, the cycle of identifying the records, correcting the errors, and validating the corrected file was repeated until no more errors were found. At this point, the absentee file was ready for transmittal to Westat for the estimation of sampling weights.

### 6.4.2 STUDENT DATA

The use of scannable materials, first introduced in the 1986 assessment in the form of scannable booklets .nd enhanced in 1988 to include scannable answer sheets, greatly improved the efficie :y and accuracy of the transcriftion plocess by removing the possibility of human error. The scanning machinery was programed to detect the mark..d responses in unique and fixed positions on each page; erroneous and out-of-range response codes could not be generated.

On the other hand, removing human intervention as a source of error also prevented the ex icise of human judgmant when more than one mark was detected for a single-response item. This would commoniy happen when a student marked a second response without erasing the fir , or when a student misinterpreted the question as a "circle all that apply", pe response. Neither the human eye nor the scanning equipment can determine the student's intent in such a situation. However, the scanning program would also return a multiple. response code if the student had incompletely erased the first response or inadvertently made a stray mark on one of the ovals (situations in which the human eye could determine the intended response). Hence there were proportionally many more multiple-response codes produced by the scarning process than by the manual entry process.

Furthermore, collating errors in th printing of the booklets resulted in both missing and multiple pages, which the scanning program was unprepared to andle. A new code was used to designate responses to items from pages that were missing or otherwise unscannab? e.

Every multiple-response code and unscannable-page code hád to be checked against the respondent's booklet or answer sheet and, where possibl , corrected by resolution operators. At the completion of resolution processing, all of the batch student data files were moved to a single master file in preparation for transfer to the IBM mainframe. A second validation was performed during this spooling process to catch errors that had slipped through the entry system undet ected. An editing program was developed for applying corrections to this master file, using the same method as was used for the data entry program. This master file alsc served as the basis for preliminary descriptive data analyses and quality control checks.

### 6.4.3 QUESTIONNAIRE DATA

The data entry system was used for the entry of school teacher, and excluded student questionnaire data and served as the first ine of defense against bad data. As described above, all $d$ ta values were validated for type and range as they were entered fror the data terminal keyboard. Special codes assigned for multiple and indeterninate responses were recorded and reported via the audit trail. The indetfrminate values were later corrected under the resolution process.

The questionnaire files received the same secondary validation processing as the student data. Special attention was given to the "circle all that apply"-type items th ensure consistency in the coding of responses. If a respondent circled on $r$ more of the alternatives, those would be coded "l" while the rest would be coded "0"; if no alternatives were rarked, yet the respondent had the opportunity to reply, all fields would be coded "0"; if no alternatives were marked and the respondent had not reached the item or was instrunted to skip it, all fields would be coded as "no response."

### 6.4.4 PROFESSIONALLY SCOREN ITEM DATA

The open-ended primary and secondary trait reading and writing items responses and open-ended mathematics, science, civics, and U.S. history item responses were read and scored prior to scanning processing. Their data values were subjected to the same editing procedures as the multiple-choice item responses. The open-ended holistic trait writing items, however, were not scored until after scanning and resolution processing. It was not feasible to enter so few scores for each booklet through the entry system, so these data were subjected to a separate entry and editing process.

The booklets that contained holistic writing items were batched and forwarded to ETS key entry systems where they were entered, verified, and transcribed to magnetic tape. The holistic scores and scorer ID numbirs were recorded by the scorers on the back of the booklets. Twenty percent of the booklets were subjected to a second set of scores for use in calculating rater reliabilities. These scores and the student ID number and PSU and school codes from the front cover of the booklet were entered by the key entry operator. These tape files were loaded onto the IBM computer system where specially written validation programs performed thorough checks on the data values. When all of the items had been scored, entered, validated, and corrected, the data files were merged with the student database.

### 6.45 CONCIUSION

Before the NAEP data entry methodology was developed, the editing process for any data file proceeded in the same manner as for the absentee data and professionally scored computer items. The validation proces.s was especially inefficient because it was performed after transcription ana often by a second party who did not have immediate access to the respondent's booklet or answer sheet. Putting the valid-tion mechanism at the point of entry removed most, if not all, of this inefficiency by informing the entry operator of a possible keying error while the respondent's booklet or answer sheet was accessible.

The editing process does not guarar.cee that all errors are removed from the data; only that the invalid, inconsistent, or otherwise unreasonable values have been at least identified, if not corrected. If a data value has been miskeyed during the entry process and meets the validation criteria, this error could persist through the editing process to the analysis stage without detection. The verification process detects most of these erross by comparing
independent entries of the same data and reporting disagreements. The likelif.sod of an error surviving verification is thus very small, but still present. A quality control process must follow the entry and editing processes to ensure that the data values in a given record agree with the responses in the corresponding instrument.

# QUALITY CON MOOL OR NAEP DATA ENERY FOR 1988 

John J. Ferris<br>Educational Testing Service

Gr at care was taken to control the NAEP data entry process and the quality - the data entered thereby. The result was an extremely high quality database, that is, one with extremely low error rates. It is of course necessary to establish the quality of any data that will be analyzed, since the most thororgh end sophisticated analyses of bad data will yield nothing of value. As in past years, this NAEP database was found to be more than accurate enough to support as sensitive an analysis as may be desired. It is worth noting that the : nalyses done with the NAEP data are only intended to apply to groups of respondents, rather than to individuals, the fact that such analyses tend to be more tolerant of data errors further enhances the already high quality of the NAEP database.

The purpose of the analysis reported in this chapter was to assess the quality of the data resulting from the complete data eniiy syst..., from the actual instruments collected in the field to the final machine readable database used in the analyses. The process involved the selecion of instruments at random from among those returned from the field and the comparigun of these instruments, character by character, with their representations in the final database. In this way, we were able to measure the error rates in the data as well as the success of the data entry system.

Of course the observed error rate cannot be taken at face value. For example, the sample of school characteristics and policies questionnaires that happened to be selected for close inspection contained no errors at all. To conclude that the entire school characteristics questionnaire database is therefore error free would be an act of extreme ortimism; we may simply have been lucky with this particular random sample. what is needed is an indicatio: of how bad the rue error rate might be given what we observed. Such an indication is provided by sonfidence limits. Confidence limits indicate how likely it is that a vaiue will fall outside a specified range of values in a specified context or distribution. In our analysis, the specified range is an error rate between zero and some maximum value beyond which we are confident that the true error rate does not lie; the specified context or distribution turns out to be the cumulative binomial probability distribution. An example shoul: demonstrate this technique:

Let us say that 1,000 book1,ets were processed, each with 100 characters of data transcribed for a total of 100,000 characters. Let us say further th $c$ five of these characters were discovered to be in error in a random sample of 50 booklets that were completely checked; in other words, five errors were found in a
sample of 5,000 characters. The following expression may be used to establish the probability that the true error rate is .0025 or isss, rather than the single-value estimate of the observed rate of one in a thousand (.001):


This is the sum of the probability of finding five errors plus the probability of finding four errors plus. . . etc. . . plus tree probability of finding zero erross in a sample of 5,000 with a true error rate of .0025 , that is, the probability of finding five or fewer errors by chance when the true error rate is .0025 . Notice that we did not use the size of the database in this expression. Actually, the assumption here is that our sample of 5,000 was drawn from a database that is infinite. The smaller the actual database is, the more confidence we can have in the observed error rate; had there been only 5,000 in the total database, our sample would have incsuded all the data nd the observed error rate would have been the true error rate. The result of the above computation allows us to say, conservatively, thot. 0525 is an upper limit on the true error rate with 98.53 $p_{1}$ ent (i.e., l - . 0147) confidence; that is, we sre quite sure th. our true error rate is no larger than .0025 .

The indi-s dual instruments are briefly discussed in the following sections and a summary table (Table 6.5-1) gives the upper 99.8 percent confidence limits for the error rates for each of the instruments as well as sampling rate information. The confidence limit of 99.8 percent was sclected to make these results comparable co those of previous administrations when the same limit was used.

### 6.5.1 STUDENT DATA

In recent past assessments, oniy one each of the various booklets was sampled for this errcr rate analysis. Due to the complexity of the currant assessment, a larger number of each booklet was examined. In all, over 300 booklets out of a total of about 120,000 were compared in detail wich the final database. Across all scannable student daia, onlv about $l$ percent of the booklets or answer sheets could not be scann'a' and had to be keyed by hand; we did not attempt to sample this small group oi knoklets separately for quality analysis and relied instead on the bridges to 19841.0 assess our keying operation, since these booklets (reading and eritine booklets 5l-56) were entizely keyed. In the past, keying error rates for instruments designed to be scanned have actually been somewhet better than keying error rates for instruments designed to be keyed. The summary table ives the er $r$ results across all three age classes; there were no noticeab.. differences amo .g age classes.

Table 6.5-1
Summary of Quality Control Error Analysis for NAEP 1988 Data Entry

| Instrument/Subsample | Entry <br> type | Diff. <br> Books | 非 Books Sampled | \# Chars. <br> Sampled | $\begin{gathered} \# \\ \text { Errors } \end{gathered}$ | Observed <br> Error Rate | Upper 99.8\% Confidence Limit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Student Data - Main | Scanned | 97 | 217 | 29,172 | 3 | . 0001 | . 0004 |
| Student Data - Reading and Writing Bridge | Keyed | 18 | 54 | 9,201 | 13 | . 0014 | . 0030 |
| Student Data - Other Bridges | Scanned | 15 | 34 | 6,311 | 2 | . 0003 | . 0017 |
| E:xcluded Student Quest:̇onnaire | Mixed | 2 | 24 | 2,064 | 2 | . 0010 | . 0051 |
| Teacher Questionnaire | Keyed | 1 | 8 | 3,732 | 1 | . 0003 | . 0023 |
| School Characteristics and ’olicies Questionnaire | Keyed | 1 | 6 | 1,532 | 0 | zero | . 0041 |

### 6.5.2 EXCLUDED STUDENT QUESTIONNAIRE DATA

A total of 7,791 questionnaires was scanned in this assessment and this group was sampled at a rate of about . 25 percent; the $85 i$ questionnaires (about one-tenth of all th excluded student questionnaire data) f-om the fall bridge were keyed and these were sampled at double this rate. The few errors tiat were discovered in the scanned data were caused ty the scanning machine. Respondents who change their answers do not always e:ase to the satisfaction of $a$ scanner, and this caused an occasional misreraing of a response.

### 6.5.3 TEAGHER QUESTIONNAIRE DATA

There were 1,664 teacher questionnaires collected in this assessment. In the eight that were selected at random for a complete verification, one error was discovered.

### 6.5.4 SCHOOL CHARACTERISTICS AND POLICIES QUESTIONNAIRE DATA

There were 1,425 school characteristics anJ policies questionnaires collected in this assessment. No errors were found in the six questinnnaires that were checked.

# CREATION OF THE 1988 NAEP DATABASE 

D. vid S. Freund and Alfred M. Rogers

Educational Testing Service

$T r \in$ data transcription and editing procedures described in Chapter 6.1 resulted in the generation of disk and tape files containing rious assessment information. Before any ar alysis could begin, these files had to be brought together into a comprehensive, integrated database. Sampling weights were also required in order to ma: valid statistical inferences about the population from which the assessment sample was drawn.

This chapter describes the processes $u$ extracting sample information for the derivation of sampling weights, and merging, or bringing together, the many transcription files into the NAEP database.

### 6.5.1 EXTRACTING SAAPLE DATA TO DERIVE WEIGHTS

'or each grade/age cohort, up to fove sets of weights were requirea to perform inferential analyses: school weights, excluded student weights, student weights, and teacher weights (age 17 did not include any teacher data). Because of the method of selecting teachers, sampling weights could not be assigned to teachers, but were instead assigned to students who were linked to participating teachers. (See Chapter 3 for more details.)

All of the sample information was extracted from the data files, edited, and transferred to tane files for shipment to Westat, where the weights wore computed. (Ste Chapter 8 for details on computing weights.) The editing process included both the validation of the data values (verification that each data value fails within a range or set of ranges of values, and is consistent with otrer data values) and frequency distribution analyses containing count; of the number of students assessed for each session to be compared with tracking information from the daia entry system.

The school sample information, such as PSU and school number, school type, and sampling description of community (SDOC), was availabie to Westat from the beginniag of the assessment. No other information was required to compute school sample weights.

The excluded student sample information was extracted from the file of excluded student questionnaire dara. This information included questionnaire serial number, PSU and school code, grade, gender, birth date, race/ethnicity, and a code indicating reason for exclusion. All data ficlds were taken from the front cover of each questionnaire, except for the txriusion code, which was derived rom the resporse to item 2 ("Why is tilis student excluded from
the NAEP survey?") of the questionnaire. A listing of the excluder student questionnaires that had not been received at ETS was included with the file for each grade/age cohort.

The stucient sample infor:ation cane from two sources: the student database and the absentee file from the administration schedules. The assessed student sample information included booklet serial number, PSU and school code, grade, gender, birth date, and race/ethnicity. Since the absent students were not observed and not assigned an assessment booklet, the booklet serial number and race/ethnicity information were not part of the absentee data.

The absentee file had to be adjusted for makeup sessions. The field administration procedures required scheduling of makeup sessions if absentee rates exceeded certain limits. The students attending these makeup sessions were supposed to be originaliy sample i students who were absent for the regular sessions. Failure to remove the makeup students from the absentee Eile would have resulted in incorrect estimates of the number of students $i_{\text {s }}$ thos: schools. The effect of hese errors could have been particula-ly acute in the age 17 sample where absentee rates were high and many schoois required makeup sessions.

The first step in the removal process was to : dentify the students in the student file who atten'ed makeup sessions in each school. Then, for each school and session type (spiral or tape), the gender, grade, and oirth iates of the makeup students were matched with those of the absentee students in the same school and session type. The absentees identified by perfect matches were removed from the absentee file: For each unmatched makeup student, a randomly selected abstntee was removed from the file. This latter procedure was recessary only for the age . sample in only a few or the meny schools that had makeup sersions.

The teacher sample information was extracted from the teacher questionnaire data file. The teacher identified up to ten students who participated in the assessment and met the proper criteria, i.e., for the grade 4/age 9 cohort, they were in the fourth grade and part of the focusedoib readiag assessment (booklets 8-14) and for the grade 8/age 13 cohort, tney were in the eighth grade and took the focused-BIB writing assessment (booklets l-7). (See Chapter 3.7 for more details.) The information used by Westat to produce student-based teacher weights included the rSU, school, te: :her code, booklet nuraber, birth date, race/ethnicity, and gender for each identified student in that teacher's class.

### 6.6.2 MERG $^{\top}$ : FILES INTO THE NAEP DATABASE

The transcription prozess resulted in the generation of up to five data files for each grade/age cohort: one file for each of the three questionnaires (no teacher questionnaire for age 17), the student response data file from the data entry system, and the student holistic writing scores trom professional scoring and key encry. The process of deriving sample
weights produced an additional four files (three at age l7) of sampling -رeights. Before data analyses could be performed, these files had to be integrated into a coherent and comprehensive database.

The database ultimately comprised up to four files per cohort: school, teacher, excluded student, and student files. The student file contained data from all student samples-the main assessment, the bridge to 1984, the bridge to 1986, and the civics bridge to 1976 and 1982. The school file could be linked to the other three files (student, excluded student, and student based teacher) through the PSU and school codes. The student-based teacher file could be linked to a subset of the student main sample through the stadent booklet number, PSU, school, and teacher codes.

The school file was created by merging the school questionnaire file with the school weights file and wich a file of school variables supplied by Westat which included demographic information about the schools the was originally collected by Quality Edacation Data, Inc. (QED). The PSU and school code we re used as the matching criteria. Each record of the resulting file was formed by merging the weight information with the response data and the QED data. Since not all schools returned their questionnaires and/or were missing QED data, some of the output records contain, $d$ only school identifying inf. rmation and weight information.

The teacher file was generated from the teacher questionnaire file. Since the teacher weights were derived at the student level, no information had to be added to ne qrestionnaire data.

The excluded student file was the result of merging the excluded student questionnaire file with the excluded student weights file. The tooklet serial r.mber was used as the matching criterion.

The studint d=ta were created in thrse steps, merging the student response data with the student weights, the student-based teacher weights, and professionally scored holistic writing item scores, in that order. In all three steps, the booklet serial number was used as the matching criterion. The merging of the professionally scored item data was a more complex procedure than the others, because only a subset of the student datc records contained this data and for those records that did contain data, the item scores appeared in a different location in each booklet.

Then the appropriate files had beerī merged, the database was ready for analysis. Any time that new cata values, such as plausible values, were derived external to the databas.a, they were added to the relevant filas using the same matching procedures as described above. The public-use data tapes files were later generated from this database.

### 6.6.3 CREATING THE MASTER CATALOG

A critical part of any database is its processing control and descriptive information. A central lepositcry of this information may be accessed by ali analysis and reporting programs to provide correct parameters
fo. processing the data fields as well as to provide consistent labeling to identify the results of the analyses. The NAEP master catalog file was designed and constructed to serve both of tirese purposes.

Each record of the master catalog contains the processing, labeling, classification, and location information for each data field in the NAEP database. The control parameters are used by the access routines in the analysis programs to define the manner in which the data values are to be transformed and processed.

Ail data fields have a 50 -character label in the catalog describing the contents of the field and, where applicable, the source of the field. The data fielas with discrete $\mathbf{p}^{-}$cacegorical values (e.g., multiple choice items and professionally score $i$, $A s$, but not weight fields) have additional label fields in the catalog cortaining 8 - and 20 -character labels for those values.

The classification area of the catalog record contains distinct fields corresponding to predefined classification categories for the data fields. Fos. a given classification field, a nonblank value indicates the code within that classification category for the data field. This permits the collection of identically classified items or data fields by performing a selection process on one or more classification fields in the catalog.

According to the NAEP design, it is possible for item data fields to appear in more than one student sample and in more than one block within each sample. The location fields of the catalog record contain the age, block and, where applicable, the sequence within the block for each appearance of the data field. (Fields such as plausitie values and weights would not contain sequence numbers since these fields are not pertinent to a given block.)

The master catalog file was constructed in parallel witt the collection and transcr'fion of the assessment data tc be ready for use by analysis programs when the database was created. As new data fields were derived and added to the darabase, their corresponding descriptive and control information were entered into the catalog.

One of the most jmportant uses of the master catalog was the control of the creation of the public-use data tapes files, codebooks, and file layouts. A synopsis of this process is presented in the next chapter.

## Chapter 6.7

# nazp database products 

Alfred M. Rogers<br>Educational Testing Service

The NAEP database described to this point serves primarily to support analysis and reporting activities that are directly related to the NAEP grant. This database has a singular structure and access methodology that is integrated with the NAEP analysis and reporting programs. One of the directives of the NAEP grant is to provide secondary researchers with a nonproprietary version of the database that is portable to any computer system. In the event of transfer of NAEP to another clisnt, the grant further requires ETS to provide a full copy of the in:ternal database in a format that may be installed on a different computer system.

In fulfillment of these requirements, ETS provides three sets of database products: the item information dntabase, the restricted-use data files, and the public-use data files. The contents, format and isage of these products are document:ed in the publications listed under the appropriate sections below.

### 6.7.1 THE ITEM INFORMATION DATABASE

The NAEF m information datehase contains 1 oi the descriptive, processing, ar ge information for every assess.dent item developed and used for NAEP since $\quad v$. The primary unit of this database is the itern. Each NAEP item is associated with different levels of information, including usage across years and age cohorts, subject area classifications. response category descriptors, and locations of response data on public-use data files.

The item information database is used for a variety of essential NAEP tasks: providing statistical information to aid in test construction, determining the usage of items across assessment year: and ages for trend and cross-sectional analyses, labeling summary analyses and reports, and organizing item.; by subject area classifications for scaling analysis.

The creation, structure, and use of the NAEP item information database for all items used up to and including the 1938 assessment are fully docurented in the NAEP puhlicaticns, A Guide to the NAEP Item Information Database: (Rogers, varone, \& Kline, 1990) and A Primer for the NAEP Item Information Databese (Rogers, Kline, Barone, Mychajlowycz, \& Forer, 1989).

The procedures used to create the 1988 version of the item information database are the same as those documented in the guide. The updated version
of the guide also contains the learning drea classification categories for the cognitive items.

### 6.7.2 THE RESTRICTED-ESE DA'IA FILES

The restricted-use data files are for the exclusive internal use of the NAEP grante $\epsilon$. They contain a complete copy of the internal NAEP respondent database in a structured, documented, and portable format.

The internal database is maintained in a compressed format to conserve computing resources and to increase analysis efficiency. The access methods developed for chis database locate data fields dynamicaliy during the execution of analysis programs. The restricted-use data files, on the other hand, are "rectangular" in structure; each data field is in the same location on every record within a file. This static data definition, while not efficient from a computing resource standpoint, is much easier to document and is not dependent on any computing machinery, operating sysiem, or data access me thod.

The restricted-use data files serve several critical purposes. They provide an archive for all respond $t$ data collected and derived for $N A, i P$ since 1970. They ensure compatibility of usage by expressing this data in consistent, rectang....rs formats. Their portability greatly facilitates transition of the respor' nt database future NAEP contractors. The accompanying data file layouts and codebooks provide a standardized, comprehensive refer nnce source for NAEF staff.

The contents and formats of the NAEP restricted-use data files are documented in the NAEP publication A Guide to the NAEP Restricted-use Data Files (Rogers, Barone, \& Kline, 1989).

The procedures used to create the restricted-use data files for the 1988 assessment are the same as those used to create the public-use data files. Since the public-use data file distribution package contains me'e products, the generation procedures will be described in the following section.

### 6.7.3 THE PUBLIC-USE JATA FILES

The public-use data files are designed to enable any researcl :r with an interest in the National Assessment database to perform secondary a .lysis on the same data as those used at ETS. They differ from the restricted use data files in one important respect: all subregional ident! fication information has been encrypted or excluded in order to maintain the confidentialit:- of the states, schools, anc students who participated in the assessment.

The three elements of the distribution package are the data tapes, the printed documentation, and the microfiche copies of the assessment instruments. The complete set of files for each age cohort resides on a separate tape. Each tape contains, for cach sample or instrument, the data file, a file of control statements that will generate an SPSS•X system file, a
file of control statements that will generate a SAS system file, and a machine-readable catalog file containing control and decriptive information, intended for the user who does not use either SAS or SPSS-X. The printed documentation consists of for volumes: a guide to the use of the data files, and a set of data file laycits and codebooks for each of the three age cohorts (rse The NAEP 1988 Public-use Data Tapes Version 2.0 User Guide [Rogers, Kline, Johnson, Mislevy, \& Rust, 1990]).

The remainder of this section will discuss some of the issues raised during the creation of the data files and summarizes the procedures followed in generating the data files and related materials.

### 6.7.3.1 File Definition

The first issue addressed in the production of the public-use data files was the organization and format of the data files. The NAEP database consists of four data files for each grade/age cohort, corresponding to the three questionnaire instruments and the student database, incorporating the main sample and all five bridge sampies. The logical relationship of the data files is a three-level hierarchy, with the six student and the excluded student samples at the lowest level; the teacher sample at the next level, with a linkage only to the main sample; and the school sample at the tcp, with direct linkages to all samples. A linkage may be viewed as a one-to-many mapping of the records within two files. For example, one school record can link to one or more records in the teacher file, and each of these teacher records can in turn link to one or more records in the main sample student file.

Two organization schemes were considered. The first scheme, using the concept of a static linkage, requires only seven files corresponding to the seven student samples at the lowest level of the hierarchy. All of the data from the higner-level s: nples would be appended tc and repeated across as many of the lower-level rer $i d s$ as dictated by the linki, es. Using the previous example, each main sample record would be appended by its corresponding teacher record and school record. This scheme places no demand on the user to define the linkages since each data record is complete, but, because of its larger record size, requires substantially more computer storage space.

The second scheme, employing a dynamic linkage, requires these same seven samples, but withest the appended $t \in a c h e r$ and school data. The teacher and school sample data would reside in their own files, with special data fields in all files to facilitate their linkage through program control. This approach is more economicai in computer resource utilization but assumes a more sophisticated user. Ine potential for savings in computer storage and processing costs was the overriding consideration in choosing this scheme.

The teacher questionnaire for the 1988 asse'sment contained one section that provided a direct link to individual students in the main sample. The file generated for the teacher sample, therefore, was based on student-level data for those linked students, with the entire teacher questionnaire response data appended. The benefits gained by doing this are threefold: analysis of
ceacher response data can be properly performed at the student level and with the appropriate sample weights; the student-based teacher weight fields need not be present on the main sample student file, as in previous assessments, and the user is freed from programming linkages between the teacher and main sample student files.

### 6.7.3.2 Definition of the Variables

The selection and arrangement of data fieid, or variables, in each file was the next issue addressed. The initial step in this process was the generation of a file of descriptors of the variables for each data file to be created. Each of these LABELS files contained one record for each variable, each record containing the variable name, a snort description of the variable, and processing control information to be used by later steps in the data generation process. This file could be edited for deletion of variables, modification of control parameters, or reordering of the variables within the file.

The first program in the processing stream, GENLYT, produced a printed layout for each file from the information in its corresponding LABELS file. These layouts were initially reviewed for the selection and ordering of the variables. The variables thar: were excluded from public-use data file processing fell primarily int, two categories: nonapplicable and confidential.

The nonapplicable variables were found mostly in the student database. In the database used for analysis and reporting, the bridga samples were combined with the main sample. Therefore, many of the variabies that applied to the main sample students did not appiy to the bridge sample students, and vice versa. For example, the teacher code and the student-based teacher weights were used for the analysis of main sample data, but were not used at all in the design for the bridge samples.

The confidential variables included any descriptor or code that could be used to identify individual states, schools, or students in the NAEP sample. The PSU, school, teacher, and student identification codes used internally by ETS and Westat were "scrambled" according to specific algorithms to obtair. new codes for use in linking the files together. These new codes were put on the tapes in lieu of the original codes.

Another corfidentiality issue arose for an item for which student = were asked to identify the state they had iived in four years prior to the assessment. A new variable was created using the student's response and current state residency information from the PSU code to determine whether the student had lived in the same state, the same region, or a different region.

The ordering of the variables within the data files followed a general trend of decreasing likelihood of usage. In this order of likelihood, identification information preceded weights, scores, and other derived variables, which were followed by the response data. The identification variables were generally those on the front covers of tie instruments. The
derived variables included the sampling weights, the IRT scale values, and the variables that were derived from the response data or other sources for the purpose of reporting. The response data variables were .rra: jed according to their order in the instrument.

The data for the main sample posed an additional cnallenge with its multitude of booklet fo.mats that had to be structured into a single, fixed format. The most convenient and economical solution was to arrange the "blocks" of item response data in order within subject areas. The responses to the common background questionnaire preceded all other biocks in the new record. The remaining blocks were grouped by subject area, each group consisting of the subject area background block followed by the cognitive jlocks in numerical order. Each record from the input student data file was reformatted according to its booklet number; tine data for its constituent blocks were moved into their assigned locations in the output record. The remaining data block pieas contained blank fields, signifying that the data were missing by design.

In order to process and analyze the spiral sample data effectively, the user must also be able to determine, from a given booklet record, which blocks of item response data wre present and their relative order in the instrument. linis problem was remedied by the creation of a set of control variables, one for each block, which indicated not only the presence or abseace of the block but its order in the instrument. These control variables were included with the derived variables.

### 6.7.3.3 L.ata Definition

To enable the data files to be processed on any computer system using any procedural or programming language, it was desirable that the data be expressed in numeric format. This wa. possible, but not without the adoption of certain conventions for reexpressing the data values.

As mentioned in Chapter 6.3, the :esponses to all multiple-choice items were transcribed and stored in the database using the letter codes printed in the instruments. This scheme afforded the advantage of saving storage space for $i^{\text {t.ems }}$ with ten or more response options, but at the expense of translating these codes into their numeric eauivalents for analysis purposes. The response data fields for most of these ite $s$ would require a simple alphabetic-tonumeric conversion. However, the data fields for items with ten or more response choices would require "expansion" before the conversion, since the numeric value would require two column positions. One of the processing control parameters on the LABELS file indicates whether or not the data field is to be expanded before conversion and output.

The ElS database contained special codes to indicate certain response conditio:s: "I don't know" response, multiple response, omitted response, not-reached response, and unresolvable response, which included out-of-range responses and responses that were missing due to errors in printing or processing. The primary trait scores for the reading es'ay and writing items cluded additional special code: for ratings of "illegible," "off task," and
nonrateable by the scorers. All of these codes had to be reexpressed in a consistent numeric format.

The follo.ing convention was adopted and used in the designation of these codes: The "I do : know" and nonrateable response codes were always converted to 7 ; the omi ,d response codes were converted to 8 ; the "nut reached" response codes were converted to 9 ; ihe multiple response codes were converted to 0 ; the "illegible" codes were converted to 5 ; and the "off task" codes were converted to 6 . The out-of-range and missing responses were coded as blank fields, corresponding to the "missing by design" designation.

This coding scheme created conflicts for those multiple choice items that had seven or more valid response options as well as the "I don't know" response and for those open-ended items whose primary trait scoring guide had five or more categories. These data fields were also expanded to accommodate the valid response values and the s ecial codes. In these cases, the special codes were "extended" to fill the output data field: The "I don't kncw" and nonrateable codes were extended from 7 to 77 , etc.

The numeric variables on the tape files were classified into two categories: continuous and discrete. The continuous variables include the weights, IRT values, identification codes, and item responses where counts ur percentages were requested. The discrete variables include those items for which each numeric value corresponds to a response category. The designation of "discrete" also includes those derived variables to which numeric classification categories have been assigned. The open-ended items wel treated as a special subset of the discrete variables and were assigned to a separate category to facilitate their identification in the documentation.

### 6.7.3.4 Data File Layouts

The data file layouts, as mentioned above, were the first user product to be generated in the public ase data files process. The generation program, GENLYT, used a LABELS file as input and produced a printable fi :. The LAYOUT file is little more than a formatted listing of the LABELS file.

Each lane of the LAYOUT file contains the following information for a single data field: sequence number, field name, output column position, field widt*., number of decimal places, data type, value range, key or correct response value, a $d$ a short description of the f'eld. The sequence number of each fiela is implied from its order on the LABELS file. The field name is an 8 -character label for the field that is to be used consistently by all publicuse data files materials to refer to that field on that file. The output column position is the relative location of the beginning of that field on each record for that file, using bytes or characters as the unit of measure. The field width indice es the number of columns used in representing the data values for a field. $\therefore$ the field contains continuous numeric data, the value under the number of decimal placas entry indicates how many places to shift the decimal point before processing data values.

The data type category uses three codes to designate the nature of the data in the field. Continuous nume. ic data are coded "C"; discrete numeric data are coded "D"; open-ended item da 1 are coded " 0 ." Additionally, the discrete numeric fields that include "I don't know" responsc codes are coded "DI" and the open-ended items that include nonrateable response codes are coded "OI." If the field type is discrete numeric, the value range is lister' as the minimum and maximum permitted values separated by a hyphen to indicate range. If the field $i$ a response to a sccrable itein, the correct option value, cr key, is printed. A range of coirect options was indicated for those professionally scored items that were treated with cutoff scoring for IRT scaling. Finally, each variable was further identified by a 50 -character descriptor.

### 6.7.3.5 Data P' P Catalogs

The LABELS file contains sufficient descriptive information for generating a brief layout of the data iile. However, to generate a complete codebook document, substantialiy more information about the data is required The CATALOG file provides most of this information.
lae CATALOG file is created by the CATGEN program from the LABELS file and the 1988 master cavalog file. Each record on the LABELS file generates a CATALOG record by first itrieving che master catalog record corresponding to the field name. The master catalog record contains usage, classifination, ard response code information, prefixed by the positional information from the LABELS file: fie'd sequence number, output column position, and field width.

The information for the response codes, anso referred to as "ioils," consists of the valid data values for the discrete numeric tie] . a 20 -character descriprion of each. The CATGEN progiam uses addicanial control information from the $L$ ' $L$ LS file to determine if extra foils should be generated and saved with each CATALOC record. the first flag controls generation of the "I don't know" or nonrateable foil; the second flag regulates omitted or "not reached" foil generation; and the third flag denctes tive possibility of multiple responses $\mathrm{I}_{\mathrm{L}}$ r that field and sets up an apprcipriate foil. All of these sontrol parameters, including the expansion flag, may be alcered in the LAsELS file by use of a text editor, in order i control the generation of data or descriptive information ior any given ficd.

The LABELS file supplies controi information for many of the subsequent public-use data processing steps. The CATALOG file provides detailed information lor those and other step ${ }^{-}$.

### 6.7.3.6 (iodebooks

The data file codebook is a printed document containing complete descriptive information for each cata field. Mose of this int.rmation originates from the CATALOG file; the remaining data came from two other files: the COUNTS file and the IRT parameturs file.

Each data field receives ,.t least one line of descriptive information in the codebook. If the data type is continuous numeric, no more detail is given. If the variable is discrete numeric, the codebook lists the foil codes, foil labels, and frequencies of each value in the data file. Additiorally, if the field represents an item used in IRT scaling, the codebook lists the parameters used by the scaling program.

The frequency counts are not available on the catalog file, jut must be generated from the data. The GENFREQ program creates the COUNTS file using the field name to locate the variable in the database, and the foil values to validate the range of data values for each fielᄅ. This program also serves as a check on the completeness of the fcils in che CATALOG file, as it flags any fata values not represented by a foil value and label.

The IRT parameter file is linked to the CATALOG file through tine field name. Printing of the IRT parameters is governed by a control flag in the classification section of the CATALOG record.

The LAYOUT and CODEBOOK files are written by their respective generation programs to print-image disk data files. Draft copies are printed and distributed for review before the production copy is generated. The production copy is printed on an IBM 3800 printer that ises laser-imaging technology to produce high-quality, reproducible di sumentation.

### 6.7.3.7 Control Statement Files for Statistical Packages

An additional requirement of the NAEP grant is to provide, for each public-use data file, a file of control statements each for the SAS and SFSS-X statistical systems that will convert the raw data file into the system data file for that package. Two separate programs, GENSAS and GENSPX, generate these control files using the CATALOG file as input.

Each of the control files contains separate sections for variable definition, variable labeling, missir, value declaration, value labeling, and creation of scored veriables from the cognitive items. The variable definition section deseribes the locations of the fields, by name, in the file, and, if applicable, the number of decimal places or type of data. The variable label identifies each field with a 50 -character description. The rissing value section identifies values of tho, e variables that are to be treated as missing and excluded from analyses. The value labels correspond to the foils in the CATALOG file. The code values and their descriptors are listed for each discrete numeric variable. The scoring section is provided to permit, the user to generate item score variables in addition to the item response variables.

Each of the code generation programs combines th.ee steps into one complex procedure. As each CATALOG file record is read, it is broken into several component records according to the information to be used in each of the resultant sections. These record fragments are tagged with the field sequence number and a section sequence code. They are then sorted by section
code and sequence number. Finclıy, the reorganized information is output in a structured format dictated by the syntax of the processing language.

The generation of the system files accomplishes the testing of these control statement files. The system files are saved for use by NAEP staff. These control statement files are included on the distributed data tape to permit users with access to SAS and/or SPSS-X to create their own system files.

### 6.7.3.8 Uachine-readable Catalog Files

For those NAEP data users who have neither SAS nor SPSS-X capabilities, yet require processing control information in a computer-reac ${ }^{\text {nh }}$ le format, the distribution tape also contains machine-readable catalog files. Each machine-readable catalog record contains processing control information, IRT parameters and foil codes and labels.

PART II
The Analysis of 1988 NAEP Data

## Chapter 7

# OVERVIEW OF PART II: THE ANALYSIS OF 1988 NAEP DATA ${ }^{1}$ 

Rebecca Zwick<br>Educational Testing Service

In 1988, NAEP conducted major assessments of reading, writing, civics, and U.S. history. In each of these areas, the analyses included trend results providing links to previous assessments, as well as cross-sectional results for the 1988 assessment year, providing detailed information about student proficiency for grades 4, 8, and 12.

Another major component of the analyses of the 1988 data was the continuing research into the 1986 NAEP reading anomaly-the unexpectedly low reading proficiency results for ages 9 and 17 that spurred a three-year investigation. For purposes of investigating the anomaly further, the 1988 assessment included samples of students who were assessed with 1984 instruments and procedures, as well as samples who were assessed with 1986 booklets and methods. The study based on these samples, documented in The Effect of Changes in the National Assessment: Disentangling the NAEP 1985-86 Reading Anomaly (Beaton \& Zwick, 1990), showed that seemingly minor changes in assessment technology had a substantial effect on estimated reading proficiency in 1986. Because the 1986 reading booklets that were administered as part of this study also contained mathematics and science blocks, these data were scaled as well.

Finally, geography was assessed for grade 12/age 17 only in a special study, co-sponsored by the National Geographic Society.

### 7.1 SAMPLES OF STUDENTS

The samples of students included in the 1988 NAEP assessment are listed and described in detail in Chapter l. Only a brief description of the types of 1988 samples is given here. The 1988 samples were of two general types: bridge samples, the purpose of which was to provide links to earlier assessments, and main NAEP samples, which were based on a common set of assessment procedures, incl, ding wiriter and spring administration times arid calendar-year age definitions.

The 1988 bridge assessments consisted of a bridge to 1984 in reading and writing, a bridge to 1986 in reading, mathematics, science, and U.S. history, and a bridge to 1976 and 1982 in civics. The 1988 main NAEP samples fell into

[^19]threa categories: focused-BIB, intercorrelation, and special studies. The focused-BIB design provides for booklets that include three blocks of items in a single subject area, as well as background items. Focused-BIB assessments were conducted for reading, writing, civics, and U.S. history, and, for grade 12/age 17, geography. The intercorrelation samples received booklets that included more than one subject area to allow researchers to investigate the association between proficiencies in different subjects. The intercorrelation booklets included blocks of reading, civics, and U.S. history items at all three grade/age levels, as well as geography items at grade 12/age 17. Some additional booklets were included in the 1988 main assessment for special studies. The long writing booklets at all grade/age levels and the document literacy booklets at the two upper grade/age levels fall into this category.

### 7.2 ANALYSIS STEPS

The analysis methods described in the following chapters are not identical across subject areas. Procedures depend on whether data are dichotomous or ordinal and whether links across age groups or across assessments are required. Nevertheless, certain asic procedures are common to most or all of the analyses described in the following chapters; these are summarized here.

### 7.2.1 Item Analysis

The first analysis step in each subject area was to conduct item analyses within each grade/age cohort and within major reporting categories. These preliminary analyses had multiple purposes: to check the number of respondents, the scoring of items, and the coding of background data; to investigate the difficulty level of items and their ability to di:stinguish between students of high and low proficiency; to check for speededness; and to call attention to items that may have had popular but incorrect response options (indicating possible flaws in wording or scoring).

For each NAEP background $i^{+}$em, the unweighted and weighted percent of students who gave each response were examined, along with the percent of students who omitted the irem and the percent who did not reach the item. The number of respondents was also tabulated. Each block of dichotomously scored cognitive items was subjected to item analysis routines that yieldod, for each item, the number of respondents, the percent of students who selected the correct response and each incorrect response, the percent who omitted the item, the percent who did not reach the item, and the correlation between the item score and the block score. In addition, summary statistics were comp'ted for each block, including the reliability (internal consistency).

### 7.2.2 Analyses of Differential Item Furctioning Across age, Gender, and

 Racial/ethnic CategoriesFor subject areas that yielded dichotomous item responses, graphical techniques that are available through the NAEP's modification of the BILOC computer program (Mislevy \& Bock, 1982) were used to determine whether it wa, reasonable to assume a common item response function across age, gender, and racial/ethnic categories. (In the present context, an item response function is the regression of a dichotomous item response on en unobserved pruficier cy variable. In NAEP, this nonlinear regression is assumed to take the threeparameter logistic form described in Chapter 9.) The NAEP BILOG program produces plots that show the estimated item response function for a particul:sample (say, the three age classes combined). In addition, BILOG can plot expected proportions correct for specified subsamples (say, each of the three age classes) at several points along the proficiency scale (see Mislevy \& Bock, 1989 for further discussion). The expected proportions correct can then be examined to determine whether departures from the common item response function are large or systematic. The same method can be used to check for differential item functioning across gender and racial/ethnic groups. Items that functioned differently across groups were reviewed to determine whether they should be deleted. In the case of items that function differently across age groups, another option is to estimate separate item response functions for each age level (e.g., see section 10.3).

### 7.2.3 Scaling

Unidimensional scales based on item response theory were derived for reading, writing, civics, mathematics, science, and seography. The NAEP methods use random draws ("plausible values") from estimated proficiency distributions to compute subpopulation statistics. Chapter 9 describes in detail the theoretical underpinnings of NAEP's scaling methods and the dequired estimation procedures. Only the basic analysis steps are outlined here.

For developing scales in the dichotomously scored sabject areas (all areas except writing), the steps were as follows:

1) Use NAEP's version of the BILOG program ${ }^{2}$ (Mislevy \& Bock, 1982) to estimate the parameters of the item response functions on an arbitrary scale, assuming the three-parameter logistic model.
2) Use the M-GROUP program (Sheehan, 1985), which implements the method of Mislevy (see Chapter 9 or Mislevy, in press) to estimate proficiency distributions for each student on an arbitrary scale,
${ }^{2}$ NAEP BILOG allows students in each of the three age classes to be desig.ated as distinc. populations. This is important because, in NAEP, item sampling is not randcm across age classes. In this situation, age class membership must be taken into account to obtain consistent item parameter estimates via marginal maximum likelihood (see Mislevy \& Sheehan, 1989).
based on these item parameter estimates and the student's responses to cognitive items and background questions.
3) Determine the appropriate metric for reporting the results and transform the results as needed.
4) Use random draws from these proficiency distributions ("plausible values" in NAEP terminology) for computing the statistics of interest, such as means for demographic groups.

In the case of the writing assessment, which yielded ordinal scores, another scalin model, the average response method (ARM) was applied. The basic steps to be applied were as follows:

1) Estimate the means on the writing exercises and intercorrelations among the exercises.
2) Use linear regression theory to impute a proficiency distribution for each student, based on these estimated means and correlations and on the student's responses to the writing exercises and background questions. Proficiency in this case is defined as the expected score on the entire set of writing exercises, given the responses to a subset of these exercises.
3) Use random draws from these proficiency distributions for computing the statistics of interest, such as means for demographic groups.

As explained in Chapter 9, the plausible values obtained through the IRT and ARM approaches are not optimal estimates of individual proficiency; instead, they serve as intermediate values to be used in estimating subpopulation characteristics. Under the assumptions of the scaling models, these subpopulation estimates will be consistent, which would not be true of subpopulation estimates obtained by aggregating optimai estimates of individual proficiency.

### 7.2.4 Scale Anchoring

Scale anchoring is a process that NAEP has used, beginning with the 1984 reading scale, to improve the utility of proficiency scale results by providing a c.iterion-referenced interpretation of selected scale levels. In this way, NAEP can furth $r$ its goals of describing what students know and can do and stinulating debate about whether these levels of performance are satisfactory.

In NAEF's scale anchoring process, the first step is to choose four to five scale points to be anchored. For each point, items are then evaluated as potential anchor items, based on the percent of correct responses among students with proficiency levels at that point, as well as the corresponding
percent for the next lower anchor point. For the anchoring of the 1988 U.S. history and civics scales, an item was considered to anchor at a particular point if (l) the porcent of students with proficiency levels approximately equal to that point (i.e., within a 25 -point interval centered at the point) who answered correctly was at least 65, (2) the percent of students with proficiency levels approximately equal to the next lower anchor point who answered correctly was less than 50 , and (3) the difference between the percents in (1) and (2) was at least 30. (Of course, conditions (2) and (3) did not apply to the lowest anchor point.) After the items that anchoced at each point were determined, subject area experts chose from among these the items that best characterized each point and developed descriptions of the anchored proficiency levels. The descriptions provide information about the types of skills that are possessed by a large proportion of students at that anchor point, but are not possessed by most students at lower levels. The percents of students at or above each anchor level are given in NAEP subject. area reports, along with the exemplar items and scale-point descriptions.

For the 1988 reading trend scale and the mathematics and science scales, which had already been anchored in the past, previously established anchor points were used. The process for developing these points was similar to that described above, but the anchoring crıtexia differed somewhat (see Beaton, 1987a and Johnson, 1988 for information specific to the mathematics scales and Yamamoto, 1988 for information specific to the science scales).

### 7.3 OVERVIEG OF CHAPTERS 8 THROUGH 15

The remaining chapters in Part II of this report are as follows:

Chapter 8: The 1988 National Assessment used a stratified multistage probability sampling design that provided for sampling certain subpopulations at higher rates (see Chapter 3). Because probabilities of selection are not the same for all assessed students, sampling weights must be used in the analysis of NAEP data. Also, in NAEP's complex sample, observations are not independent. As a result, conventional formulas for estimating the sampling variance of statistics are inappropriate. Chapter 8 describes the weighting procedures and methods for estimating sampling variance that are necessitated by NAEP's sample design. Further detail on sampling and weighting procedures is provided in The 1988 National Assessment of Educational Progress-Sampling and Weighting Procidures, Final Report (Rust, Bethel, Burke, \& Hansen, 1990), a report prepared by Westat, Inc., the NAEP subcontractor in charge of sampling.

Chapter 9: A major NAEP innovation introduced by ETS is the reporting of subject-area results in terms of proficiency scales. Scaling methods can be used to summarize results even when students answer different subsets of items. For purposes of summarizing dichotomous item responses, NAEP developed scaling techniques that have their roots in item response theory and in the theories of .mputation of missing datu. For application to ordinal data, such as scores on the NAEP writing essays or responses to NAEP background items,

NAEP developed the average response method (ARM), which is based on regression theory and imputation techniques. The ARM uses a multiple linear regression approach to estimate a student's score on a complete set of items, given responses to a subset of items. Chapter 9 describes these two scaling techniques, the underlying theory, and the application of these methods to 1988 NAEP data. Chapter 9 also includes a discussion of the advantages achieved as a result of the adoption in 1988 of the focused-BIB design. Administering three blocks of items in a single subject area produced more precise estimates of individual student proficiency than those that sould be obtained in 1984 and 1986. As explained in the chapter, this greater precision reduces potential biases in the results of secondary analyses of the NAEP data. The final section of Chapter 9 gives an overview of the NAEP scales that were deve oped for the 1988 assessment.

Chapter 10: Two main components oin the 1988 reading analysis are described in this chapter. First, the reading trend results for the years 1971 through 1984 ware extended to include 1988 at ages 9, 13, and 17. The results of the reading trend analysis, which include the percents of students at or above the reading scale anchor points established in 1984 , are reporied in The Readi.1g Report Card, 1971-88: Trends from the Nation's Report Card (Mullis \& Jenkins, 1990). In addition, a detailed cross-sectional analysis of reading for grades 4,8 , and 12 in 1988 was conducted, including a study of the association between reading proficiency and student background variables. At glade 4, background information and data on instructional methods were collected from teachers and the relation of these variables to reading proficiency was examined. The cross-sectional analyses are reported in Learning to Read in Our Nation's Schools: Instruction and Achievement in 1988 at Grades 4, 8, and 12 (Langer, Applebee, Mullis, \& Foertsch, 1990).

Chapter 11: Like the reading analysis, the writing alysis consisted of two main components. The writing trend results, which provide a link to 1984 for gráes 4, 8, and ll, are renorted in The Writing Report Card, 198488: Findings from the Nation's Repcrt Card (Applebee, Langer, Mullis, \& Jenkins, 1990). A detailed cross-sectional analysis of writing for grades 4, 8 , and 12 in 1.988 was also conducted, including an examination of the association of writing skills with instructional techniques, student background variables, and the amount of time allocated for completion of the exercises. For grade 8, teacher data were collected and their association with writing proficiency was analyzed. The cross-sectional results are reported in Learning to Write in Our Nation's Schools: Instruction and Achievement in 1988 at Grades 4, 8, and 12 (Applebee, Langer, Mullis, Jenkins, \& Foertsch, 1990).

Chapter 12: The trend and cross-sectional analyses of the civics data are detailed in Chapter 12. The results of the trend analysis, which provided links to the 1975-76 and 1981-82 assessments for ages 13 and 17, are reported in The 1988 Civics Report Card: Trends in Achievement from 1976 to 1988 at Ages 13 and 17 and Achievement in 1988 at Grades 4, 8, and 12 (Anderson, Jenkins, Leming, MacDnnald, Mullis, Turner, \& Wooster, 1990). A
detailed cross-sectional analysis of civics for grades 4, 8, and 12 in 1988 was also conducted, including an examination of the association of civics knowledge with instructional techniques and student background variables. The cross-sectional results, which also include the percents of students at or above four anchor points that sere determined in 1988, also appear in The 1988 Civics Report Card.

Chapter 13: Cross-sectional analyses for U.S. history, analogous to those described for the preceding subject areas, were conducted for grades 4, 8, and 12. The outcome of these analyses, which include scale anchoring results, are reported in The U.S. History Report Card: The Achievement of Fourth-, Eighth-, and Twelfth-grade Students in 1988 and Trends from 1986 to 1988 in the Factual Knowledge of High-school Juniors (Hammack, Hartoonian, Howe, J2nkins, Levstik, MacDonald, Mullis, \& Owen, 1990). The 1988 U.S. history assessment also included a bridge sample linking the 1988 resulrs to those of a special study of U.S. history conducted for grade 11 in 1986. For grade il, trend results were obtained in terms of item percents correct, and were included in the 1990 report along with the cross-sectional results.

Chapter 14: NAEP assessed geography for the first time in 1988. Data were collected from students who were 17 years old or in grade 12. Results of the cross-sectional analyses for grade 12 which include the outcome of scale anchoring, are reported in The Geography Learning of High-school Seniors (Allen, Bettis, Kurfman, Macionald, Mullis, \& Salter, 1990).

Chapter 15: As noted earlier, mathematics and science icems were includers in the 1986 booklets that were administered in 1988 to allow an indepth study of the 1986 reading anomaly. Therefore, a small-scale study of mathematics and science trend, including the derivation of scale anchoring results, was possible at ages 9,13 , and 17. Chapter 15 describes the methods used to link the 1988 results to those for 1973, 1982, and 1986, Because the mathematics and science analyses were conducted for the purpose of illuminating the reading anomaly, the analysis results, along with further detail on the analysis techniques, appear in Yamamoto's (1990) chapter in The Effect of Changes in the National 4ssessment: Disentangling the NAEP ’?85-86 Reading Anomaly rather than in a subject-area report.

# WEIGHTING PROCEDURES AND ESTIMATION OF SAMPLING VARIANCE ${ }^{1}$ 

Eugene G. Johnson<br>Educational Testing Service

Keith F. Rust and Morris H. Hansen

Westat, Inc.

As was the case in previous assessments, the 1988 National Assessment used a complex sample design with the goal to obtain a sample from which estimates of population and subpopulation characteristics could be obtained with reasonably high precision (as measured by low sampling variability). At the same time, it was necessary that the sample be economically and operationally feasible to obtain. The resulting sample had certain properties that had to be taken into account in the proper analysis of the data from the assessment.

The 1988 NAEP sample was obtained through a stratified multistage probability sampling design that included provisions for sampling certain subpopulations at higher rates (see Chapter 3). To account for the differential probabilities of selection, and to allow for adjustments for nonresponse, each student was assigned a sampling reight. Section 8.1 discusses the procedures used to derive these sampling weights.

Another consequence of the NAEP sample design is its effect on the estimation of sampling variability. Because of the effects of cluster selection (students within schools, schools within primary sampling units) and because of the effects of certain adjustments to the sampling weights (nonresponse adjustment and poststratification), observations made on different students cannot be assumed to be independent of one another. As a result, ordinary formulas for the estimation of the variance of sample statistics, based on assumptions of independence, will tend to underestimate the true sampling variability. Section 8.2 discusses the jackknif'ag technique used by NAEP to estimate sampling variabilıty. (The estimation of variability due to imperfect measurement of individual proficiency is discussed in Chapter 9.)

The jackknifing technique provides good quality estimates of sampling variability but requires considerable comput $\varepsilon$ iions. Section 8.3 suggests the

[^20]use of design effects, combined with conventional variance estimation formulas, as a simple approximation to sampling variability. The technique is demonstrated for three types of statistics: simple item-level perient-correct statistics, average proficiency scores, and simple regression coefficients.

Yest another effect of the multistage NAEP sampling scheme is a reduction of the degrees of freedom of variance estimates, as compared with directly drawing independent samples of students (or of schools) without ciustering them. The degrees of freedom of a variance estimator provide information about its stability: the higher the degrees of froodom, the lower the variability of the estimator. In a simple random sampie, the degrees of freedom of a variance estimate depend upon the number of subjects and on the distribution of the variable under consideration. In the NAEP desigr, the degrees of freedom are primaxily a function of the number of primary sampling units and the number of strata in the design, rather than the number of subjects, and the distribution of the variable under consideration has less impact. Section 8.4 discusses the degrees of freedom for NAEP jackknife variance estimates.

Since the sample design determines the derivat $\ldots$.l of the sampling weights and the estimation of sampling variability, it will be helpful to note the key features of the 1988 NAEP sample design. A description of the design appears in Chapter 3.

The 1988 samp: e was a multistage probability sample consisting of four stages of selection. The $f \mathbf{i s}$. $t$ stage of selection, the primary sampling units (PSUs), consisted of counties or groups of counties. The second stage of selection consi.jted of elementary and secondary schools. The assignment of sessions to sampled schools comprised the chird stage of sampling, and the fourth stage involved the selectior of students within schools and their assignment to sessions. The probabilities of selection of the first-stage sampling units were proportional to measures of their size, while the probability for subsequent stages of selection were such that the overall probabilities of selection of students were approximately uniform, with exceptions for certain subpopulations that were oversampled by design. For the main assessment, schools with relatively high concentratio.s of Black and/or Hispanic students were deliberately sampled at twice the normal rate to obtain larger samples of respondents from those subpopulations, in order to increase the precision in the estimation of the characteristics of these subpopulations. Students from schonls with smaller numbers of eligibles received lower probabilities of selection, as a means of enhancing the cost efficiency of the sample.

The 1988 main assessment includes three student cohorts: students who were either in the fourth grade or 9 years old; students who were either in the eighth grade or 1.3 years old; and students who were either in the twelfth grade or 17 years old. The main assessment represents two overlapping samples. The first sample represents students of specified grades (who could be of any age;. The second sample represents students of specified ages (who could be of any grade). Students were age-eligible if chey were born in the appropriate calendar yea: ( 1978,1974 , or 1970). The main assessment of all grade/age levels was conducted in the winter and spring of 1988 and the sample
design was such that the students assessed in the winter and the students assessed in the spring constitute two representative samples of the population.

The full 1988 assessment also includes a number of additional samples designed to determine the possible effacts of changes in age definitions, time of testing, and mode of administration (elimination of the audiotape used for pacing the items), and to provide links to the results from previous assessments. Because the purpose of these studies was to provide the statistical linkage between the 1988 data and data from previous assessments, they are referred to as bridge (or trend) studies.

The full 1988 NAEP assessment thus includes a number of different samples from several popuiations. Each of these samples has its own set of weights that are to be used to produce estimates about the characteristics of the population addressed by the sample (the target population). The various samples and their target populations are as follows:

The Main Samples of Students. These samples, one for each of the three grade/age combinations, were drawn in the winter and spring, use the new age definitions, and consist of all students assessed in the main assessment. The target population for each of these samples consists of all students tho are in the specified grade/age combination who were deemed assessable by their school.

Civics Bridge to 1976 and 1982. This bridge (trend) sample addresses the subject area of civics and consists of samples comparable to past assessments of citizenship and social studies and so uses pre-1986 definitions of age and time of testing. Since trend data have been tradi:ionally collected only by age, grade sampling was unnecessary. The zivics bridge sample consists of one booklet for age 13 and one booklet on; $_{\text {n }}$ age 17. Respondents to each booklet constitute a representative $\mathrm{am}_{5}$ it of the population of all students of that age. Because there we no reusable civics items from previous assessments of 9 -year-olds, an age 9 sample was not needed.

Bridge to 1984. This bridge consists of trend samples comparable to the 1934 main assessment and eidresses the sulject areas of reading and writing. The samples were collected by grade and age fo grade 4/age 9, grade 8/age 13, and grade ll/age 17, using the age definitions and time of testing from 1984. Six assessment booklets were administered at each grade/age. The respondents to the combined set of assigned booklets at a given grade/age constitute a representative sample of the population of students who are of the specified grade or of the specified age. The respondents to any one of the oookiets also constitute a representative sample.

Bridge to 1986, Ages 9 and 13. This bridge consists of samples for ages 9 and 13 comparable to those used for the measurement of trends in 1986. The
samples were collected by age only and used the same age definitions and time of testing as ir 1.384 and in the 1986 bridge to 1984. Three assessment booklezs were administered to each age group and the respondents to any one of the three booklets assigned to a given age consiitute a representative sample of the population of all students of that age.

Bridges to 1986, Grade 11/Age 17. These bridge (trend) samples, a U.S. history bridge and a reading, mathematics, and science bridge (see Chapter 1 for further details), are samples of grade 1l/age 17 students comparable to the 1986 main assessment sample and were selected and administered using the 1986 age definition and time of testing. Since the age definition and time of testing also correspond to those used in samples from the 1984 and earlier assessments, the students in these bridge samples are comparable to the students from these earlier assessments. (However, the performance results are not directly comparable because the earlier assessments had paced audiotape administrations.) Se ren assessment booklets were administered to grade 11/age 17 students. The administration of these booklets was nonpac 1 . The respondents to the combined set of seven booklets comprise a representative sample of the grade $11 /$ age 17 population, as do the respondents to any one of the booklets.

For purposes of sampling and weighting, the assessment samples are categorized as "tia "" or "spiral" according to whether or not paced audiotapes are to be used in the administration:

1) Tape samples are bridge samples that require audiotape pacing in the assessment (the civics bridge and the age 9 and 13 bridges to 1986). For these samples, all students within a particular assessment session receive the same booklet and are paced through at least part of the booklet with an audiotape. These assessment sessions are accordingly referred to as tape sessions. The students assigned to each distinct booklet of the tape samples are treated as a separate sample of the population for weighting.
2) Spiral samples are all main assessment samples and the remaining bridge samples. For these samples, no audiotape pacing was employed and the assessment booklets presented to a particular sample are spiraled through each assessment session (that is, the booklets are systematically interspersed and assigned for testing in that order). These assessment sessions are referred to as spirai sessions. The combined set of all students assigned to any of the booklets spiraled together is treated as a sample of the population for weighting.

## 8.1 derivation of the sample weights

As indicated previously, NAEP uses differential sampling rates, deliberately oversampling certain subpopulations to obtain larger samples of respondents from those subgroups, thereby enhancing the precision of estimates
of characteristics of these oversampled subgroups. As a result of the oversampling, these subpopulations, corresponding to students from schools with high concentrations of Black and/or Hispanic students, are overrepresented in the sample. Inwer sampling rates were introduced also for very small schools (those schools with only 1 to 19 eligible students). This was done in an approximately optimum manner as a means of reducing variances per unit of cost. Appropriate estimation of population ch racteristics must take disproportionate representation into account. This is accomplished by assigning a weight to each responcient, where the weights properly account for the sample design and reflect the appropriate proportional representation of the various types of individuals in the population.

The weighting procedures for 1988 included computing the student's base weight, the reciprocal of the probability that the student was invited to a particular session. These base we:ghts were adjusted for nonresponse and then subjected to a trimming algorithm to reduce a few excessively large weights. The weights were further adjusted by a poststratification procedure in an effort to reduce the sampling error and certain potential biases of estimates relating to student posulations corresponding to several subgroups of the total population. Poststratification was perfurmed by adjusting the weights of the sampled students so that the resulting estimates of the total number of students in a number of specified subgroups of the population corresponded to population totals based on information from the Current Population Survey and Census Bureau estimates of the population. The subpopulations were defined in terms of race, ethnicity, geographic region, age, and grade.

The following sections provide an overview of the procedures used to derive the sampling weights. Further details in the derivation of these weights can be found in 1988 National Assessment of Educational
Progress-Sampling and Weighting Procedures, Final Report, (Rust, Bethel, Burke, í Hansen, 1990).

### 8.1.1 Student Base Weight

The base weight assigned to a student is the reciprocal of the probability that the student was invited to a particular type of assessment session, that is, a main assessment session or a particular bridge assessment session. That probability is the product of four factors:

1) the probability that the PSU was selected;
2) the conditional probability, given the PSU, that the school was selected;
3) the conditional probability, given the sample of schools in a PSI. that the school was allocated the specified type of session (this component is needed only for the bridge samples); and
4) the conditional probability, given the schonl, that the student was invited to the specified type of session.

Thus, the base weight for a student may be expressed as the product

$$
W_{B}=\text { PSUWT • SCHWT • SESSWT • STUSCHW }
$$

where PSUWT, SCHWT, SESSWT, and STUSCHW erf, respective?y, the reciprocals of the preceding probabilities. The SESSWT cerm was included onily for the bridge samples.

The season-specific base weight for a scurent is

$$
W_{B S}=W_{B} \cdot \operatorname{SSUBWGT}
$$

where SSUBWGT is the reciprocal of the probability that the school attended by the student was selected for assessment in the particular (winter or spring) season. Each school had a probability of 0.5 of being allocated to winter or spring. In the case of those certainty PSUs that were paired, with one member assigned at random to each season (see Chapter 3), a ratio adjustment was made to weight the given pair mewber $t$ the size of the pair, based on total fopulation. The adjustment factor for students from the larger PSU, SSUBWGT, is somewhat less than 2.0 , while for those from the smaller member, SSUBWGT is greater than 2.0.

The base weight for a student in a bridge sample is

$$
W_{B B}=W_{B} \cdot W G T B R D G
$$

where WGTBRDG is the reciprocal of the probability of selecting the student's PSU into the bridge sample, given that the PSU was selected for the main samples.

Table B-1 in Appendix B shows the distribution of base weights for each of the separate sessions conducted as part of the 1988 assessment. The variations in probabilities of selection, and consequently of weights, ware introduced by design, either to increase the effectiveness of the sample in achieving its goals of reportıng for various subpopulations, or to achieve increased efficiency per unit of cost.

### 8.1.2 Adjustment of Base Weights for Nonresponse

The base weight for a selected student was afjusted by four nonresponse factors. One of these was to ddjust for noncooperating schools, while the second (used only in the case of bridge samples) was needed to adjust for allocated sessions that occasionally were not conducted. The .hird adjustment was needed to account for those few cases where, either inadvertently or on the insistance of the school, only scudents in the modal grade were given a chance of inclusion in the sample. The fourth adjustment was neeued to adjust for students who were (or should have been) invited to the assessment but did
not appear either in the scheduled session or a makeup session. Thus, the nonresponse adjusted weight for a student is of the form

$$
W^{\prime}=W_{B} \cdot \operatorname{SCHNRF} \cdot \operatorname{SESNRF} \cdot \operatorname{AOENRF} \cdot \operatorname{STUNRF}
$$

where the nonresponse adjustment factors SCHNRF, SESNRF, AOENRF, and STUNRF are computed as described beluw.

The season-specific base weight was similarly adjušed for the same four types of nonresponse.

### 8.1.2.1 School Nonresponse Aajustment (SCHiRR)

The school .conresponse adjustment wa intended to compensate for school nonresponse occurring before session assig.ment. These factors were computed separately withir a FSU (except in a few cases where ISUs from similar strata were combined to give a more stable adjustment factor).

The school nonresponse adjustment factor in PSU $h, \operatorname{SCHNRF}_{h}$, is given by

where

| $\mathrm{SCHWT}_{\text {h1 }}$ | the school weight for school $i$ in PS |
| :---: | :---: |
| $G_{h i}$ | the estimated number of grade/age-eligible students in school i in PSU h based on QED data (for sessions involving only age-eligible students, the number of age eligibles in each school was used); |
| set $A_{h}$ | consists of the original sample of schools (cooperating and noncooperating schools, but not substitutes); and |
| set $\mathrm{B}_{\mathrm{h}}$ | consists of all schocls cooperating at the time of session allocation (including schools that were substituted for noncooperating schools). |

For a substitute school, $\mathrm{SCHWT}_{\text {hi }}$ is defined as the school weight of the originally selected school, while the value of $G$ is taken from the substitute schoc? itself. In those cases where PSUs were combined, the value of PSUWT (or PSUFT: WGTBRDG in the case of bridge samples) was included in the numerator and denominator of the school nonresponse adjustment factor.

Table B-2 in Appendix $B$ shows the distribution of school nonresponse adjustment factors for each of the 1988 assessment sessions.

### 8.1.2.2 Session Nonresponse Adjustment (SESNRF)

The session nonresponse adjustment was intended to compensate for school nonresponse occurring in a lew PSUs after session assignment in the bridge samples. These factors were computed separately within a PSU, except in cases where PSUs from similar strata were combined to give a more stable adjustment factor.

In PSU $h$, the session nonresponse adjustment factor SESNRF $_{\mathrm{h}}$ was given by
SESNRF $_{\mathrm{h}}-\quad \mathrm{SCHWT}_{\mathrm{h} 1} \cdot \mathrm{SCHNRF}_{\mathrm{h} 1} \cdot \operatorname{SESSWT}_{\mathrm{h} 1} \cdot \mathrm{G}_{\mathrm{h} 1}$
where
$\mathrm{SCHWT}_{\mathrm{hi}}$ - the school weight for school in in PSU (or group of PSUs) h;

SCHNRF $_{\mathrm{hi}}$ - the school nonresponse adjustment for school in in PSU h;
SESSWT $_{\mathrm{h} 1}$ - the session allocation weight for school $i$ in PSU $h$;
$\mathrm{G}_{\mathrm{h} 1} \quad-\quad$ the estimated number of grade/age-eligible students in school $i$ in PSU $h$ in the case of spiral uridge sessiors, and the estimated number of age-eligible students in the case of the tape sessions, to which only age eligibles were invited (the values of $\mathrm{G}_{\mathrm{h}}$ were based on QED data);
set $\mathrm{R}_{\mathrm{h}}$
consists of all in-scope schools : located to a particular type of session in PSU (or group of PSUs) $h$ that were to be participating at the time of session allocation; and
set $C_{h} \quad$ consists of all schools allocated to the session type in PSU (or group of PSUs) $h$ that ultimately participated.

In those cases where PSUs were combined, the value of PSUWT - WGTBRDG was included in both the numerator and denominator of SESNRF. Table B-3 in

Alpendix $B$ shows the distribution of the session nonresponse adjustment factor foi each of the 1988 bridge sample sessions.

### 8.1.2.3 Age-only Eligibles Nonresponse Adjustment (AOENRF)

In a few schools in which assessments took place, only those students in the modal grade were listed for sampling (see Chapter 3), even though there was definite or very strong evidence that other eligible students were enrolled. Thus, an adjustment factor was needed to account for the fact that, although students eligible by age alone (age-only eligibles) were almost certainly enrolled in these schools, they were not given a chance of inclusion in the sample. These factors were calculated separately by PSU.

The school-level age-only eligibles nonresponse adjustment factor in PSU $h$, AOENRF $\mathrm{l}_{\mathrm{l}}$, is given for students not in the modal grade by

where
$\mathrm{SCHWT}_{\mathrm{h} 1}$ - the school weight for school i in PSU h;
SCHNRF $_{\mathrm{hi}}$ - the school nonresponse adjustment for school in in PU h;

SESSWT $_{\text {hi }}$ - the session allocation weight for school i in PSU $h$ (bridge samples only);

SESNRF $_{\text {t.i }}$ - the session nonresponse adjustment for school in in PS h (bridge samples only);
$\mathrm{AO}_{\mathrm{h} 1} \quad-\quad$ the estimated number of age-only eligible students in PSU h, school i, based on PQ data;
set $C_{h}$
set $D_{h}$
consists of all schools allocated to the particular session type in PSU h that ultimately participated; and
consists of all schools allocated to the particular session type in PSU h, that could be reasonably supposed to have included age-only eligible students in the assessment, $1:$ any, or that had no age-only eligible students.

The value of AOENRF $_{\mathrm{h}}$ for students in the modal grade is given as 1.0 , since they were not subject to this component of nonresponse. Table B. 4 in

Appendix $B$ shows the distribution of the age-only eligible nonresporse adjustment factor for each of the 1988 assessment sessions.

### 8.1.2.4 Student Nonresponse Adjustment (STUNRF)

Student nonresponse adjustment factors $w$ e completed sepa:ately for spiral sessions and for each of the tape sessions within each PSU.

For spiral sessions, the student nonresponse adjustment was made separately for two classes of students in PSU h by age class: those in or above the modal grade for their age, and those below. This differentiation acknowledges likely differences between students in the two classes, both in their assessed abilities and in their likelihood of nonresponse. For some sescions in some PSUs, these two classes were combined, since one or both was too small to form the basis for an adjustment factor. For each class $c$ in PSU $h$, the student nonresponse adjustment factor $S_{\text {SUNRF }} \mathrm{hc}$ is computed by

| STUNRF $_{\text {hc }}=$ | $\begin{aligned} & \Sigma \\ & A_{h c}^{\prime} \end{aligned}$ | $\mathrm{SCHWT}_{\mathrm{hi}} \cdot$ SCHNRF $_{\mathrm{hi}} \cdot$ SESSWT $_{\mathrm{h} 1} \cdot$ SESNRF $_{\mathrm{hi}} \cdot$ AOENRF $_{\mathrm{hi}} \cdot$ STUSCHW $_{\text {hij }}$ |
| :---: | :---: | :---: |
|  | $\begin{aligned} & \Sigma \\ & \mathrm{B}_{\mathrm{hc}}^{\prime} \end{aligned}$ |  |

where

| $\mathrm{SCHWT}_{\mathrm{hi}}$ | - | the school weight for school i in PSU h ; |
| :---: | :---: | :---: |
| $\mathrm{SCHNR}_{\text {hi }}$ | - | the school nonresponse adjustment factor for school i in PSU h; |
| SESSWT $_{\text {hi }}$ | - | the session allocation weight for spiral sessions in school i in PSJ h (bridge samples only); |
| $\operatorname{SESNRF}_{\text {:A }}$ | - | the session nonresponse adjustment factor for spiral sessions in school $i$ in PSU h (bridge samples only); |
| P. UENRF $_{\text {hi }}$ | - | the age-only eligibles nonresponse adjustment factor in PSU $i$, school i; |
| STUSCHW ${ }_{\text {hij }}$ | - | the within-school student weight for student $j$ in school i in PSU h; |
| Set Ath |  | consists of the students in class $c$ in school $i$ in PSU $h$ who were invited to the session; and |
| Set $\mathrm{Bh}_{\text {' }}$ |  | consists of the students in class $c$ in school $i$ in PSU $h$ who were assessed in the session. |

The student nonresponse adjustment for tape sessions was similar, except that the adjustment was compu:ed within a PSU for each tape bookiet across all students originally invited to the assessment for that booklet.

Table B-5 in Appendix b shows the distribution of student nonresponse adjustment factors for each of the 1988 assessment sessions.

### 8.1.3 Trimming of Weights

In a number of cases, students were assigned relatively large weights. One cause of large weights was underestimation of the number of eligible students in some schools leading to inappropriateiy low p-obabilities of selection for those schools. A second major cause is the presence of large schools (high schools in particular) in PSUs with small selection probabilities. In such cases, the maximum permissible within-school sampling rate (determined by the maximum sample size allowed per school-see Chapter 3) could well be smaller than the desired overall within-PSU sampling rate for students. Large weights arose also because very small schools vere, by design, sampled with low probabilities. Other large weights arose as the result of high levels of nonresponse coupled with low to moderate probabilities of selection, and the compounding of nonresponse adjustments at various levels.

Students with notable large weights have an unusually large impact on estimates such as weighted means. Since, under some simplifying assumptions the variability in weights contributes to the variance of an overall estimate by an approximate factor $1+V^{2}$, where $V^{2}$ is the relative variance of the weights, an occasional unusually large weight is likely to produce large sampling variances of the statistics of interest, especially when the large weights are associated with students with atypical performance characteristics.

To reduce this problem, a procedure of trimming a few of the more extreme weights to values somewhat closer to the mean weight was applied. This tyimming can increase the accuracy of the resulting survey estimates, substantially reducing $\mathrm{V}^{2}$ and hence the stmpling variance while introducing a smell bias. The trimming algorithm was identical to that used in the 1984 and 1986 assessments and had the effect, approximately, of trimming the weight of any school that contributed more than a specified proportion, 5 , to the estimated variance of the estimated number of students eligible for assessment. The trimning was done separate $y$ for the spiral assessment and fcr each tape booklet in each of the bridge samples. In each case, the value of the prof ition $\zeta$ was chosen to be $10 / \mathrm{K}$, where K was the number of schools in which a specified assessment was conducted. The number of schools where weights were trimmed was small, being between 0 and 5 in each of the samples. Tsble B-6 in Appendix B shows the distribution of trimming factors for each of the 1288 assessment sessions. From the table it is seen that the most extreme trimming factors applied were of the order of 0.5 to 1 . While we have not extensively examine, the potential magnitude of bias that might be introduced from such trimming, . sed on the available evidence it seems reasonable to
conclude that such bias would be quite small and that the reduction of variance would be large enough to result in a reduction in the mean square error.

### 8.1.4 Poststratiff.cation

As in most sample surveys, the respondent weights are random variables that are subject to sampling variability. Even if there were no nonresponse the respondent weights would at best provide unbiased astimates of the vario's subgroup proportions. However, since unbiasedness refers to average performance over a conceptually infinite number of replications of the spmplinj, it is unlikely tha any given estimate, based on the achieved sample, will exactly equal the population value. Furthermore, the respondent weights have been adjusted for nonresponse and a few extreme weights have bean reduced in size.

To redure the mean squared e:ror of estimates using the sampling weights, these weights were further adjusted so that estimated population totals for a number of specified subgroups of the population, based on the sum of weights of students of the specified type, were the same as presumably better estimates based on composites of estimates from the 1985 and 1986 Current Population Survey and 1988 population projections made by the Census Bureau. This adjustment, called poststratification, is intended especially to reduce the mean squared error of estimates relating to student populations that span several subgroups of the population, and thus to reduce the variance of measures of changes over time for such student populations.

### 8.1.4.1 1988 Poststratification Procedures

The poststratification in 1988 was done for each grade/age and separately for each of the spiral assessments and each of the tape assessments. Within each grade/age and assessment type group, poststratification adjustment cells were defined in terns of race, ethnicity, and NAEP region as shown in Table 8-1.

Table 8-1
Major Subgroups for Poststratification in 1988

| Subgroup | Race |  |  | Ethnicity |
| :---: | :--- | :--- | :--- | :--- |
|  |  |  | Region* |  |
| 1 | White | Non-Hispanic | NE |  |
| 2 | White | Non-Hispanic | SE |  |
| 3 | White | Non-Hispanic | Central |  |
| 4 | White | Non-Hispanic | West |  |
| 5 | Any | Hispanic | Any |  |
| 6 | Black | Non-Hispanic | Any |  |
| 7 | Other | Non-Hispanic | Any |  |

[^21]The result is seven poststratificetion cells for each tape session. For the assessmenis involving both age and grade el'gible students, each of the seven subgroups was further divided into two or three eligibilits classes. For age classes 9 and 13 and for the grade $11 / a g e ~ 17$ bridge sample, thrie eligibility classes were used:
a) students eligible by both age and grade;
b) students eligible by age only;
c) students eligible by grade only.

For the grade 12 /age 17 main assessment sample, the 7 subgroups were each divided into two subclasses:
a) students eligible by grade (of any age);
b) students eligible by age only.

This variation in the procedure from that used for the other age classes and for the grade 11 /age 17 bridge was adopted because the independent estimates of the numbers of students in the population did not provide consistent data on the numbers of twelfth grade students eligible only by grade (see Rust et al., 1990, for further details).

Thus, there were 7,14 , or 21 cells for poststratification. The poststratified weight for each student within a particular cell was the student's base weight, with adjustments for nonresponse and trimming, times a poststratification factor. For each cell, the poststratification factor is a ratio whose denominator is the sum of the weights (after adjustments for nonresponse and trimming) of assessed and excluded students, and whose numerator is an adjusted estimate of the total number of students in the population who are members of the cell. This estimated total was a composite based on the October 1985 and 1986 Current Population Surveys and 1988 population projecions. Table B-7 in Appendix B shows the distributior, of poststratification factors for each of the 1988 assessments.

### 8.1.4.2 Differences From Earlier Procedures

The poststratification procedures used in 1988 were derived using an approach similar to those used in 1984 and 1980, but with major variations. To make the differences clear, the 1984 and the 1986 procedures will be described.

The same poststratification procedures were used for both the 1984 and 1986 assessments. For the spiral assessments, 13 subgroups were defined in terms of race, ethnicity, census region and community size (SDOC) as shown in Table 8-2. Each of the 13 subgroups was further divided into three classes:
a) students eligible by both age and grade;
b) students eligible by age only;
c) students eligible by grade only.

Table 8-2
Major Subgroups for Poststratification in 1986 and 1984

| Subgroup | Race | Ethnicity | Region | SDOC* |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Frite | NonHispanic | NE | 1, 2 |
| 2 | White | NonHispanic | NE | 3, 4, 5 |
| 3 | White | NonHispanic | SE, Central | 1, 2 |
| 4 | White | NonHispanic | SE, Central | 3 |
| 5 | White | NonHispanic | SE, Central | 4, 5 |
| 6 | White | NonHispanic | West | 1, 2 |
| 7 | White | NonHispanic | West | 3, 4, 5 |
| 8 | Any | Hispanie | NE, SE, Central | Any |
| 9 | Any | Hispanic | West | Any |
| 10 | Black | NonHispanic | NE | Any |
| 11 | Black | NonHispanic | SE | Any |
| 12 | Black | NonHispanic | Central, West | Any |
| 13 | Other | NonHispanic | Any | Any |

[^22]The division of the sample by major subgroup and grade/age eligibility class resulted in 39 poststratification cells for each age class. The final weight for a student was the product of the base weight (as adjuster for nonresponse and after trimming) and a poststratifs - tion factor whose denominator was the sum of those weights for the $c l$ to which the student belongs and whose numerator was an adjusted estimate of the total number of students in the cell. This adjusted $f$ itimate was a composite of estimstes from the NAEP sample and an independent estimate based on projections based on Current Population Survey estimates and Census :mijections. The adjusted estimate was a weighted mean of the two estimates, the weights being inversely proportional to the approximate variances of the NAEP and the independent estimates.

The sample of students in each of the tape assessments was much smaller than the sample for the sf-ral assessments. Consequently, some subgroups in Table 8-2 were collapsed for poststratification as follows:

| 1,2 | 6,7 |
| :--- | ---: |
| 3 | 8,9 |
| 4 | $10,11,12$ |
| 5 | 13 |

Furthermore, to improve comparability with earlier assessments, there was no subdivision into age and grade eligibility classes, so that there were eight poststratification cells for each age class.
i :

The 1988 poststratification procedures thus differ from those used for the 1984 and the 1986 assessments in three ways:

1) The 1988 poststrata totals incorporate current Census Bureau monthly population estimates by single years of age by race/ethnicity groups. Such monthly estimates weze not available at the time of the poststratification of the 1984 and 1986 weights. Furthermore, the use of these estimates eliminated the need to derive year-to-year retention factors for age 17 students, as had been done in the previous years. This resulted from the fact that the estimates of in-school eligibles were obtained using data relating only to the particular grade and age in question, rather than incorporating projections from younger ages and lower grades, as was done in 1984 and 1986.
2) For the spiral assessments, the number of cells used in poststratification was reduced from the 39 cells used in 1986 and 1984 to the 14 or 21 cells used in 1988 . For the tape assessments, the number of cells was reduced from eight to seven. The poststrata used for 1988 vary substantially in rean performance level and yet are large enough to produce reasonably stable poststratification factors. The reduction in the number of cells was made to increase the stability of the poststratification factors in an effort to reduce the sampling variance.
3) The 1988 poststrata totals were derived solely from Current Population Survey data and Census Bureau population projections and, in contrast to the method used in previous years, placed less reliance on trie data from the 1988 NAEP samples. NAEP data were still used to determine the proportion of students eligible by both age and grade, for the spiral samples (other than for grade 12).

The 1988 procedure was adopted in order to speed up the production of the weights, since poststrata totals based only on Current Population Sur:ey and Census data can be derived well in advance of the weighting of the data.

Appendix E describes the revisions made in the postitratification weights for the main samples for 1984 for grade 4/age 9 and for grade 8/age 1.3, al, so to improve the accuracy of estimates for 1984 and the trend measurements from 1984 to subsequent years.

### 8.1.4.3 A Heasure of the Effect of Changes in Poststratification Procedures

It is clearly important to ascertain the impact of these changes in pestotiacification on the estimates of st:ogr up proficiencies. In particular, it is important to establish that the measurement of trend in subgroup proficiencies is affected in a minimal way by this revision in procedures. The approach used to ascertain the effect of the change in poststratification procedures was to reweight the 1986 samples according to the new procedures and then compare the resills with the previous results. (This approach is
considerably more cost and time efficient than the alternsti"e approach of reweighting the $1 y^{\wedge} \mathcal{E}$ data according to the 1986 procedures.)

Tabiss $8-3,8-4$, and $8-5$ show the result when the age-eligible students in the trend samples of the 1986 assessm $t$ of reading are reweighted using the new poststratification factors. Th. first two columns in ach table compare the new procedure with the old in terms of the estimated relative frequencies by race/ethnicity, region, parental education, ar.i grade. The last two columns compare the two procedures in terms of the mean reading proficiencies for those subgroups.

An examination of these tables shows that the effect of changing the poststratification procedure on meen froficiency estimates is slight: in most cases, the lifference between the proficiency estimates based on the two procedures is less than one standard error (of the mean proficiency based on the old method) and in every case the difference is less than 1.25 standard errors. The differencos belwee. estimates based on the two poststratification methods are well within the fluctuations to be expected by chance in eit ${ }^{2}$. of the individual estimates.

We note that the standard errors of the difference betwecn the original and revised estimates are likely to be relatively small, because of the high degree of correlation between the two sets of estimates. However, the important aspects of the change in the method are the sizes of the resulting differences in estimates, relative zo the precision of the estimates themselves, as discussed above.

### 8.1.5 The Final Student-Yeight: The Full-Sample Weight and tine SeasonSpecific Final. Ueight

The f. -al weight assigned to a student is the student full-sample veight. This weight is the student's base weight after the application of the various adjustme .us described above. The student full-scmple weight was used to derive all estimates of population anc subpopulation characteristics that have been presented in the various NAEP reports, including simple estimates such as the proport'. .a of students of a specified type who would respond in a certain way to an item and more complex estimates such as mean proficiency levels.

In addition to the full-sample weight, a student season-specific weight was also derived. The season-specific weight is to be used for analyses that are based on data from the main NAEP assessments from either the winter administration or the spring administration alone. The season specific weight is the student's season-specific base weight adjusted for nonresponse, subjected to the trimming algorithm, and then foststratified. The winter and spring season-specific weights were separately poststratified to the same poststrata totals as were used for the full-sample weights. The distributions of the seasun-sp iific poststratification factors are summarized in Table B-7 in Appendix B.

Table 8-3
Effect of Change in Poststratification Procedures on Relative Frequencies and Mean Reading Proficiencies, Age 9, 1986

|  | Relative Frequencies |  | Mean Reading Proficiencies |  |
| :---: | :---: | :---: | :---: | :---: |
|  | New Procedure | Old Procedure | New Procedure | 01d Procedure |
| Observed Race/Ethnicity |  |  |  |  |
| White | 76.0\%(1.0) | 76.5\%(1.1) | 214.7(1.5) | 214.9( 1.3) |
| Elack | 15.5\%(0.5) | 14.9\%(0.5) | 186.4(1.6) | 185.0( 1.6) |
| Hispanic | 6.0\%(1.1) | 6.2\%(1.1) | 189.0(2.9) | 189.8( 3.3) |
| Other | 2.4\%(0.5) | 2.5\%(0.5) | 204.7(6.2)! | 203.7(6.6)! |
|  |  |  |  |  |
| Northeast | 20.7\%(1.1) | 21.1\%(1.1) | 212.0(3.0) | 212.3( 2.7) |
| Southeast | 25.9\%(2.0) | 22.5\%(4.7) | 205.2(3.2) | 202.5( 2.7)! |
| Central | 26.2\%(0.9) | 28.6\%(4.0) | 211.7(2.5) | 212.9( 2.7) |
| West | 27.2\%(1.6) | 27.7\%(1.6) | 206.0(3.1) | 206.5( 3.0) |
| Grade 188.3 18.2) 189.4 .4$)$ |  |  |  |  |
| < Modal Grade | 34.2\%(1.7) | 33.9\%(1.7) | 188.3(1.2) | 189.4(1.4) |
| at Modal Grade | 65.5\%(1.7) | 65.8\%(1.7) | 218.9(i.3) | 218.5(1.2) |
| > Modal Grade | 0.3\%(0.1) | $0.3 z(0.1)$ | 238.2(8.8)! | 241.9(11.3)! |
| Parental Education $189.5(2.8)$ |  |  |  |  |
| Not Graduated H S | 4.3\%(0.4) | 4.2\%(0.4) | 190.1(2.9) | 189.5( 2.8 ) |
| Graduated H S | 16.0\%(0.8) | 16.4\%(0.7) | 201.5(1.4) | 202.2( 1.9) |
| Post H S | 44.7\%(1.2) | 44.4\%(1.2) | 219.2(1.4) | 219.0( 1.3) |
| 'Total |  |  | 208.5(1.3) | 208.6(1.2) |

Note: Standard errors in parentheses
: Interpret with caution-the sampling error cannot be accurately estimated, since the coefficient of variation of the estimated total number of students in the subpopulation exceeds 20 percent.

Table 8 -4
Effect of Change in Poststratification Procedures on Relative Frequencies and Mean Reading Proficiencies, Age 13, 1986

|  | Relative Frequencies |  | Mean Reading Proficiencies |  |
| :---: | :---: | :---: | :---: | :---: |
|  | New Procedure | $\begin{gathered} \text { Old } \\ \text { Procedure } \end{gathered}$ | New Procedure | Old <br> Procedure |
| Observed Race/Ethnicity |  |  |  |  |
| White | 77.3\%(0.9) | 76.8\%(1.0) | 260.3(0.9) | 258.8(1.2) |
| Black | 14.4\%(0.8) | 14.4\%(0.9) | 239.2(1.9) | 239.3(1.6) |
| Hispanic | 6.1\%(1.0) | 6.6\%(1.1) | 242.1(2.6) | 242.2(3.1) |
| Other | 2.2\%(0.3) | 2.2\%(0.3) | 262.3(3.6) | 263.9(4.1) |
| Region |  |  |  |  |
| North-ast | 23.9\%(1.6) | 22.4\%(1.6) | 259.6(2.2) | 258.7(2.1) |
| Southeast | 23.9\%(1.9) | 24.7\%(5.8) | 254.3(1.6) | 254.8(1.6)! |
| Central | 25.6\%(0.6) | 24.9\%(5.0) | 254.6(1.3) | 250.8(3.6) |
| West | 26.7\%(1.4) | 28.0\%(1.5) | 256.1(1.8) | 256.0(1.7) |
| Grade |  |  |  |  |
| < Modal Grade | 32.3\%(1.6) | 32.7\%(2.1) | 239.3(1.4) | 238.4(1.4) |
| at Modal Grade | 67.3\%(1.6) | 66.8\%(2.1) | 264.1(1.0) | 263.0(0.9) |
| > Modal Grade | 0.5\%(0.1) | 0.5x(0.1) | 279.5(6.5)! | 275.8(6.0)! |
| Parental Education |  |  |  |  |
| Not Graduated H S | 7.3\%(0.5) | 7.8x(1.0) | 245.4(2.2) | 244.2(2.9) |
| Graduated H S | 29.6\%(1.3) | 30.5\%(1.2) | 249.8(1.2) | 249.3(1.1) |
| Post H S | 54.0\%(2.0) | 52.3\%(2.1) | 263.7(1.0) | 262.7(0.9) |
| Total |  |  | 256.2(0.8) | 255.0(1.0) |

Note: Standard errors in parentheres
! Interpret with caution-the sampling error cannot be accurately estimated, since the coefficient of variation of the estimated total number of students in the subpopulation exceeds 20 percent.

Table 8-5
Effect of Change in Poststratification Procedures on Relative Frequencies and Mean Reading Proficiencies, Age 17, 1986

## Mean Reading

Relative Frequencies
Proficiencies

|  | New Procedure | 01d <br> Procedure | New <br> Procedure | 01d <br> Procedure |
| :---: | :---: | :---: | :---: | :---: |
| Observed Race/Ethnicity |  |  |  |  |
| White | 76.6\%(0.4) | 78.0\%(0.4) | 290.9(0.9) | 291.4(0.9) |
| Black | 14.6\%(0.2) | 13.5\%(0.2) | 264.9(1.3) | 265.0(1.2) |
| Hispanic | 6.4\%(0.2) | $6.2 \%(0.2)$ | 266.3(2.4) | 267.5(2.1) |
| Other | 2.4\%(0.3) | 2.4\% (0.3) | 274.1(4.1) | 276.6(4.4) |
| Region 290 (20) $293.1(2.0)$ |  |  |  |  |
| Northeast | 25.4\%(1.2) | 23.8\% (0.3) | 291.2(2.0) | 293.1(2.0) |
| Southeast | 24.0\% (0.6) | 21.2\%(1.4) | 280.0(1.0) | 279.4(1.0) |
| Central | 26.1\%(0.6) | 28.4\%(1.5) | 287.1(2.1) | 288.1(2.1) |
| West | 24.5\% (0.9) | 26.5\%(0.5) | 281.7(1.4) | 282.7(1.5) |
| Grade |  |  |  |  |
| < Modal Grade | 24.9\%(0.6) | 21.8\%(0.6) | 258.0(0.9) | 257.7(1.0) |
| at Modal Grade | 65.86(0.4) | 70.3\%(0.4) | 293.1(0.8) | 293.1(0.8) |
| > Modal Grade | 9.3\%(0.6) | 7.9\%(0.5) | 301.2(2.0) | 301.0(2.1) |
| Parental Education |  |  |  |  |
| Not Graduated H S | 9.3\%(0.5) | 8.9\%(0.6) | 265.0(1.1) | 266.3(1.4) |
| Graduated H S | 27.8\% (0.9) | 27.7\%(0.8) | 274.9(0.8) | 275.9(0.8) |
| Post H S | 58.9\%(1.3) | 59.4\%(1.2) | 295.3(0.8) | 295.8(0.9) |
| Total |  |  | 285.1(0.8) | 286.0(0.9) |

Note: Standard errors in parentheses

The effects of all of the adjustments to the base weights are summarized in Table B-8 in Appendix B, which shows the distribution of the singie factor given as the product of SCHNNF, SESNRF, AOLNRF, STUNRF, the trimming factor, and the poststratification factor, for each of the assessment components. The distributions of the final student weight, are given in Table B-9 in Appendix B.

As indicated earlier, under some simplifying assumptions the factor $1+\mathrm{V}^{2}$ indicates the approximate relative increase in variance of estinates resulting from the variabilicy in the weights. The factor $l+V^{2}$ for each sample is readily derivable from Table B-9 by adding 1 to the square of the ratio of the standard deviation to the mean weight. These factors, resulting from the combined effect of the variations in weights introduced by design and from other causes, as discussed above, are generally about 1.3 for the main samples. They vary from 1.12 to 1.53 for the various bridge samples.

### 8.1.6 Other Weights

In addition to the weights for the assessei students, weights were also derived for excluded students and for the students whose teachers participated in the teacher survey.

Weights for excluded sicudents. Excluded students are students who were designated by the schools as unable to complete the assessment because they were non-English speaking, mildly mentally retarded (educable), or functionally disabled. Since the same grade and age eligibility definitions apply, no distinction is made between students excluded from the bridge assessments and students exciuded from the main assessments for grade 4/age 9 and grade 8/age 13. However, since the age and grade eligibility definitions differ for the oldest age class. the excluded students from the grade llage 17 bridge assessments (with an October-September age definition and modal grade of ll) are treated as separate from the excluded students from the grade 12/age 17 main assessment (with a calendar-year age definition and modal grade of 1.2 ).

As in the case of the weights for the assessed students, the excluded student weights were constructed from components reflecting the probability of selection, correction for nonresponse, weight trimming, and poststratification. Further details on the derivation of the excluded student weights can be found in Rust et al. (1990). The distributions of the base weights, the various weight components and their composite, and the final student weight are given in Table B-10 in Appendix B fcr each of the four samples.

Weights for students in the teacher survey. The reading teachers of every grade 4 student who was assessed for reading in the main assessment and the writing teachers of every grade 8 student who was assessed for writing in the main assessment were identified within each school. Up to seven of these teachers within each school were selected to complete the teacher
questionnaire; in schools with more than seven such teachers, a sample of five teachers of students assessed for reading or writing (as appropriate) in the main assessment was selected. Every selected teacher was provided a list of all his or her students (up to a maximum of 10 ) who had been assessed for zeading or writing (as appropriate) in the main assessment. If more than 10 students fit the criteria, a random sample of 10 such students was provided. The sesected teachers were asked to complete a detailed questionnaire about the capabilities of each selected student and the kinds of reading or writing instruction the student received.

These data can be analyzed using the teacher-student weights. It is important to note that the teacher-student weights are appropriate for use in estimating the number or percent of students in the total population who have various characteristics; they are not appropriate for use in estimaing the number of teachers or the number of teachers with various charac ceristics. They are supplied only for a subsample of students anc ire appropriate for use in analyses involving the teacher-characterictics of students (for example, to estirate the proportion of fourth-grade students whose readirg teachers hivo at leist a master's degree).

The teacher-student weights are based on the final student weights of those students in the main assessment who are linked to a completed teacher questionnaire. The teacher-student weight is the nonresponse-adjusted st'dent weight further adjusted for the probability that the student's teacher as selected as well as for nonresponse on the part of the teachers. Additionally, the teacher-student weights were subjected to the trimming algorithm and poststratification adjustments. Further details on the construction of these weights appear in Rust et al. (1990). The distributions of the teacher subsampling adjustment, the teacher nonresponse adjustment, the trimming factor, the poststratification factor, and their composite, together with that of the final teacher-student weights, are summarized in Table B-11 in Appendix B.

Finally, in addition to these weights, which were used to derive all estimates of population and subpopulation characteristics, other sets of weights, called jackknife zeplicate weights, were derived to facilitate the estimatir. $\eta$ of sampling variability by the jackknife variance estimation tecnnıque. These weights and the jackknife estimator are discussed in the next section.

### 8.2 PROCEDURES USED BY NAEP TO ESTIMATE SAMPLING VARIABILITY

A major source of uncertainty in the estimation of the value in the population of a variable of interest exists because information about the variable is obtained on only a sample from the population. To reflect this fact, it is important to attach to any statistic (e.g., a mean) an estimate of the sampling variability to be expected for that statistic. Estimates of sampling variability provide information about how much the value of a given statistic would be likely to change if the statistic had been based on another, equivalent, sample of individuals drawn in exactly the same manner as the achieved sample.

Another important source of variability is that due to imprecision in the measurement of individual proficiencies. In NAEP, proficiencies in subject areas are summarized through item response theory (IRT) or average response method (ARM) models, but not in the way that these models are used in standard applications where each person responds to enough items to allow for precise estimation of that person's proficiency. In NAEP, each individual responds to relatively few items so that individual proficiency values are not well determined. Consequently, the variance of any statistic based on proficiency values has a component due to the imprecision in the measurement of the proficiencies of the sampled individuals in addition to a component measuring sampling variability. The estimation of the component of variability due to measurement mprecision and its effect on the total variabilit, of statistics based on proficiency values are discussed in Chapter 9.

The estimation - the sampling variability of any statistic must take into account the sample design. In particular, because of the effects of cluster selection (students within schools, schools within PSUs) and because of effects of nonresponse and poststratification adjustments, observations tade on different students cannot be assumed to be independent of each other (and are, in fact, generally positively correlated). Furthermore, to account for the differential probabilities of selection (and che various adjustments), each student has an associated samplitg weight, which should be used in the computation of any statistic and which is itself subject to sampling variability. Ignoring the special characteristics of the sample design and treating the data as if the observations were independent and identically distributed, will generally produce underestimates of the true sampling variability.

The proper estimation of the sampling variability of a statistic based on the NAEP data is complicated and requires techniques beyond those commonly available in standard statistical packages. Fortunately, the jackknife procedure (see, e.g., Wolrer, 1985; Frankel, 1971) provides good quality estimates of the sampling variability of most statistics, at the expense of increased computation, and can be used in concert with standard statistical packages to obtain a proper estimate of sampling variability.

The jackknj.fe procedure used by NAEP has a number of properties that make it particularly suited for the analysis of NAEP data. When properly applied, a jackknife estimate of the variability of a linear estimator (such as a total) will be the same as the standard textbook variance estimate specified for the sample design (if the first-stage units were sampled with replacement and approximately so otherwise). Additionally, if the finite sampling corrections for the first stage units can be ignored, the jackknife rroduces asymptotically consistent variance estimates for statistics such as ratios, regression estimates or weighted means and for any other nonlinear statistic that can be expressed as a smooth function of estimated totals of one or more variables (Kxewski \& Rao, 1981).

Through the creation of student replicate veights (defined below), the jackknife procedure sllows the measurement of variability attributable to the
use of poststratification and other weight adjustmer.c factors that are dependent upon the observed sample data. Once these replicate weights are derived, it is a straightforward matter to obtain the jackknife variance estimate of any statistic.

The jackknife procedure in this application involves first defining pairs of first-stage sampling units or of appropriate aggregates of them in a manner that models the design as one in which two first-stage 'anits are drawn with replacement per stratum in a manner reflective of the actual design. (The term first-stage sampling unit is used here in an effort to avoid the confusion that may rise because it has been convenient and traditional to retain the term PSU for large geographic sample units, many of which are included in the sample with certainty.) This requires different approaches for the certainty and for the noncertainty strata. For the main sample, the 60 noncertainty PSUs were formed into 30 pairs of PSUs, where the pairs were composed of PSUs from adjacent strata within each subuniverse (thus the strata were relatively similar on the characteristics of proportion minority population, population change between 1970 and 1980, and the proportions of urban and farm populations). Whereas the actual sample design was to selert one PSU with probability p=oportional to size from each of 60 strata, for variance estimation purposes, the design is regarded as calling for the selection of two PSUs with probability proportional to size with replacement from each of 30 strata. This procedure likely gives a small positive bias to estimates of sampling erroz. The certainty PSUs are treated as strata for variance estimation purposes (which they in fact are), with the largest certainty PSU being treated as two strata (this is appropriate since stratified selection was used within PSUs), and all the other 33 PSUs being treated as a single stratum each. The schools in each of the 35 strata so defined were the first-stage sampling units, and were assigned within each strata to one of two half-samples, with equal probability, and systematically. For those certainty PSUs with both winter and spring assessed schools, each half-sample was composed of half winter schools and half spring schools, so as not to reflect inappropriately between season differences as a component of sampling error. For the noncertainty pairs, one PSU was assigned at random to each half-sample.

This procedure thus gives 65 half-sample pairs: 30 from noncertainty PSUs and 35 from certainty iSUs. About one-third of the U.S. pcpulation lives within the 35 certainty PSUs and thus the total number of half-sample pairs from this sector can be reduced somewhat, without appreciably reducing the effective degrees of freedom available for variance estimation (see section 8.4). Thus each of the 26 pairs formed by the 26 smallest certainty PSUs was combined with another pair from the same group. Thus these PSUs constitute 13 half-sample pairs. For each such pair, a given half-sample contains half of the schools (and hence their students) from each of two PSUs. The end result was 52 jackknife pair ${ }_{\mathrm{z}}$ of half-samples-two containing students from the largest certainty PSU, seven containing students each from a single large certainty PSU, 13 containing students each from two smaller certainty PSUs, with the schools from each PSU split between the half-samples, and 30 containing students each from two noncertainty PSUs, one PSU per half-sample

Similar pairings and half-samples were defined for the bridge assessments and $f r$, : he season-specific administrations of the main assessment, but tione correspond to somewhat different clusters of PSUs and, since fewer PSUs ince involved, smaller numbers of pairs were defined in each case. Further faivrmation on the construction of jackknife pairs can be found in Rust et al. (1;90).

NAEP's jacisnife variance stimator is designed for the situation where the first-stage units, or appropriate aggregates of them, are paired within strata. It est.anates the sampling variability of any statistic as the sum of components of vasiability that may be attributed to each of the jackknife pairs. The variance attributed to a particular jackkrife pair is measured by estimating how much the value of the statistic would change if the information embodied in the jackknife pair were to be changed. This is done by the computation of a quantity $t_{1}$ called a pseudoreplicate, which is associated with the $i^{\text {th }}$ jackknife pair, and which is an estimate of the statistic of interest $t$ based on an altered sample. Specifical'y, the $i^{\text {th }}$ pseudoreplicate of the statistic $t$ is created by randomly designating the half-sample members of the pair as first and second, eliminating the data from the first halfsample of the pair, replacing the lost information with that from the second half-sample of the pair (sc chat the second half-sample is included twice), repoststratifying the weights, and then reestimating the statistic for the pseudoreplicates based on this alt_red set of data.

The component of the sampling variability attributable to a jackknife pair is estimated as the squared difference between the value of the statistic for the complete sample and the pseudoreplicate associated with the pair. The estimated sample variance of the statistic $t$ is the sum of " squared differences (where $M$ is the number of jackknife pairs define 1 ):

$$
\hat{\operatorname{Var}}(t)=\sum_{i=1}^{M}\left(t_{i}-t\right)^{2}
$$

The statistic for the pseudorepilcate associated with a given jackknife pair is the original statistic for the pseudoreplicate recomputed using an altered set of weights, referred to as the student replicate weights. The student replicate weight, SRWTi, for the $i^{\text {th }}$ pair of first-stage units is computea as follows:

1) Let $W_{B}$ be the nonresponse adjusted base weight of a student, where $W_{B}$ accounts for the probabilities of selection and nonresponse buc does not include poststratification adjustments.
2) Let $W_{B 1}$ be the nonresponse adjusted replicate base weight formed by replacing the second member of the jackknife pair by the first, specifically:

$$
W_{B 1}-\quad \begin{cases}0 & \begin{array}{c}
\text { if the student is in the first set of } \\
\text { first-stage units in jackknife pair i }
\end{array} \\
J F * W_{B} & \begin{array}{c}
\text { if the student is in the second set of } \\
\text { first-stage unitcs in jackknife pair } i
\end{array} \\
W_{B} & \begin{array}{r}
\text { if the student is in neither of the } \\
\text { first-stage units in jackknife pair } i
\end{array}\end{cases}
$$

where JF is a constant multiplier (usually equal to 2 ) designed to maintain certain population totals.
3) Then the student replicate weight for the jackknife pair i is obtained by applying the poststratification adjustments to the weights $W_{B 1}$ in the associaed pseudoreplicate.

The poststratification adjustments are 2 zomputed for each jackknife replicate to reflect more completely the total effact of replacing one member of a jackknife pair with the other. (Nonrespase adjustments are not recomputed since these are generally performed within the PSU level and therefore their effect is appropriately reflected in the variance estimate.)

This estimation technique was used by NAEP to estimate all sampling errors presented in the various reports. A similar procedure was followed to estimate the sampling variability for statistics based on any of the bridge samples. The only difference was in the number of jackknife pairs (and hence replicate weights) used.

A further discussion of the variance estimation procedure used by ĩ NEP including a discussion of alternative jackknife estimators that were alsc considered appears in John on (1989).

We noted above (as discussed in Chapter 9) that a separate est: nate of the contribution to variance due to the imprecision in the measure of individual profici, ncies is made and added to the jackknife estima'ie ri variance. That variance component could have been appropriately refiected in the jackknife variance estimates simply by separately appiying the CRT computations to each jackknife replicate. Because of the heavier "RT computational load, this was not done. Less work was involved by the simple procedure of making separate estimates of this component to be added to the jackknife variance estimates. Also, a separate measure of this component of variance is then available, which would not be so if it were reflected in the jackknife variance estimate.

### 8.3 APPROXIMATING THE SAMPLING VARIANGE USING DESIGN EFFECTS

In practical terms, the major expenditure of resources in the computation of a jackknife variance estimate occurs in the preparation of estimates for each of the pseudoreplicates. In the 1988 assessment, this implies that the statistic of interest $h=s$ to be recomputed up to 53 times, once for the overall estimate $t$, and once for each of the up to 52 pseudoreplicates $t_{i}$. Because this is a considerable ircrease in the amount of computation required, relative to a conventional variance estimate, it is of interest to see how much the jackknife variance estimates differ from their less computationally intensive, simple random sampling based, analogues. For this purpose, we will compare the jackknife variance estimetes with the conventional estimates for three comnonly computed statistics: item proportion-correct statistics, mean proficiency estimates for sabgroups, and simple regression coefficients.

The comprisison of the conventional and the jackknife c. ods of variance estimation will be in terms of a statistic called the design effect, which was developed by Kish (1965) and extendrd by Kish and Frankel (1974). The design effect for a statistic is the ratio of the actual variance of the statistic (taking the sample design into account) over the conventional variance estimate based on a simple randon sample with the same number of elements. The design effect is the inflation facto: to be applied to the conventional variance estimate in order to ar.just e ror estimates based on simple random sampling assumptions to account approximately for the effect of che sample design. The value of the design effect lepends on the type of statistic computed and the variables considered in a particular analysis as well as the combined clustering, stratification, and weighting effects occurring among sampled elements. Generally, the desigr. effects for statistics from complex samples such as NAEP are greater than one, because variances based on simple random sampling assumptions tend to provide underestimates.

### 8.3.1 Design Effects for Proportion-correct Statistics

As an example of the distribution of design effecis to be expested from NAEP data, we first consicer the design effect for the statistic $P$, the estimated proportion of a specified subgroup of the population who would correctly respond to a given assessment item. The proportion-correct statistic is ine weighted mean of the responses to the item of the assessed individuals who belong to the subgroup, where an individual's response is either l-correct or 0 -incorrect. The design effect for the proportion-correct statistic $P$ is of the form

$$
\operatorname{deff}(P)=\left[\operatorname{Var}_{J K}(P)\right] /[P(1-P) / N]
$$

In the above, $N$ is the total number of individuals in the subgroup responding to the item, $\operatorname{Var}_{J K}(P)$ is the jackknife variance of $P$, and $P(l-P) / N$ is the conventional variance estimate of P . (Although the estimate $\mathrm{P}(\mathrm{l}-\mathrm{P}) / \mathrm{N}$ has the same form as the simple random sampling estimator of the variance of a proportion correct, the use cf sample weights in the estimation of P reflects the appropriate distribution of the population.)

The distributions of estimated design effects across items for oportions correct by grade and by demographic subgroup within grade across all cognitive reading items presented in the 1988 main assessment of reading are indicated in Tables 8-6 through 8-8.

Table 8-6 adaresses the distributions of the design effects for the 81 multiple-choice cognitive reading items presented in 1988 to grade 4 students. These distributions are shown for the population as a whole (Total) as well as for a variety of demographic subgroups: gender; race/ethnicity (White, Black, Hispanic, other); age (less than mcral age, modal age, greater than modal age); region (Northeast, Southeast, Central, West); size and type of community (rural, low metropolitan, high metropolitan, big city, urban fringe, medium city, small place); parental education (at most high school, graduated high school, post-high school, graduated college, unknown); and type of school (public, nonpublic). For each of these groupings of fourth-grade students, Table 8-6 provides the lower quartile (LOQ), median, upper quartile (HiQ) and maximum design effect as well as the mean design effect for the 81 multiplechoice items presented to fourth-grade students.

Equivalent information on the distiibutions of design effects for the 99 multiple-choice cognitive reading items presented io grade 8 students appears as Table 8-7. The $108 \mathrm{mu}^{-}$tiple-choice cognitive reading items presented to grade 11 students are addressed by Table 8-8.

The particular demographic variables shown (gender, race/ethnicity, age, region, parental education, and size and type of community) were selt ited because (1) they are major variables in NAEP reports and (2) they reflect different types of divisions of the population that might have different levels of sampling variability.

The tables show that the design effects are predominantly larger than 1 , indicating that standard variance estimation formulas will be generally too small, sometimes markedly so. Although the distributions of design effects appear somewhar different $f r$ - certain subgroups of the population, they are, perhaps, similar enough (at least within a grade) to select an overall composite value that is adequate for most purposes. in choosing a composite design effect, some consideration must be made about the relative consequences of overestimating the variance as opposed to underestimating the variance For example, adopting the position that an overestimate of the variance is as severe an error as an underestimate leads to using a composite that is near to the center of the distributions of the design effects. Possible composites of this type are the mean and median desig., effects across the combined distribution of all design $\quad$ ffects. In the current data, the mean lesign effects are $1.36,1.31$, and 1.36 respectively for grades 4,8 , and 12 . These are close to, but greater than, the median design effects: 1.29, 1.26, 1.30.

Alternatively, one can adopt the position that it is a graver error to underestimate the variability of a statistic than to overestimate it. For example, Johnson and King (1987) examine estimation of variances using design effects (among other techniques) under the assumption that the consequences of an underestimate are three times as severe as thcse of an overestimate of the

Table 8-6

Distribut!. ₹ of Design Effects Across Items by Demographic Subgroup
for Proportion-correct Statistics
for the Cognitive Reading Items Given in 1988

Grade 4*

| Group | LoQ | Median | HiO | Max | Mean |
| :--- | :--- | :--- | :--- | :--- | :--- |
| TOTAL |  |  |  |  |  |
| MALE | 1.20 | 1.39 | 1.60 | 2.35 | 1.44 |
| FEMALE | 1.15 | 1.32 | 1.52 | 2.50 | 1.38 |
| WHITE | 1.05 | 1.24 | 1.45 | 2.44 | 1.27 |
| BLACK | 1.05 | 1.26 | 1.54 | 2.08 | 1.29 |
| HISPANIC | 1.05 | 1.18 | 1.40 | 2.50 | 1.25 |
| OTHER | 1.11 | 1.37 | 1.59 | 2.32 | 1.38 |
| < MODAL | 1.04 | 1.17 | 1.41 | 1.96 | 1.19 |
| AT MODAL | 0.76 | 1.07 | 1.29 | 2.12 | 1.03 |
| > MODAL | 1.00 | 1.31 | 1.48 | 1.96 | 1.27 |
| NE | 1.17 | 1.35 | 1.61 | 2.27 | 1.41 |
| SE | 1.14 | 1.41 | 1.89 | 2.68 | 1.52 |
| CENTRAL | 1.13 | 1.52 | 1.94 | 3.48 | 1.63 |
| WEST | 0.99 | 1.21 | 1.67 | 3.00 | 1.31 |
| RURAL | 0.96 | 1.29 | 1.69 | 3.93 | 1.40 |
| LOW MET | 0.69 | 0.99 | 1.30 | 3.08 | 1.09 |
| HI MET | 1.13 | 1.52 | 1.88 | 4.06 | 1.59 |
| BIG CITY | 0.96 | 1.19 | 1.51 | 2.86 | 1.24 |
| FRINGE | 1.51 | 1.96 | 2.43 | 3.43 | 2.03 |
| MED CITY | 0.99 | 1.24 | 1.82 | 3.30 | 1.41 |
| SMALL PL | 1.36 | 1.74 | 2.09 | 3.22 | 1.76 |
| < HS | 1.07 | 1.34 | 1.63 | 2.15 | 1.37 |
| GRAD HS | 0.95 | 1.19 | 1.43 | 2.26 | 1.21 |
| HS + | $i .01$ | 1.20 | 1.36 | 1.70 | 1.18 |
| GRADCOL | 0.99 | 1.14 | 1.43 | 1.84 | 1.19 |
| IDK | 1.02 | 1.16 | 1.42 | 1.90 | 1.22 |
| PUBLIC | 1.11 | 1.23 | 1.44 | 2.53 | 1.29 |
| NON-PUZ | 1.24 | 1.40 | 1.68 | 2.46 | 1.47 |
|  | $1 . C$ | 1.24 | 1.53 | 2.25 | 1.32 |

* Distributions are based on 81 multiple-cinoice items.

Table 8-7
Distributions of Design Effects Across Items by Demographic Subgroup
for Proportion-correct Statistics
for the Cognitive Reading Items Given in 1988
Grade 8*

| Group | LoQ | Median | HiQ | Max | Mean |
| :--- | :--- | :--- | :--- | :--- | :--- |
| TOTAL |  |  |  |  |  |
| MALE | 1.17 | 1.36 | 1.57 | 2.24 | 1.38 |
| FEMALE | 1.11 | 1.30 | 1.57 | 2.55 | 1.36 |
| WHITE | 1.06 | 1.23 | 1.36 | 1.94 | 1.24 |
| BLACK | 1.18 | 1.38 | 1.55 | 2.57 | 1.39 |
| HISPANIC | 0.98 | 1.25 | 1.50 | 2.46 | 1.28 |
| OTIER | 1.05 | 1.26 | 1.56 | 2.57 | 1.32 |
| < MODAL | 0.97 | 1.17 | 1.35 | 2.50 | 1.20 |
| AT MODAL | 0.69 | 1.03 | 1.29 | 2.38 | 1.01 |
| > MOEAL | 1.11 | 1.30 | 1.52 | 1.95 | 1.32 |
| NE | 1.02 | 1.21 | 1.37 | 1.94 | 1.21 |
| SE | 0.96 | 1.22 | 1.52 | 2.89 | 1.30 |
| CENTRAL | 0.92 | 1.32 | 1.63 | 2.85 | 1.35 |
| WEST | 1.16 | 1.61 | 2.07 | 3.61 | 1.67 |
| RURAL | 0.93 | 1.25 | 1.69 | 3.70 | 1.40 |
| LOW MET | 0.84 | 1.18 | 1.67 | 4.15 | 1.32 |
| HI MET | 0.88 | 1.15 | 1.50 | 2.95 | 1.22 |
| BIG CITY | 0.98 | 1.38 | 1.72 | 2.98 | 1.41 |
| FRINGE | 1.19 | 1.51 | 1.88 | 4.34 | 1.59 |
| AED CITY | 1.06 | 1.28 | 1.59 | 2.37 | 1.34 |
| SMALL PL | 0.94 | 1.22 | 1.58 | 3.14 | 1.30 |
| < HS | 1.03 | 1.32 | 1.65 | 2.66 | 1.34 |
| GRAD HS | 1.10 | 1.26 | 1.42 | 2.19 | 1.26 |
| HS + | 1.03 | 1.24 | 1.45 | 1.82 | 1.24 |
| GRADCOL | 1.00 | 1.17 | 1.40 | 2.06 | 1.21 |
| IDK | 1.01 | 1.20 | 1.47 | 2.30 | 1.25 |
| PUBLIC | 1.07 | 1.21 | 1.39 | 1.99 | 1.23 |
| NON-PUB | 1.13 | 1.35 | 1.58 | 2.29 | 1.38 |
|  | 0.95 | 1.24 | 1.48 | 2.32 | 1.24 |

* Distributions are based on 99 multiple-choice items.

Table 8-8
Distributions of Design Effects Across Items by Demographic Subgroup
for Proportien-correct Statistics
for the Cognitive Reading Items Given in 1988
Grade 12*

| Group | LOQ | Median | HiQ | Max | Mean |
| :--- | :--- | :--- | :--- | :--- | :--- |
| TOTAL |  |  |  |  |  |
| MALE | 1.21 | 1.42 |  | 1.60 | 2.76 |
| FEMALE | 1.16 | 1.36 | 1.56 | 2.34 | 1.42 |
| WHITE | 1.13 | 1.32 | 1.53 | 2.29 | 1.30 |
| BLACK | 1.11 | 1.35 | 1.49 | 2.31 | 1.32 |
| HISPANIC | 1.15 | 1.38 | 1.63 | 2.66 | 1.42 |
| OTHER | 1.18 | 1.39 | 1.62 | 3.72 | 1.44 |
| < MODAL | 1.04 | 1.21 | 1.49 | 2.08 | 1.28 |
| AT MODAL | 0.70 | 1.01 | 1.33 | 2.27 | 1.03 |
| P HODAL | 1.19 | 1.41 | 1.66 | 2.67 | 1.41 |
| NE | 1.04 | 1.23 | 1.40 | 2.26 | 1.25 |
| SE | 1.06 | 1.26 | 1.68 | 3.20 | 1.39 |
| CENTRAL | 0.87 | 1.10 | 1.57 | 3.29 | 1.23 |
| WEST | 0.79 | 1.13 | 1.49 | 4.07 | 1.23 |
| RURAL | 1.06 | 1.31 | 1.72 | 3.61 | 1.42 |
| LOW MET | 0.70 | 1.05 | 1.57 | 3.51 | 1.18 |
| HI MET | 1.02 | 1.38 | 1.69 | 5.65 | 1.45 |
| BIG CITY | 1.00 | 1.39 | 1.85 | 3.82 | 1.49 |
| FRINGE | 1.06 | 1.31 | 1.75 | 3.73 | 1.49 |
| MED CITY | 0.73 | 1.07 | 1.43 | 2.26 | 1.13 |
| SMALL PL | 0.94 | 1.24 | 1.90 | 3.60 | 1.41 |
| < HS | 1.08 | 1.42 | 1.81 | 2.96 | 1.44 |
| GRAD HS | 1.11 | 1.30 | 1.57 | 2.73 | 1.25 |
| HS + | 1.10 | 1.26 | 1.45 | 2.17 | 1.30 |
| GRADCOL | 1.06 | 1.23 | 1.39 | 2.17 | 1.25 |
| IDK | 1.12 | 1.32 | 1.55 | 2.12 | 1.35 |
| PUBLIC | 1.13 | 1.41 | 1.80 | 4.83 | 1.57 |
| NON-PUB | 1.21 | 1.41 | 1.58 | 2.33 | 1.41 |
|  | 1.09 | 1.45 | 1.84 | 2.75 | 1.50 |

* Distributions are based on 108 multiple-choice items.
same magnitude. Adopting a loss function that is a weighted sum of absolute values of the deviations of predicted from actual, with underestimates receiving three times the weight of overestimates, produces the upper quartile of the design effects as the composite value. This assumes that the distribution of design effects is roughly independent of the jackknife estimates of variance, so that the size of a design effect does not depend on the size of the variance. The values of this composite, for grades 4, 8, and 12 , respectively, are $1.59,1.54$, and 1.59 .


### 8.3.2 Design Effects for Subgroup Mean Proficiency Scores

Since most of the analyses conducted by NAEP are based on the results of scaling models that summarize performance of students across a learnirg area, we next consider the design effects to be expected for analyses based on these scalr scores. For reasons given in Chapter 9, NAEP provides each individual with a set of "plausible values," each of which is a random draw from the distribution of the potential scale scores for that individual. Since our current interest is on the effect of the sampling design on estimation and inference, we will restrict ous attention to a single measure of an individual's proficiency, the first plausible value of the individual's scale score.

A key statistic of interest is the estimated mean proficiency of a subgroup of the pcpulation. An estimate of the subgroup mean proficiency is the weighted mean of the first plausible values of proficiency of the sampled individuals who belong to the subpopulation of interest. Let $\bar{Y}$ be the weighted mean of the plausible values of the sampled members of the subpopulation. The conventional estimate of the variance of $\bar{Y}$ is

$$
\operatorname{Var}_{\text {con }}(\bar{Y})-\left[\sum_{i=1}^{N} w_{i} \cdot\left(y_{i}-\bar{Y}\right)^{2}\right] /\left[N \cdot W_{+}\right]
$$

where $N$ is the total number of sampled individuals in the subpopulation for which proficiency scores are available, $w_{i}$ is the weight of the $i^{\text {th }}$ individual, $y_{i}$ is a plausibie value from the distributior of potential scale scores for that individual, and $W_{+}$is the sum of the weights across the $N$ individuals.

The design effect for the subgroup mean proficiency estimate is

$$
\operatorname{deff}(\overline{\mathrm{Y}})-\operatorname{Var}_{\mathrm{JK}}(\overline{\mathrm{Y}}) / \operatorname{Var}_{\mathrm{con}}(\overline{\mathrm{Y}})
$$

where $\operatorname{Var}_{\mathfrak{K}}(\overline{\mathrm{Y}})$ is the jackknife variance of $\overline{\mathrm{Y}}$. (As has been pointed out previcusly, $\operatorname{Var}_{\mathrm{JK}}(\overline{\mathrm{Y}})$ as computed does not measure the variability of $\overline{\mathrm{Y}}$ due to imprecision in the measurement of the proficiencies of the sampled individuals. The estimation of this very important source of variability is discussed in Chapter 9.)

Values of the average design effects for subgroup mean proficiencies are displayed, by ade, in Table 8-9. The subpopulations considered in this

Table 8-9
Average Design Effects by Demographic Subgroup and Grade for Mean Reading Proficiency Scores*

|  |  |  |  |
| :--- | :---: | :---: | :---: |
| Group | Grade 4 | Grade 8 | Grade 12 |
| TOTAL |  |  |  |
| MALE | 3.08 | 3.10 | 2.45 |
| FEMALE | 2.46 | 2.43 | 1.79 |
| WHITE | 2.02 | 2.30 | 2.51 |
| BLACK | 2.88 | 3.72 | 2.51 |
| HISPANIC | 1.57 | 2.32 | 1.44 |
| OTHER | 1.41 | 1.39 | 1.43 |
| < MODAL | 1.23 | 1.14 | 1.03 |
| AT MODAL | 0.92 | 0.79 | 0.94 |
| > MODAL | 2.23 | 2.31 | 2.84 |
| NE | 2.43 | 1.88 | 1.32 |
| SE | 4.40 | 2.15 | 4.09 |
| CENTRAL | 3.83 | 2.48 | 1.08 |
| WEST | 3.51 | 8.35 | 2.15 |
| RURAL | 3.15 | 1.85 | 1.96 |
| LOW MET | 2.14 | 3.34 | 1.83 |
| HI MET | 2.42 | 2.43 | 2.57 |
| BIG CITY | 3.05 | 3.10 | 4.11 |
| FKINGE | 6.32 | 4.20 | 2.35 |
| YED CITY | 3.58 | 3.11 | 1.85 |
| SMALL PL | 5.29 | 2.19 | 3.24 |
| < HS | 3.90 | 3.69 | 3.04 |
| GRAD YS | 1.09 | 1.25 | 1.31 |
| HS + | 1.51 | 2.28 | 0.84 |
| GRADCOL | 0.93 | 1.20 | 1.09 |
| IDK | 1.59 | 1.78 | 2.10 |
| PUBLIC | 1.61 | 0.96 | 2.68 |
| NON-PUB | 3.41 | 3.08 | 2.23 |
|  | 3.61 | 2.36 | 4.16 |

[^23]table are identical with those considered for the design effects of proportion-correct stacistics. It is inter'sting to note that the design effects for subgroup mean proficiency estinates are noticeably larger than the design effects for the proportion-correct statistic:. This suggests a larger effect of clustering for mean proficiency scores (which are averages of continuous variables) than for proportion-correct statistics (which are averages of binary variables). Perhaps more important, this increase in design effect may arise because of the use of BIB spiraling. Thus, for a percent correct for an item, the number of students taking the item within a first-stage sampling unit is less than half the number that contribute to the average proficiency score for a subject live mathematics or science. About $7 / 3$ as many students within a first-stage sampling unit are assessed on a subject as on an item, and contribute to an average proficiency score for the subject. Consequently, the effective cluster size (and design effect) for an average proficiency is likely to be larger-although net as large as it iikely would be if all students assessed in a subject wore given all items for that subject.

As was the case for the design effects of the proportion-correct statistics, three candidates for an overall composite design effect for subgroup mean proficiencies are the mean, the median, and the upper quartile of the distribution of design effects. The values of these potential composite values, by grade, are as follows:

|  | Grade 4 | Grade 8 | Grade 12 |
| :--- | :---: | :---: | :---: |
|  | 2.70 |  |  |
| Mean | 2.45 | 2.54 | 2.18 |
| Median | 3.56 | 3.10 | 2.13 |
| Upper Quartile | 3.56 |  |  |

Each of these values is roughly twice the equivalent value for the design effects of proportion-correct statistics.

We note that the $\operatorname{Var}_{(c o n)} \bar{Y}$ as defined above is an estimate of $\mathrm{S}^{2} / \mathrm{N}$ where $S^{2}$ represen.+ , the unit variance for a simple random sample for the population of students from which the sample is also drawn. This is an appropriate estimate of the increase in variance over simple random sampling from that population. However, the computer packages used for estimating the variance may not reflect the weights in estimating the unit variance, as given above, but i.sstead may provide an estimate of a unit variance of the form

$$
\stackrel{\dot{N}}{\Sigma\left(y_{1}-\bar{y}\right)^{2} / N^{2} .}
$$

In this case, the unweighted estimate of unit variance would be appropriate for the denominator of a design effect measure of the increasc in variance over the unit variance as estimates by the computer package. If there is no correlation between the $w_{i}$ and $y_{1}$, there would be little difference between the two.

### 8.3.3 Design Effects fer Simple Regression Coefficients

Table 8-10 shows the design effects for simple regression coefficients from the weighted regression of the first plausible value of reading proficiency on each of the individual conditioning variables. (The codings of the conditioning variables appear in Appendix ".) The conventional standard errors were obtained from a standard weighted agression in which the weights were scaled to add to the total sample size, thereby more closely representing the true amount of information available in the construction of the standard errors relat:.ve to the standard errors that would have been produced if the weights were left in their original metric. We see from Table $9-10$ that this scaling of the weights does not go nearly far enough in terms of appropriately representing the true sampling variability of the regression estimates.

The mean, median, and upper quartile of the distribution of the design effects for regression coefficients are, by grade:

Grade 4
2.40

Grade 8
2.02

Grade 12
1.91
1.64
1.59

Mean
Median
Upper Quartile
The mean, median, and upper quartiles of the distribution of design effects for regression coefficients are distinctly larger than those of the proportion-correct statistics, but are somewhat smaller than those of the subgroup mean proficiencies. This results accords with the conjecture made by Kish and Frankel (1974) that the design effects for complex statistics (such as regression coefficients) tend to be smaller than the corresponding design effects for means of the same variable.

### 8.4 THE DEGREES OF FREEDOM Of THE VARIANCE ESTIMA'IE

It is important to have an indication of the number of degrees of freedom to attribute to the jaciknife variance estimator vâr(t). The des =es of freedom of a variance estimator provide informaiion on the siability of that estimatur: the higher the number of degraes of freedom, the lower the variability of the estimator. I:. practical terms, th: number of degrees of freedom of the vasliance estiantor corresponds to the number of residual degrees of freedum that can je assumed for inferential procedures.

Since the jackknife procedure estimates the sampling variability of the statistic by assessing the effect of change in the sample at the paired firststage sampling lait (FSSU) level, the number of degrees of freadom of the variance estimator vâr( $t$ ) will be at most equal to $M$, the number of FSSU pairs. The maximum number of degrees of fretdom equals the number of independent pieces of information used to gererate the variance. In the case of data from the main assessments, the pieces of information are the 52 squared differences $\left(t_{1}-t\right)^{2}$, each supplying at most one degree of freedom (regardless of how many individuals were sampled within any FSSU).

Average Design Effects by Grade
for Simple Regression Coefficients Based on Reading Proficiency Scores*

| Coefficient | Grade 4 | Grade 3 | Grade 12 |
| :---: | :---: | :---: | :---: |
| female | 1.37 | 1.87 | 1.86 |
| BLACK | 1.32 | 1.84 | 1.30 |
| HISPANIC | 1.24 | 1.71 | 1.48 |
| ASIAN | 2.00 | 0.51 | 1.14 |
| HI METRO | 3.29 | 3.08 | 4.19 |
| OTHER STOC | 6.02 | 2.83 | 3.70 |
| SOUTHEAST | 3.94 | 2.96 | 1.49 |
| CENTRAL | 3.30 | 7.81 | 2.13 |
| WEST | 3.58 | 2.59 | 2.12 |
| H.S. | 1.07 | 1.43 | 1.20 |
| >H.S. | 0.71 | 0.93 | 0.95 |
| GRAD COLLEGE | 1.46 | 1.51 | 1.93 |
| PARED MISSING | 1.32 | 1.49 | 3.57 |
| 3-4 ITE\%S | 0.75 | 1.26 | 126 |
| $>4$ ITEUS | 1.21 | 1.5 | 1.96 |
| TV | 1.70 | 1.50 | 1.02 |
| TV SÇJARED | 3.65 | 1.41 | 1.00 |
| LaNG MINORITY | 1.31 | 1.85 | 1.92 |
| NO HW GIVEN | 2.22 | 1.69 | 2.50 |
| HOMEWORK | 2.24 | 2.47 | 2.50 |
| TIME HW | 2.05 | 1.59 | 1.79 |
| $\chi$ LUNCH | 6.41 | 3.05 | 2.14 |
| NO LUNCH | 6.98 | 3.42 | 3.61 |
| MINORITY SCH | 3.54 | 3.33 | 2.69 |
| INTEGRATED SCH | 4.72 | 3.14 | 3.76 |
| MODAL AGE | 1.05 | 1.02 | 1.74 |
| > MODAL AGE | 1.88 | 1.05 | 1.72 |
| NONPUBLIC | 3.33 | 1.96 | 4.15 |
| HOME HELP | 1.f,9 | 1.24 | 1.47 |
| MULTIPAR | 0.84 | 1.05 | 1.07 |
| MOM HOME | 1.21 | 2.09 | 1.34 |
| MOM WORK | 2.15 | 1.57 | 1.36 |
| SOM READ | 1.43 | 1.93 | 1.20 |
| LOT READ | 1.66 | 1.19 | 1.61 |
| LCW ABSENT | - | 1.45 | 1.59 |
| GRades | - | 1.45 | 1.17 |
| COL PREP | - | - | 1.51 |
| VOC-TECH | - | - | 1.13 |
| 2YR-COL | - | - | 1.40 |
| 4YR-COL | - | - | 1.13 |
| HRS WKED | - | - | 1.22 |
| ADV ENGLISH | - | - | 1.28 |
| REM ENGLISH | - | - | 2.58 |

[^24]The number of degrees of freedom of the sample variance estimator can be strictly less than the number of FSSU pairs. For example, suppose that the statistic $t$ is a mean for some subgroup and no members of that subgroup can come from either FSSU in the $i^{\text {th }}$ FSSU pair. (Examples of such a subgroup are any PSU-level partitioning of che population, such as region.) In this instance, neither member of the FSSU pair i directly contributes to the , timate of $t$, so that the pseudoreplicate $t_{1}$ would nearly equal the statistic $t$. If the replicate weights used to generate $t_{i}$ had not received poststratification adjustments, the resulting pseudoreplicate $t_{1}$ would be identical to the overall estimate $t$ so that $\left(t_{i}-t\right)^{2}-0$. In this case, such a FSSU pair would impart no information to the variability of the statistic $t$ and thus contribute zero degrees of freedom to the variance. However, since the replicate weights have received poststratification adjustments, the component $\left(t_{1}-t\right)^{2}$ is measuring the effect of the poststratification on the estimate. While being nonzero, such a component will tend to be much smaller in magnitude than the squared difference ( $\left.t_{k}-t\right)^{2}$ for any PSU pair $k$ that does contribute to the estimate of $t$ (see Rust, 1985).

The squared difference $\left(t_{1}-t\right)^{2}$ estimates $\sigma_{1}{ }^{2}$, say, the contribution to the sampling variance of the statistic $t$ which can be attributed to the $i^{\text {h }}$ FSSU pair and Vâr(t) estimates the sum of the contributions across all pairs.

$$
\sum_{i-1}^{M} \sigma_{1}^{2}
$$

If the $\sigma_{1}{ }^{2}$ vary widely, as when a few of the $\sigma_{1}{ }^{2}$ are markedly larger than the remainder, as in the above case, then vâr( $t$ ) is predominantly estimating the sum of these larger components, which dominate the remaining terms. The effective degrees of freedom of $\operatorname{Varr}(t)$ in this case will be nearer to the number of dominant terms.

One way to estimate how many degrees of freedom to attribute to the jackknife variance estimate of a statistic $t$ is to match estimates of che first -wo moments of $\operatorname{Var}(t)$ to those of a chi-square random variable (Satterthwaite, 1941). If the $t_{1}$ are normally dis ibuted, the effective number of degrees of freedom using this approximation is
$d f_{\text {oif }}=\frac{\left[\sum_{i=1}^{M}\left(t_{1}-t\right)^{2}\right]^{2}}{\sum_{i=1}^{M}\left(t_{1}-t\right)^{4}}$
However, this app ioximation will overestimate the effective degrees of freedom if the distribution of the $\dot{a}^{i} f f e r e n c e s t_{1}$ - $t$ has positive kurtosis (Cochrait, 1977, p. 96). A more direct way of assessing the effective degrees of fraedom of a variance estimate is possible when a number of independent. replicates of the estimate are available. In such a situation, the ordered values of the replicate estimates of $\operatorname{Var}(t)$ are compared with the expected
values of the order statistics of various chi-square distributions. The aim is to find the chi-square distribution that must -lostly matches the empirical distribution. If the distribution of $\operatorname{var}(t): s$ appro,imately chi-square, a quantile-quantile plot (Chambers, Cleveland, Kleiner, \& Tukey, 1983, section 6.2) of the ordered replicate estimates versus the expected values of the order statistics from the best fitting chi-square distribution will be close to a straight line through the origin. The degrees of freedom for that best fitting chi-square distribution are taken to be the effective degrees of freedom of $\operatorname{var}(t)$.

This procedure will be followed to estimate the effective degrees of freedom for the variance estimates of the subpopulation mean proficiencies and of the regression coefficients. A slightly different procedure will be used for the effective degrees of freedom of the variances of weighted proportion. correct statistics.

It is possible to estimate the number of degrees of freedom to attribute to the jackknife variance estimates of the weighted proportion-correct statistics by considering the distribution of design effects for a given set of items in a population or subpopulations (such as males or total) under the assumptions that the individual design effects are all estimating the same, underlying, design effect $D$ and that the variance estimates of all weighted proportion-correct statistics have the same degrees of freedom, $f$.
Specifically, assume that the jackknife variance estimate, $V_{j}$, of the $j^{\text {th }}$ weighted proportion-correct statistic, $P_{j}$, is distributed like the random variable ( $\sigma_{j}{ }^{2} / f$ ) $X_{f}{ }^{2}$, where $X_{f}{ }^{2}$ is a chi-square random variable with $f$ degrees of freedom and $\sigma_{j}{ }^{2}$ is the expected value of $V_{j}$. Further assume that the expected value of the conventional variance estimate is $\sigma_{j}{ }^{2} / D$, where $D$ is the underlying design effect. Then, for a sufficiently large sample size, so that the conventional variance estimate can be taken to be $\sigma_{j}{ }^{2} / \mathrm{D}$, the design effect of $P_{j}$ will be approximately distribuced like the constant ( $D / f$ ) times a chi-square random variable with $f$ degrees of freedom. If the underlying design effect $D$ and the degrees of freedom $f$ are the same for all $P_{j}$, ther the distribution of the estimated design effects of the proportions correct across the set of items will be approximately distributed like a multiple times a chi-square random variable with $f$ effective degrees of freedom.

Under these assumptions, the value of the effective degrees of freedom for the design effects of a given subpopulation (such as males in the fourth grade) is found by comparing the ordered values of the design effects for all of the proportion-correct statistics for that group with the expected values of the order statistics of a sample of the same size of chi-square random variables with $f$ degrees of freedom. The comparison is repeated for all integral degrees of freedom $f$ between $l$ and $M$ (where $M=52$ for the main assessment). The value of $f$ that minimizes the residual mean-square of the least-squares line through the origin predicting th ordered design effects from the chi-square order statistics is the effective degrees of freedom for the set of design effects.

Table 8-1l shows the result of this estimation of the effective degrees of freedom of the design effects, and hence the jackknife variance estimates, for the weighted proportion-correct statistics. The quality of the

Table 8-11
Effective Degrees of Freedom for the Design Effects of the Proportion-cor est Statistics

| Group | Grade 4 | Grade 8 | Grade 12 |
| :--- | :---: | :---: | :---: |
| TOTAL |  |  |  |
| MALE | 41 | 37 | 40 |
| FENALE | 36 | 32 | 35 |
| WHITE | 27 | 47 | 40 |
| BLACK | 31 | 36 | 41 |
| HISPANIC | 25 | 23 | 30 |
| OTHER | 27 | 23 | 30 |
| < MODAL | 38 | 26 | 33 |
| AT MODAL | 16 | 13 | 13 |
| P MODAL | 36 | 46 | 41 |
| NE | 38 | 48 | 40 |
| SE | 17 | 15 | 11 |
| GENTRAL | 12 | 11 | 9 |
| WEST | 11 | 12 | 10 |
| RURAL | 13 | 11 | 13 |
| LOY MET | 10 | 10 | 7 |
| HI MET | 12 | 15 | 13 |
| BIG CITY | 15 | 14 | 13 |
| FRINGE | 19 | 13 | 13 |
| MED CITY | 13 | 25 | 11 |
| SMALL PL | 15 | 11 | 9 |
| < IIS | 21 | 18 | 18 |
| GRAD HS | 22 | 35 | 32 |
| HS + | 39 | 38 | 36 |
| GRADCOL | 34 | 35 | 43 |
| IDK | 42 | 30 | 44 |
| PUBLIC | 34 | 43 | 14 |
| NON-PUB | 38 | 21 | 24 |

approximation to the distribution of the desig.4 effects is quite good: In every case, the residual mean squared error from the . .ediction of the ordered values of the design effects from the order statistics from a chi-square dist: ibution with the effective degrees of freedom was no more than 10 percent of the variance of the actual values and was within 5 percent in all but two of the 84 cases.

The numbers in Table 8-11 show that the effective degrees of freedom of the jackknife variance estimates are indeed no larger than the number of FSSU pairs, and are, in fact, markedly smaller in some cases. There appear to be two major groupings:

1) Variance estimates for weighted proportion statistics corresponding to subpopulations that can appear in any PSU in the sample. These subpopulations include: total, the two genders, two of the four race/ethnicity groups (White and Other), students at or above modal age, the five levels of parental education (except for grade 12), and public schools. The variance estimates for these subpopulations have the highest number of effective degrees of freedom. The estimated range is between 26 and 48 , and the average is about 38. (Some exceptions are Black and Hispanic students, age less than modal age for grade, less than high-school education, nonpublic school students, and parent's education unknown. Note that while these classes can appear in any PSU, they tend to vary widely among PSUs; or may also be based on a very small sample of students. The estimated effective degrees of freedom for these range from 13 to 38 , and average about 23.)
2) Variance estimates corresponding to subpopulations that can only appear in certain parts of the sample; such as the 4 regions and the 7 size and type of community designations. These tend to have the smallest effective degrees of freedom. They range between 7 and 15 , and average about 13.

It is also interesting to determine how many degrees of freedom to attribute to the variance estimates for the subpopulation mean proficiencies and for the regression coefficients. Tables $8-12$ and $8-13$ provide this information. In constructing these tables, a replication procedure was used rather than that used for Table 8-11 since, instead of having a large number of design effects (one for each item) from which to build a distribution, we have only a single jackknife variance for each of the subpopulation means and regression coefficients. In order to produce a distribution of variances for each of the coefficients, the full sample of respondents was split into seven interpenetrating subsampies based on the assessment booklet taken. (Recall that the main assessment of reading consisted of seven booklets at each grade/age that were spiraled throughout the sample.) Thus, all students receiving the first zeading assassment booklet were placed in the first subsample; all students receiving the second booklet were placed in the second subsample; and so on. The result is seven samples, each of which incluie all of the PSUs in the full sample while including roughly $1 / 7$ of the students within each of the PSUs. Because of the reduced student sample size, the jackknife variance estimate based on one the.;e subsamples will be somewhat

Table 8-12
Effective Degrees of Freedom for the Design Effects for Mean Reading Proficiency Scores*

| Group | Grade 4 | Grade 8 | Grade 12 |
| :---: | :---: | :---: | :---: |
| TOTAL | 46 | 41 | 49 |
| MALE | 35 | 26 | 52 |
| FEMALE | 21 | 52 | 47 |
| THHITE | 22 | 45 | 5.2 |
| BLACK | 22 | 32 | 26 |
| HISPANIC | 52 | 14 | 26 |
| OTHER | 16 | 31 | 23 |
| < MODAL | 16 | 7 | 12 |
| AT MODAL | 23 | 49 | 52 |
| > MODAL | 29 | 26 | 39 |
| NE | 18 | 15 | 22 |
| SE | 16 | 27 | 10 |
| CEntral | 10 | 11 | 11 |
| WEST | 10 | 7 | 9 |
| RURAL | 52 | 9 | 6 |
| LOV MET | 12 | 12 | 21 |
| HI MET | 23 | 21 | 8 |
| BIG CITY | 39 | 29 | 11 |
| FRINGE | 15 | 31 | 15 |
| MED CITY | 27 | 16 | 20 |
| SHALK PL | 14 | 14 | 52 |
| $<\mathrm{HS}$ | 52 | 52 | 22 |
| GRAD HS | 48 | 34 | 52 |
| HS + | 35 | 28 | 33 |
| GRADCOL | 49 | 32 | 52 |
| IDK | 27 | 37 | 5 |
| PUBLIC | 22 | 50 | 35 |
| NON-PUB | 51 | 52 | 46 |

[^25] proficiency.

Effective Degrees of Fretdom for the Design Effects
for Simple Regression Coefficients Based on Reading Proficiency Scores*

| Coefficient | Grade 4 | Grade 8 | Grade 12 |
| :---: | :---: | :---: | :---: |
| ferale | 33 | 52 | 32 |
| BLACK | 28 | 52 | 31 |
| HISPANIC | 52 | 18 | 15 |
| ASIAN | 7 | 20 | 6 |
| HI Metro | 23 | 20 | 10 |
| OTHER STOC | 52 | 50 | 16 |
| SOUTHEAST | 16 | 33 | 30 |
| CENTRAL | 12 | 13 | 17 |
| WEST | 13 | 18 | 22 |
| H.S. | 34 | 35 | 52 |
| >H.S. | 20 | 47 | 35 |
| GRAD COLLEGE | 52 | 52 | 18 |
| Pared MISSING | 38 | 15 | 3 |
| 3.4 ITEMS | 52 | 48 | 37 |
| $>4$ Trems | 44 | 52 | 40 |
| TV | 13 | 40 | 23 |
| TV SQuared | 21 | 52 | 12 |
| LANG MINORITY | 28 | 52 | 52 |
| NO HW GIVEN | 52 | 11 | 11 |
| HOMEWORK | 52 | 13 | 13 |
| TIME HW | 40 | 28 | 37 |
| $\%$ LUNCH | 13 | 21 | 52 |
| NO LUNCH | 38 | 37 | 20 |
| MINORITY SCH | 13 | 28 | 9 |
| INTEGRATED SCH | 14 | 52 | 39 |
| MODAL AGE | 17 | 30 | 52 |
| > MODAL AGE | 20 | 25 | 40 |
| NONPUBLIC | 24 | 30 | 52 |
| HOME HELP | 52 | 52 | 26 |
| MULTIPAR | 29 | 31 | 43 |
| MOM HOME | 25 | 21 | 15 |
| MOM WORK | 52 | 29 | 36 |
| SOM READ | 52 | 52 | 41 |
| LOT READ | 42 | 52 | 39 |
| LOW ABSENT | - | 24 | 52 |
| GRADES | - | 52 | 25 |
| COL PREP | - | - | 24 |
| VOC-TECH | - | - | 22 |
| 2YR-COL | - | - | 17 |
| 4YR-COL | - | - | 42 |
| HRS WKED | - | - | 14 |
| ADV ENGLISH | - | - | 18 |
| REM ENGLISH | - | - | 3 |

[^26]larger than the est mator from the full sample. Because the effects of clustering have been reduced, the design effects for these replicate variance estimates will be reduced. However, since the same number of jackknife pairs a involved, the replicate variance estimates may reasonably have $\mathrm{af}_{r}$ roximately the same number of degrees of freedom as did the estimate from the full sample.

For each of tne seven subsamples, jackknife variances, conventional variances, and design effects were estimated for each of the subpopulation means and regression coefficients. For each subpopulation mean and regression coefficient, he best fitting chi-square distribution to the distribution of the seven design effect estimates was found, in the same manner analogous as that used for the design effects of the proportion-correct statistics. The resulting effective degrees of freedom appear in Table 8-12 for the subpopulation means and in Table 8-13 for the regression coefficients.

We see again that the effective degrees of freedom of the variance estimates tends to be smalier than the number of FSSU pairs, and that tinis is true for each of the subpopulation means and regression coefficients. Unfortunately, the most striking characteristic of these estimates of effective degrees of freedom is their variability: the effective degrees of freedom of a subpopulation for one grade can differ considerably from the equivalent estimate for a different giade. (Ar extreme example is the rural subpopulation mean, which has effective deg.- of freedom, for grades 4, 8 and 12 , of 52,9 , and 6 .) This variability may be reflecting the instability of the degrees of freedom estimates since $e^{-h}$ estimate is based on only 7 values. The degrees of freedom estimates $\pm$ the proportion-correct statistica are much more stable since these are based on at least 81 values.

The effative degrees of freedom for the NAEP jackknife variance estimates are markedly smaller than the degrees of freedom attributed to the corresponding error estimates from conventional techniques. This fact affects inferential procedures since significance tests based or. the conventional deg:ees of freedom will be too lib_ral (and confidence intervals will be tos small). Fortunatel.y, for the usual significance levels, the effect of using the effective degrees of freedom rather than the conventional values is generally moderate: a t statistic significant at the $\alpha=5 \%$ level assuming infinite degrees of freedom ( ssentially the conventional estimate) is significant at the $\alpha-6 \%$ level for 20 effective degrees of freedom, the $\alpha-7 \%$ level for 10 effective degrees of freedom, and the $\alpha-10 \%$ level for five effective degrees of freedom.

For practical purposes, the impact of the reduced degrees of freedom on inferential techniques can be largely accounted for by (l) using a moderate number (say 25) of degrees of freedom $C, r$ all inferences of items that can appear in all PSUs, and (2) using a smaller number (say 10) for the remaining items. Certainly one should be cautious about barely significant results for subgroups that are highly clustered in the population.

## Chapter 3

## SCALING PROCEDURES ${ }^{1}$

Robert J. Mislevy<br>Educational Testing Service

A key innovation in NAEP during the ETS tenure is scale-score reperting. With scaling methods, the performance of a sample of students in a subject area or subarea can be summarized on a single scale even when different students have been administered different exercises. Similar procedurec can be used to summarize responses to sets of related background questions. This chapter presents an civerview of the scaling methodologies employed in the analyses of the 1988 NAEP surveys:

- Section 9.1 briefly discusses the perspective on scaling from which the procedures were conceived ard applied.
- Section 9.2 reviews the "plausible values" methodology used in NAEP scale-score analyses.
- Section 9.3 describes how plausible values are used in subsequent analyses.
- Section 9.4 lists the scale-score anslyses carried out on the 1988 data.

Details of scaling procedures for specific subject areas are presested in Chapters 10 through 15.

### 9.1 SCALING IN NAEP

NAEP reports were originally envisaged some 20 years ago as simple lists of percents correct to individual survey items, in the population as a whole and in subpopulations of particular interest. It soon became apparent, however, that major features of the detailed results from hundreds of items could not be effectively communicated without some kind of summarization The Education Commission of the States, the NAEP contractor at that time, introduced averages of percents correct for sets of items, which summarized pattern, of performance in groups of related exercises and made it possible to compare more easily the general performances of subpopulations-as long as

[^27]those subpopulations had been oresented a common subset of items. Because this approach limits comparisons to percents correct on specific sets of items, it provides no simple way to report trends over time as the item pool evolves. Moreover, it gives no information about the distributions of skills among students in targeted subpopulations.

These limitations can be ovezcome by the use of response scaling methods. If several items require $s$. ilar skills, the regularities ooserved in response patterns can often be exploited to characterize both resporients and itenis in terms of a relatively smali number of variables. When combined through appropriate mathematical formulas, these variables capture the duminant featu-es of the data. Using the scale, it becomes possible to talk about distributions of proficiency in a population or subpopulation, and to estimate the relationships between proficiency and background variables.

Early work on scaling is attributed to Thurstone, but the more recent development of item response theory (IRT) has been particularly infsuential on measurement practice (Hambleton, 1989). IRT and a newly developed procedure called the average response method (ARM), both of which are reviewed in section 9.2, are the two scaling procedu ees ETS has introduced in NAEP reporting.

We hasten to point out that any procedure of aggregation, from a simple average to a complex multidimensional scaling model, higilights certain patterns at the expense of other potentially interesting patterns that may reside within the data. In a very real sense, every single item in a NALP survey is of interest in its own right, and can provide useful information about what young Americans know and can do. The choice of an eggregation procedure must be driven by a conception $1=$ just which patterns are salient for a particular purpose. The procedure that is optimal for one purpose may be poorly suited for another.

The relatively high levels of aggregation found in ETS/NAEP reports such as The Reading Peport Card: Progress Toward Excellence in Our Schools (NAEP, 1985), for exampie, are well suited to high-level discussions of trends and policy implications. They average over, and therefore are not keyed to, the microanalysis of performance at tr : level of specific stills, as might be desired by educational psychologists; they do not reveal popular student misconceptions or erroneous rules, as might be of interest to classroom Eeachers in a subject area. For studying specific skills, or'e might nrefer the precision of a latent class model for more highly specified skil. For studying misconceptions, detailed discussions of results for individual items, might be more appropriate. By no means do the scale-score methods we employ as a reporting vehicle exhwist the potential of NAEP data; neicher do they prevent other researchers from carrying out alternative analyses from different perspectives. Indeed, NAEP public-use data tapes, which contain the original responses of all surveyed students, were created expressly to encourage and facilitate such analyses.

A reporting scale in the 1988 NAEP survey, then, simply summarizes performance on a collection of educational tasks in much the same way that the Consumer Frice Index (CPI) summarizes the total cost of a market basket of
products. The two indices exhibit some of the same useful features and limitations. Just as the CPI composice represents average American spending patterns, the items in a NAEP survey were specified by independent consensual process to tap a "market basket of skills." Just as change= in the CPI reflect at a g-ance changes in the cost of goods in general, changes in NAEP scale-score distributions reflect changes in proficiency as averaged over the items in the pool. But understaiding just how and why the CPI changes requires deeper analyses, into specific components of the market basket, when the CPI goes up, some of the components will have gone up by greater rates than others, while some may have even dropped in price. The NAEP scale depends similarly on the balance of items of varying types and topics in the survey, and reflects only an average over the varying patterns among them. NAEP first attempts to carry out scaling in subject areas in which similar patterns can be expected over items; then, within each scaling area, highlights meaningful departures from general trends in several ways, including the following:

1) Explicitly discussing countertrends or comparisons that can be identified with one or a few items. This is analogous to reporting that the Consumer Price Index jumped 5 percent, but noting that the increase was mainly due to a cinange in OPEC oil prices.
2) Supplementing scale-score distributional results with more detailed breakdowns in terms of percents correct for groups of related items.
3) Carrying out scaling in separate subareas within the subject area, in which it is anticipated that trends or comparisons may differ because of different curricular emphases over time or across schools. As was done in the 1986 NAEP surveys of machematics and scjence, these subscale results were supplemented by a subject area average. This is comparable to calculating price changes in separate market baskets for food, transportation, energy, and so on, and reporting these individually along with the overa'l average.

### 9.2 NAEP SCALING METHODOLOGY

The paragraphs that follow review the scaling models employed in the analyses of 1988 NAEP data, and the "plausible values" methodology that allows such models to be used with NAEP's sparse item-sampling design. The reader is referred to Mislevy (1988a, in press) for an introduction to plausible values methods and a comparison with standard psychometric analyses, to Mislevy and Sheehan (1987) and Beaton and Johnson (1987, 1990) for additional informatio:1 on how the models are used in NAEP, and to Rubin (1987) for the theoretical underpinnings of the approach.

### 9.2.1 The Scaling Models

Two types of scaling models were used by NAEP in the 1988 assessment. The three-parameter logistic (3PL) model from item response theory (IRT; e.g., Lord, 1980) was used for the subject areas of reading, civics, U.S. history, geography, mathematics, and science. The average response method (ARM, Beator. \& Johnson, 1987, 1990), developed by NAEP for the 1984 assessment, was used for the subject area of writing. Both are "latent variable" models, quantifying respondents' tendensies to provide responses in a given direction (e.g., correct answers to items in a subject area; positive responses on attitude questjons; higher rather than lower ratings in written essays), as a function of a parameter that is not directly observed.

The three-parameter logistic ( $3 r^{\prime} \mathrm{L}$ ) IRT

1. The fundamental equation of the 3PL model is the probability that a pe. un whose proficiency is characterized by the unobservable variable $\theta$ will respond correctly to item $j$.

$$
\begin{align*}
P\left(x_{j}-1 \mid \theta, a_{j}, b_{j}, c_{j}\right) & =c_{j}+\left(1-c_{j}\right) /\left(1+\exp \left[-17 a_{j}\left(\theta-b_{j}\right)\right]\right) \\
& =P_{j}(\theta), \tag{9.1}
\end{align*}
$$

where
$x_{j} \quad$ is the response to item $j, 1$ if correct and 0 if not;
$a_{j}$, where $a_{j}>0$, is the slope parameter of item $j$, characterizing its sensitivity to proficiency;
$b_{j} \quad$ is the threshold parameter of iten $j$, characterizing its difficulty; and
$c_{j}$, where $0 \leq c_{j}<l$, is the lower asymptote parameter of item $j$, reflecting the chances of a correct response from students of very low proficiency. In 1988 NAEP analyses, c parameters were estimated for multiple-choice items, but were fixed at zero for open-ended items.

For the purposes of reporting item parameter estimates and other intermediary estimates, the linear indeterminacy apparent in (9.1) may be resolved by an arbitrary choice of the origin and unit size in a given scale. This was done for the reading scale in 1984 by standardizing thic combined grade 4/age 9, grade 8 /age 13 , and grade $11 /$ age 17 samples. To aid interpretation, final published results are reported on scales that are transformed linearly from the $\theta$ scale in ways related to the 0-to-500 reading proficiency scale developed in the 1984 NAEP assessment of reading (Beaton, 1987a). These transformations are described in the corresponding subject area chapters in this report.

Under the usual IRT assumption of local independence, the probability of a vector $x=\left(x_{1}, \ldots, x_{n}\right)$ of responses to $n$ items is simply the product of terms based on (9.1):

$$
\begin{equation*}
P(x \mid \theta, \underline{a}, \underline{b}, \underline{c})=\prod_{j}^{n}\left[P_{j}(\theta)\right]^{x_{j}}\left[1-P_{j}(\theta)\right]^{1-x_{j}} \tag{9.2}
\end{equation*}
$$

It is typically also assumed that response probabilities are conditionally independent of background variables, say $y$, given $\theta$, or

$$
\nabla(x \mid \theta, \underline{a}, \underline{b}, \underline{c}, y)-P(x \mid \theta, \underline{a}, \underline{t}, \underline{c}) .
$$

(Checks on the degree to which these assumptions are met in NAEP data, and ways that meaningful departures are handled, are described beiow.)

After x has been observed, (9.2) can be viewed as a likelihood function, and provides a basis for inference about $\theta$ or about item parameters. In NAEP, estimates of item parameters were obtained with a modified version of Mislevy and Bock's (1982) BILOG computer program, then trea+ $d$ as known in subsequent calculations. Once items have been calibrated in this manrer, a likelihood function for $\theta$ is induced by a vector of responses to any subset of calibrated items, thus allowing $\theta$-based inference from matrix samples.

Conditional independence is a mathematical assumption, not a necessary fact of nature. Even though the IRT models are employed in NAEP only to summarize average performance, a number of checks are made to detect serious violations of conditional dependence, and, when warranted, remedial efforts are made to mitigate its effects on inferences. These include the following:

1) Checks on relative item operating characteristics among distinct gender and ethnicity groups (i.e., differential item functioning, or DIF, analyses). Some degree of relative differences are to be expected, of course, and modestly varying profiles among groups will exist beyond the differences conveyed by their differing $\theta$ distributions. The intent at this stage is to detect and eliminate items that operate differentiolly for identifiable reasons that are unrelated to the skills 1 ntended to be measured in the subject area.
2) When a scale extends over age groups, evidence is sought of different operating characteristics over ages. When such effects are found, an item in question is represented by different item parameters in different age groups.
3) When a scale extends over time, exidence is similarly sought as to whether an item's relative operating characteristics have changed over time, over and above differences that can be accounted for by


#### Abstract

changes in the overall $\theta$ distribution. Studies of NAEP reading data (Beator \& Zwick, 1990) suggest these effects are small in adjacent assessments when assessment forms are held constant, but they too cein be taken into account by allowing item parameters to vary over time (see Bock, Maraki, \& Pfeiffenberger, 1988). The variation $\ln$ item parameters is relative to other items in the scale; general trends in item parameters are equivalent to changes in $\theta$ distribution.


Item-level factor analyses have diminished in importance as our perspective of the role of IRT in NAEP has evolved. The assumption that performance in a scaling area is driven by a single unidimensional variable is unarguably incorrect in detail. But our use of the model is not theoretical, but data analytic; interpretaiion of results is not trait-referenced, but domain-referenced. Scaling, ieas are determaned a priori by considerations of content and politics, as col: .ctions of items for which overall performance is deemed to be of interest. The IRT summary is not expected to capture all meaningful variation in item response data, but to reflect distributions of overall proficiency-to summarize the main patterns in item percents-correct in the populations and subpopulations of interest. Using a unidimensional IRT model when the true model is multidimensional captures these overall patterns even though it over- or under-estimates the covariances among responses to items in pairs. For inferences based on overall proficiency, violations of the model with respect to dimensionalicy are less serious than violations in the shapes of the marginal response curves-hence our greater attention to routine checks of item-fit residuals for every item in every calibration run than to factor analytic results.

Once it is accepred that the model cannot be strictly correct, attention focuses on violations that distort the most important inferences that are to be drawn. Estimated proficiency distributions and item parameters, for example, corcectly capture groups' overall perfurmances, but may over- or under-predict certain items. The first type of information is very important in NAEP; the second is less important. Note however that this imparts an importance to the mix of items that would not be present if the IRT model were true, since the balance of items presented determines the nature of average proficiency. Item mixes are identical for subpopulations within a given assessment, so sverall proficiency automatically has the same meaning for them. Item mixes are not necessarily the same for different grade/age groups or different time points, so the more careful checks listed above as 2) and 3) are required to maintain (as well as possible) meaning across these linkages.

In all NAEP IRT analyses, missing responses at the end of each block a student was presented were consiaered "not-reached," and treated as if they had not been presented to the respondent. Missing responses before the last observed response in a block were considered intentional omissions, and treated as fractionally correct at the value of the reciprocal of the number of response alternatives. These conventions are discussed by Mislevy and Wu (1988). With regard to the handling of not-reacied items, they find that ignoring not-reached items introduces slight biases into item parameter estimation to the degree that (l) not-reached items are present and (2) speed is correlated with ability. With regard to omissions, they find that the
method described above provides consistent limited-information likelihood estimates of item and ability parameters under the assumption that respondents omit only if they can do no better than responding randomly.

The local independence assumption embodied in (9.2) implies that item response probabilities depend only on $\theta$ and the specified item param ters-not on the position of the item in the booklet, on the content of items around an item of interest, or on test-administration timing conditions. These eftects are certainiy present in any application, however. The pra, al question is whether the IRT probabilities obtained via (9.2) are "close enough" to be robust with respect to (l) the c. ntext in which the data a $=0$ be collected and (2) the inferences that are to be dravm. For example, experience with adaptive testing has shown using the same item parameters regardless of when an item is administered does not materially bias estimates of the proficiencies of individual examinees. Our experience with the 1986 NAEP reading anomaly, has shown, however, that for measuring small changes over time, changes in item context and speededness conditions lead to unacceptably large random error component.s. These can be avoided by presenting items used to measure change in identical test forms, with identical timings and administration conditions. Thus we do not maintain that the item parameter estimates obtained in any particular booklet configuration are appropriate for other conceivable conf guracions, and the parameter estimates are context bound. (For this reason, we prefer common population equating to common item equating whenever equivalent random samples are available for linking.) A given assessment block, it will be recalled, can appear $2 s$ the first, second, or third block of a booklet. The appearances are balanced, so that any differences in item parameters due to block position are averaged out.

The average response method (ARM) model. The basic equation of the ARM is an average of item responses:

$$
\begin{equation*}
\theta=a^{\prime} x . \tag{9.3}
\end{equation*}
$$

Here a is a vector of constants, specified so as to provide a meaningful summary of performance. Weights of $1 / \mathrm{n}$ for an n -item test, for example, yicld simply an average score; weights given by the $\mathrm{k}^{\text {ch }}$ eigenvector of the covariance matrix for $x$ yield the $k^{\text {th }}$ component score. If a respondent responded to all items, then an ARM score would be directly calculable via (9.3) without error. Typically, however, a given NAEP respondent receives only a subset of the iten, in an ARM scale, so that his or her ARM $\theta$ is not observed directly.

### 9.2.2 An Overview of Plausible Values Methodology

Item response theory was developed in context of measuring individual examinees' abilicies. In that setting, each individua: is administered enough items (often 100 or more) to permit precise estimation of his or her $\theta$, as a maximum likelihood estimate $\hat{\theta}$, for example. Because the uncertainty
associated with each $\theta$ is negligible, the distribution of $\theta$, or the joint distribution of $\theta$ wich other variables, can then be approximated using individuals' $\hat{\theta}$ values as $i \stackrel{i}{i}$ thev were $\theta$ values.

This approach breaks down in the assessment setting when, in order to provide broader content coverage in limited testing time, each respondent is administered relatively few items in a scailing area. The problem is that the uncertainty associated with individual $\theta$ s is too large to ignore, and the features of the $\theta$ distribution can be seriously biased as estimates of the $\theta$ distribution. (The failure of this approach was verified in sarly analyses of the 1984 NAEP reading survey; see Wingersky, Kaplan, \& Beaton, 1987.) "Plausible values" were developed as a way to estimate key population features consistently, and approximate others no worse than standard IRT procedures would. A detailed development of plausible values methodology is given in Mislevy (1988a, in press). Along with theoretical justifications, that paper presents comparisons with standard procedures, discussions of biases that arise in some secondary analyses, and numerical examples. The following paragraphs give a brief overview of the plausible values approach, focusing on its implementation in the 1988 NAEP analyses.

Let $y$ represent the responses of all sampled examinees to background and attitude questions, along with design variables such as school membership. If IRT or ARM $\theta$ values were available for all sampled examinees, it would be possible to compute a statistic $t(\theta, y)$-such as a subpopulation sample mean, a sample percentile point, or a sample regression coefficient-to estimate a corresponding population quantity $T$. A function $U(\theta, X)$-e.g., a jackknife estimate-would be used to gauge sampling uncertainty, as the variance of $t$ around $T$ in repeated samples from the population.

Because the 3PL model and the ARM are latent variable models, however, $\theta$ values are not observed even for sampled students. To overcome this problem, we follok fubin (1987) by thinking of $\theta$ as "missing data" and approximate $t(\underline{\theta}, \underline{y})$ by its expeztation given ( $x, y$ ), the data that actually were observed, as follows:

$$
\begin{align*}
t^{*}(\underline{x}, \underline{y}) & =E[t(\underline{\theta}, \underline{y}) \mid \underline{x}, \underline{y}] \\
& =\int t(\underline{\theta}, \underline{y}) p(\underline{\theta} \mid \underline{x}, \underline{y}) d \underline{\theta} . \tag{9.4}
\end{align*}
$$

It is possible to approximate $t^{*}$ using random draws from the conditional distributions $p\left(\theta \mid x_{1}, y_{1}\right)$ of each sampled student i. These values are referred to as "imputations" in the sampling literature, and "plausible values" in NAEP. The value of 6 for any respondent that would enter into the computation of $t$ is thus replaced by a rar mly selected value from the conditional distribution for $\theta$ given his o. her responses to cognitive items ( $x_{1}$ ) and background items ( $y_{1}$ ). Rubin (1987) proposes that this process be carried oat several times-"multiple imputations"-so that the uncertainty associated with imputation can be quantified. The average of the results of, say, $K$ estimatec of $t$, each computed from a different set or plausiole values, is a Monte Ca approximation of (9.4); the variance among them, B, reflects uncertainty due
to not observing $\theta$, and must be added to the estimated expectation of $U(\underline{\theta}, \underline{y})$, which reflects uncertainty due to testing only a sample of students from the population. Section 9.3 explains how plausible values are used in subsequent analyses.

It cannot be emphasized too strongly that plausible values are not test scores for individuals in the usual sense.

Plausible values are offered only as intermediary computations for calculating integrals of the form of equation 9.4 , in order to estimate population charactaristics. When the underlying model is correctly specified, plausible values will provide consistent estimates of population characteristics, even though they are not generally unbiased estimates of the proficiencies of the individuals with whom they are associared. The key idea lies in a contrast between plausible values and the more familiar $\theta$ estimates of educational measurement that are in some sense optimal for each examinee (e.g., maximum likelihood estimates, which are consistent estimates of an examinee's $\theta$, and Bayes estimates, which provide minimum mean-squared errors with respect to a reference population): Point estimates that are optimal for individual examinees have distributions that can produce decidedly noncptimal (specifically, inconsistent) estimates of population characteristics (Little \& Rubin, 1983). Plausible values, on the other hand, are constructed explicitly to provide consistent estimates of population effects.

In both IRT and ARM analyses in NAEP, plausible values are included for the small numbers of students who responded to background questions, but, although they were presented items in a subject area, did not respond to any of them. The conditional distribution employed for such a nonrespondent is based solely on tis or her background values $y$. This special class of nonrespondents was included in this manner, even thou\&' they provided no information about their proficiencies, in order to maintain the representativeness of the sample. This convention provides estimates of population characteristics that have the same expected value and precision as would be obtained under the mire familiar nonresponse adjustment of deleting the nonrespondents and boosting the sampling weights of respondents with the same $y$ values, since their plausible values are drawn from the estimated $\theta$ distributions of the appropriately matched respondents.

### 9.2.3 Computing Plausible Values in IRT based Scales

Plausible values for each respondent $i$ are drawn from the conditional distribution $p\left(\theta \mid x_{1}, y_{1}\right)$. This subsection describes how, in IRT-based scales, these conditional distributions are characterized, and how the draws are taken. Using first Bayes' theorem, then the IRT assumption of conditional independence,

$$
\begin{align*}
p\left(\theta \mid x_{1}, y_{1}\right) & \propto P\left(x_{1} \mid \theta, y_{1}\right) p\left(\theta \mid y_{1}\right) \\
& =P\left(x_{1} \mid \theta\right) p\left(\theta \mid y_{1}\right), \tag{9.5}
\end{align*}
$$

where $P\left(x_{1} \mid \theta\right)$ is the likelihood function for $\theta$ induced by observing $x_{1}$ (treating item parameter estimates as known true values) and $p\left(\theta \mid y_{1}\right)$ is the distribution of $\theta$ given the observed value $y_{1}$ of background responses.

Equations (9.4) and (9.5) can also be emplujed with vector-valued $\theta$, as in the 1936 NAEP mathematics subscales. In such cases, $P\left(x_{1} \mid \theta\right)$ is the product over subscales of the independent likelihoods induced by responses to $\because$ ems within each subscale, and $p\left(\theta \mid y_{1}\right)$ is the multivariate-and generally non-independent-joint density of proficiencies for the subscales, conditional on background variables $y$.

In the analyses of 1988 NAEP data, a normal (Gaussian) form was assumed for $p\left(\theta \mid y_{i}\right)$, with a common dispersion and with a mean given by a linear model for selected main-effects and two-way interactions of the complete vector of background variebles. The included background variables will be referred to as the conditioning variables, and will be denoted $\mathrm{y}^{\mathrm{c}}$. (The conditioning variables used in 1988 NAEP analyses are listed in Appendix C.) The following model was fit in each subject area:

$$
\begin{equation*}
\theta-\Gamma^{\prime} y^{c}+\varepsilon \quad, \tag{9.6}
\end{equation*}
$$

where $\varepsilon$ is normally distributed with mean 0 and dispersion $\Sigma . \quad \Gamma$ and $\Sigma$ are the parameters to be estimated. In subject areas wit' only one scale, such as reading, $\Gamma$ is a vector and $\Sigma$ is a scalar. In subject areas comprising subscales, $\Gamma$ is, a matrix and $\Sigma$ is a covariance matrix. As in regression analysis, $\Gamma$ is a vector or matrix of effects and $\Sigma$ is the matrix or scalar variance of residuals. Also as in regression, the interpretation of the effects depends on how the design vectors in $y^{c}$ are inded-as contrasts, or for linear effects, as examples. Appendix $C$ gives the codings and estimates of effects of the present assessment. Like item parameter estimates, the estimates of the parameters of conditionai astributions were treated as known true values in subsequent steps of the analyses.

Maximum likelihood estimates of $\Gamma$ and $\Sigma$ were obtained with Sheehan's (1985) M-GROUP computer program, using a variant of the IM solution described in Mislevy (1985). The difference from the published algorithm lies in the numerical approximation that was employed. Note from (9.5) that $p\left(\theta \mid x_{1}, y_{1}\right)$ is proportional to the product of two terms, the likelihood $P\left(x_{1} \mid \theta\right)$ and the conditional distribution $p\left(\theta \mid y_{1}\right)$. The conditional distribution has been assumed multivariate normal, with mean $\mu_{1}^{c}-\Gamma^{\prime} y_{1}^{c}$ and covariance matrix $\Sigma$, if the likelihood is approximated by another normal distribution, with mean $\mu_{1}^{\mathrm{L}}$ and covariance matrix $\Sigma_{1}^{L}$, then the posterior $p\left(\theta \mid x_{1}, y_{1}\right)$ is also multivariate normal with covariance matrix

$$
\begin{equation*}
\Sigma p-\left(\Sigma^{-1}+\left(\Sigma_{1}^{L}\right)^{-1}\right)^{-1} \tag{9.7}
\end{equation*}
$$

and mean vector

$$
\begin{equation*}
\widetilde{\theta}_{i}=\left(\theta_{1}^{c} \Sigma^{-1}+6_{i}^{L} \Sigma_{i}^{L}\right)\left(\Sigma_{i}^{p}\right)^{-1} \tag{9.8}
\end{equation*}
$$

In the 1988 analyses, a normal arproximation for $P\left(x_{1} \mid \theta\right)$ is accomplished in a given scale by the steps described below. (Recall that by the assumed conditional independence across scales, the joint conditional likelihond for multiple scales is the product of independent likelihoods for each of the scales.) These computations are carried out in the scale determined by BILOG (Mislevy \& Bock, 1982) item parameter estimates, where the mean and standard deviation of the composite population formed by combining the three NAEP grade/ages has mean zero and standard deviation one. The steps were as follows.

1) Lay out a grid of $Q$ equally spaced points from -5 to +5 , a range that covers the region in each scale where all examinees from all NAEP grade/age groups are virtually certain to occur. The value of $Q$ varies from 20 to 40 , depending on the scale being used; smaller values suffice for scales with few items given to each respondent, while larger values are required for scales with many items.
2) At each point $X_{q}$, compute the likelihood $L\left(x_{1} \mid \theta-X_{q}\right)$.
3) To improve the normal approximation in those cases in which likelihoods are not roughly symmetric in the range of interest-as when all of a respondent's answers are correct-multiply the values from Step 2 by the mild smoothing function
$S\left(X_{q}\right)=\frac{\exp \left(X_{q}+5\right)}{\left[1+\exp \left(X_{q}+5\right)\right][1+\exp (\overbrace{q} \cdots)]}$.

This is equivalent to augmenting each examinee's response vector with responses to two fictitious items, one extraordinarily easy item that everjone gets right and one extraordinarily difficult item that veryone gets wrong. This expedient improves the normal approximation for examinees with flat or degenerate likelihoods in the range where their conditional distributions lie, but has negligible effects for examinees with even modestly welldetermined symmetric likelihoods.
4) Compute the mean and standard deviation of $\theta$ using the weights $S\left(X_{q}\right) L\left(X_{i} \mid \theta-X_{q}\right)$ obtained in Step 3.

At this stage, then, the likelihood induced by a respondent's answers to the items in a given scale is approximated by a normal distribution. In subject areas where there is only one scale, a single normal distribution thus
summarizes information from item responses. In an area such as mathematics or science where there are siveral scales, independent normal distributions, one per subscale, scmarize information from responses to items from the several scales.

This normalized-likelihood/normal posterior approximation was then employed in both the estimation of $\Gamma$ and $\Sigma$ and in the generation of plausible values. From the final estimates of $\Gamma$ and $\Sigma$, a respondent's posterior distribution was obtained from the normal approximation using the four-step procedure outlined above. A plausible value was drawn from this normal distribution-univariate normal, in subject areas like those in the 1988 survey with only a single scale; multivariate normal in areas like 1986 mathematics and science, with multiple subscales. For those subject areas with multiple subscales, weighted-average composites over subscales were also calculated after appropriate rescaling (see Beaton, 1983, for details and definitions of composites).

### 9.2.3.2 Computing Plausible Values in ARM Scales

In 1988 NAEP, the average response method (ARM) was used to carry out analyses of writing data. The ARM writing composite variable is defined to ve an average rating (on the 0 -to- 4 rating scale for responses to essay pron pts) over the set of essay exercises detailed in Chapter ll. Under the NAEP file. spiraled sampling design, no single student is administered more than foar of these proxpics. It is possible nevertheless to estimate consistently the covariance among each pair of exercises, setting the stage for the construction of plausible values.

The key step in the scale-score analyses of writing wes the creation of sets of student-level plausible values. If a respondent had answered all questions going into the composite, then that respondent's ARM score would be directly calculable, without error, by

$$
\theta=a^{\prime} x
$$

where $x$ is the vector of the subject's responses to the $n$ questions in the composite and a is a vector of $n$ constants, each equal to $l / n$. However, since no respondent was presented all writing extrcises, composite values must be estimated by an application of the ARM technology. Briefly, the ARM technology, which is a kind of multiple regression, produces for each studen. a set of plausible values, each of which predicts what that student's composite score might plausibly be, based on the student's responses to the questions in the composite that were presented to the student and based on the student's status on the conditioning variables listed in Appendix C. ("Conditioning variables" for the ARM, just as for IRT-based plausible values, are the background variables with which cognitive responses are combined to yield respondents' predictive distributions for $\theta$ ).

Let $x_{1}$ represent the responses of the $i^{\text {th }}$ student to the questions in the composite that were presented to that student and let $y_{1}$ be the values of that student's conditioning variables. Then the $k^{\text {th }}$ plausible value of the

ARM composite $\theta$, based on the student's observed responses and conditioning variables is

$$
\tilde{\theta}_{i k}=y_{i}^{\prime} \hat{\Gamma}+x_{i}^{\prime} \hat{\beta}+y_{i}^{\prime} \gamma_{k}+x_{1}^{\prime} \alpha_{k}+\varepsilon_{i k}
$$

where
$\tilde{\theta}_{i k}$ is the $k^{\text {th }}$ plausible value of the ARM composite,
$\hat{\Gamma} \quad$ is the vector of estimated effect: for the conditioning variables,
$\hat{\beta} \quad$ is the vector estimatzd as giving the change in the composite variable for a unit change in the scores on each of the questions in $x_{i}^{\circ}$, with the linear effect of the conditioning variables held fixed,
$\left[\gamma_{k}, \alpha_{k}\right] \quad$ is a random draw from a $N(0, \Sigma)$ distribution, where $\Sigma$ is the estimated variance-covariance matrix of the estimates of $\Gamma$ and $\hat{\beta}$ and reflects the uncertainty due to using sample estimates of the regression equation; and
$\varepsilon_{\mathrm{dk}} \quad$ is an estimated residual drawn from a $N\left(0, \sigma_{c}^{2}\right)$ distribution where $\sigma_{e}^{2}$ is the variance of the predictive distribution of the ARM value given the observed values of $y_{i}$ and $x_{1}$.

The parameters relating the responses on a given set of background questions ( $\hat{\beta}$ ) and values of the conditioning variables ( $\hat{\Gamma}$ ) with the means of the responses each of the questions in the ARM composite were estimated by least-squares technology. To accomplish this it is sufficient to obtain estimates of the means, variances, and interitem covariances, by conditioning subgroup, for the complete set of writing questions going intc the composite. Because the ARM composite : the mean of the individual questions, this in turn produces estimates, by conditioning subgroup, of the ARM value mean and variance, as well as of the covariances between the ARM composite and each of the individual writing questions. These provide a complete set of sufficient statistics (the normal equations) for the standard least-squares prediction of an ARM composite value given conditioning variable characteristics and responses to any suiset of the writing questions. (See Chapter 11 for details of the generr.tion of the normal equations.)

Solving these normal equations produces the standard least-squares point estimate of a student's score on the composite, which is, in the above notation,

$$
\hat{\theta}_{i}=y_{i} \cdot \hat{\Gamma}+x_{i} \cdot \hat{\beta}
$$

This standard estimate does not take into account ti.e distribution of potential scores for any individual. In fact, $\theta_{i}$ is an estimate of the mean of the predictive distribution of potential $\theta s$ for the individual and, as such, does not address the likelihood of other values from this distribution, any one of which mignt also have been the student's ARM composite score had the student answered all the questions. By including terms the account for the uncertainty in the estimation of a student's composite score, the plausible values ( $\bar{\theta}_{1 k}$ ) pruvide a more conplete representation of what we do and do not know about the student's "true" composice score. (Note: For convenience we are treating the ARM composite as a continuous variable, it is in fact discrete, but can take $\approx$ large number of closely spaced values.)

A check on the Impact of the approximations and simplifying azumptions employed in the ARM approach was carried out with the writing data from the 1984 NAEP writing assessment (Beaton \& Johnson, 1987). As a comparison for subgroup average writing scores, the same statistics were calculated using a totally different approach-the model-free, unbiased estimate for average responses based on the methodology employed by the Education Commission of the States in previous NAEP analyses. The latter method is prohibitively expensive to be used for all NAEP statistics, but could be calculated for the 44 questions in the common background questionnaire. Beaton and Johnson found that statistics based on the ARM were nearly indistinguishable from the modelfree averages for hose subgroups distinguished as conditioning variables, and for subgroups whose memberships were well-predicted by conditioning variables. Estimatad standard errors were also smaller for the ARM estimates. For those subgroups that were neither conditioned on nor well-predicied by conditioning variables, the ARM exhibited biases. The nature of such biases in plausible values methodology is discussed further in section 9.3 .3 of this report. Their causes, properties, and remedies are discussed at length in Mislevy (1988a, in press).

### 9.3 ANALYSES

When survey variables are observed without error from every respondent, standard variance estimators quantify the uncertainty associated with sample statistics from the only source, namely the sampling of respondents. Item percents correct for NAEP cognitive exercises meet this requirement, but scale-score proficiency values do not. The IRT and ARM models used in their construction posit an unobservable proficiency variable $\theta$ to summarize performance on the items in the area. The fact that $\theta$ values are not observed even for the respondents in the sample requires additional statistical machinery to draw inferences about $\theta$ distributions and to quantify the uncertainty associated with those inferences. As desuribed above, we have adapted Rubin's (1987) multiple ippytations procedures to the context of latent variable models to produce ${ }^{2}$ the plausible values upon which many
analyses of the 1988 NAEP data are based. This section describes how plausible values were en ' - ed in subsequent analyses to yield inferences about population and sul lation distributions of proficiencies.

### 9.3.1 Computational Procedures

E en though we do not observe the $\theta$ value of respondent $i$, we do okserve variables that are related to it: $x_{i}$, the respondent's answers to the cognitive items he or she was administered in the area of i:aterest, and $y_{1}$, the respondent's answers to demographic and background variables. Suppose we wish to draw inferences about a number $\mathrm{T}(\underline{\theta}, \underline{Y})$ that could be calculated explicitly if the $\theta$ and $y$ values of each member of the population were known. Suppose further that if $\theta$ values were observable, we would be able to estimate $T$ from a sample of $N$ pairs of $\theta$ and $y$ values by the statistic $t(\theta, y)$ [where $\left.(\theta, y)=\left(g_{1}, y_{1}, \ldots, \theta_{N}, y_{N}\right)\right]$, and that we could estimate the variance in $t$ around $T$ due to sampling respondents by the function $U(\theta, y)$. Given that observations consist of ( $x_{i}, y_{i}$ ) rather than ( $\theta_{1}, y_{i}$ ), we can approximate $t$ by its expected value conditional on ( $\underline{x}, y$ ), or

$$
\begin{aligned}
t^{*}(\underline{x}, \underline{y}) & =E[t(\underline{\theta}, \underline{y}) \mid \underline{x}, \underline{y}] \\
& -\int t(\underline{\theta}, \underline{y}) p(\underline{\theta} \mid \underline{x}, \underline{y}) d \theta .
\end{aligned}
$$

It is possible to approximate $t^{*}$ with randum draws from the conditional distributions $p\left(\theta_{1} \mid x_{1}, y_{1}\right)$, which are obtained for all respondents by the method describ $d$ above $i n$ section 9.1 . Let $\hat{\theta}_{m}$ be the $m^{\text {th }}$ such vector of "plausible values," consisting of a (possibly multidimensional) value for the latent variable of each respondent. This vector is a plausible representation of what the true $\underline{\theta}$ vector might have been, had we been able to observe it. The following steps describe how an estimate of a scaiar statistic $t(\theta, y)$ and its sampling variance can be obtained from $M(>1)$ such sets of plausible values. (Note: Five sets of plausible values were used in NAEP analyses in each subject area, and are provided on the NAEP public-use data tapes for secondary analysis.)

1) Using each set of plausible values $\hat{\hat{\theta}}_{m}$ in turn, evaluate $t$ as if the plausible vaiues were true valuas of $\underline{\theta}$. Denote the results $\hat{t}_{m}$, for $m=1, \ldots, M$.
2) Using the multiple weight jackknife approach (see Chapter 8), compute the estimated sampling variance of $\hat{\mathrm{t}}_{\mathrm{m}}$, denoting the result $\mathrm{U}_{\mathrm{m}}$.
3) The final estimate of $t$ is

$$
t^{*}-\sum_{m=1}^{M} \hat{t}_{m} / M
$$

4) Compute the average sampling variance over the $M$ sets of plausible values, to appreximate uncertainty due to sampling responaents.

$$
U^{*}-\sum_{\mathrm{m}-1}^{\mathrm{M}} U_{\mathrm{m}} / \mathrm{M} .
$$

5) Compute the variance among the $M$ estimates $\hat{t}_{n}$, to appıoximate uncertainty due to not observing $\theta$ values from respondents:

$$
\mathrm{B}_{\mathrm{M}}=\sum_{\pi=1}^{\mathrm{M}}\left(\hat{\mathrm{t}}_{\mathrm{m}}-\mathrm{t}^{*}\right)^{2} /(M-1) .
$$

6) The final estimate of the variance of $t^{*}$ is the sum of two components:

$$
V=U^{\star}+\left(1+M^{-1}\right) B_{Y} .
$$

Note: Due to the excessive crmputation that would be requi.red, NAEP analyses did not compute and average jackknife variances over all five sets of plausible values, but only on the first set. Thus. in NAEP reports, $\mathrm{J}^{*}$ is approximated by $\mathrm{U}_{1}$.

### 9.3.2 Statistical Tests

Suppose that if $\theta$ values were obserred for sampled students, the statistic $(t-T) / U^{1 / 2}$ would follow a $t$-distribution with d degrees of freedom. Then the incomplete-data statistic ( $t^{*}-T$ ) $/ V^{1 / 2}$ is anproximately $t$-distributed, with degrees of freedom given by

$$
\nu=\frac{d}{d+r_{M}^{-2}(M-1)}(M-1)\left(l+r_{i j}^{-1}\right)^{2} \quad \text { r. } \quad d \frac{\left(l+r_{M}\right)^{2}}{l+\left(d r_{m}^{2} /(m-1)\right)}
$$

where $r_{M}$ is the relative increase in variance due to not obstrving $\theta$ values.

$$
\mathrm{r}_{\mathrm{H}}-\left(1+\mathrm{m}^{-1}\right) \mathrm{B}_{R} / U^{\star}
$$

When $B_{H}$ is small relative to $U^{*}$, the reference distribution for incomplete-data statistics differs little from the reference distribution for
the corresponding complete-data statistics. This is the case with main NAEP reporting variables. If in addition $d$ is large, the $n r$ :mal approximation can be used to flag "significant" results.

For $k$-dimensional $t$, such as the $k$ coefficients in a multiple regression analysis, each $U_{m}$ and $U^{*}$ is a covariance matrix, and $B_{M}$ is an average of squares and cross-produzts rather than simply an average of squares. In this case, the quantity

$$
\left(T-t^{*}\right) V^{-1}\left(T-t^{*}\right)^{\prime}
$$

is approximately $F$ distributed, with degrees of freedom equal to $k$ and $\nu$, with $\nu$ defined as above but with a matrix generalization of $r_{r}$ :

$$
\mathrm{r}_{\mathrm{H}}=\left(1+\mathrm{M}^{-1}\right) \text { Trace }\left(\mathrm{B}_{\mathrm{H}} \mathrm{U}^{*-1}\right) / \mathrm{k}
$$

By the same reasoning as used for the normal approximation for scalar $t$, a chi-square distribution on $k$ degrees of freedom often suffices.

### 9.3.3 Biases in Secondary Analyses

Statistics $t^{*}$ that involve proficiencies in a scaled content area and variables included in the conditioning variables $y^{c}$, are consistent estimates of the corresponding population values $T$. Statistics involving background variables $y$ that were not conditioned on, or relationships among proficiencies from different content areas, are subject to asymptotic biases whose magnitudes depend on the type of statistic and the strength of the relationships of the nonconditioned background variables to the variables that were conditioned on and to the proficiency of interest. That is, the large sample eypectations of certain sample statistics need not equal the true population parameters.

The direction of the bias is typically to underestimate the effect of nonconditioned variables. For details and derivations, the interested reader is referred to Beaton and Johnson (1987, 1990), Mislevy (1988a, in press), and Mislevy and Sheehan (1987, section 10.3.5). For a given statistic $t^{*}$ invelving one content area and one or more nonconditioned background variables, the magnitude of the bias is related to (l) the extent to which observed responses $x$ account for the latent variable $\theta$, and (2) the gree to which the nonconditioned background var:ables are explained by conditioning background variables. The first factor-conceptually related to test reliability-acts consist .. cly in that greater measurement precision reduces biases in all secondary analyses. The second faccor acts to reduce biases in certain analyses but increase it in others. In particular,

- High shared variance between conditioned and nonconditioned background variables mitigates biases in analyses that involve only proficiency and nonconditioned variables, such as marginal means or regressions.
- High shared variance exacerbates biases in regression coefficients of conditional effects for nonconditioned variables, when nonconditioned and conditioned background variables are analyzed jointly as in multiple regression.

In the 1984 NAEF reading assessment, the magnitude of shrinkage for the subgroup ans of a background variable that was not conditioned on averaged about 15 percent. Biases in multiple regressions that included conditioning variables averaged about 35 percent. Since that time, two importar steps have been taken to greatly reduce potential biases of this type. First is the move to the "focused-BIB" matrix-sa.apling design, under which all the cognitive tasks a respondent is administered are drawn from the same subject area. On the average, respondents are presented about twice as $י y$ tasks in the subject area than would have been presented under the full spiraling design, which administered each examinee tasks from one, two, or three subject areas. This increases the extent to which $x$ accounts for $\theta$, and, as noted above, decreases potential biases in all secondary analyses. Second is the increase in the number of background variables that can be included in the conditioning vector. This increases the number of secondary analyses that can be carried out with little or no bias, and mitigates biases in analyses of the marginal distributions of $\theta$ in nonconditioned variables. Bruce Kaplan and Jennifer Nelson's analyses of 1988 reading data (some results of which are summarized in Mislevy, in press) indicate that these improvements have slashed the potential bias for nonconditioned variables in multiple regression analyses from the 1984 level of 35 percent to approximately 10 percent, and biases in simple regression of such variables from 15 percent to 5 percent.

Table 9-1 gives representative results from an analysis in which Nelson estimated a number of substantively important effects from the 1988 NAEP reading data for 13 -year-olds in two ways: (1) with the operational conditioning process, which included the listed effects in the conditioning vector, so their estimates are consistent; and (2) with no conditioning at all, so that the biases would be at their maxima. Also shown are results of an experimental method of conditioning, which employed only the first 32 principal components of the matrix of all 64 original conditioning vectors. The encouraging result from this analysis is that bias in analyses involving the original effects is virtually eliminated in this approach through the use of only half as many conditioning variables.

Table 9-1
Estimated Effects Based on Full, No, and Partial Conditioning

| Effect | Fu11* | None | Bias | 32 Components | Bias |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Male-Female | -15.7 | -14.4 | -8\% | -15.9 | $1 \%$ |
| White-Black | 26.6 | 23.8 | -11\% | 26.3 | -1\% |
| High Metropolitan-Low |  |  |  |  |  |
| Metropolitan | 32.6 | 30.5 | -6\% | 32.8 | 1\% |
| Northeast-Southeast | 10.4 | 9.4 | -10\% | 10.1 | -3\% |
| 13-year-old Eighth Graders- |  |  |  |  |  |
| 13-year-old Seventh Graders | 32.7 | 29.2 | -11\% | 32.7 | 0 |

[^28] shown hero.

### 9.3.4 A Numerical Example

To illustrate how plausible values are used in subsequent analyses, this subsection gives some of the steps in the calculation of 1988 grade-level reading means and their estimation-error variances.

The weighted mean of the first plausible values of the grade 4 students in the sample is 230.68, and the jackknife variance of these values is 1.17 . Were these values true $\theta$ values, then 230.68 would be the estimate of the mean and 1.17 would be the estimation-error variance The weighted mean of the secord plausible values of the same students, however, is 23060 ; the third, fourth, and fifth plausible values give weighted means of 230.19, 230.32, and 230.06. Since all of these figures are based on precisely the same sample of studenis, the variation among them is due to uncerta:nty about the students' $\theta$ s, having observed their item responses and background variables. Taking the jackknife variance estimate from the first plausible value, 1.17, as our estimate $U^{*}$ of sampling variance, and the variance among the five weighted means, .09 , as our estimate $B$ of uncertainty due to not observing $\theta$, we obtain as the final estimate $V$ of total error variance $1.17+\left(1+5^{-1}\right) .09=1.28$.

With $U^{*}$ and $B$ defincd as above, and wi=h $M=5$, we may obtain a value for Rubin's (1987) index characterizing the relative increase in variance due to the latency $\mathrm{o} . \mathrm{E} \theta$; $\mathrm{r}=.09$.

Corresponding values were also calculated for grade 8 and grade 12. The results are shown in Table 9-2.

Table 9-2
Estimation Error Variances and Related Coefficients for the 1988 Grade-level Reading Assessments

| Grade | $\underline{U}^{\star}$ | $\underline{B}$ | $\underline{V}$ | $\underline{r}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | -17 |  |
| 4 | 1.17 | .09 | 1.28 | .09 |
| 8 | .96 | .06 | 1.03 | .07 |
| 12 | .69 | .02 | .71 | .03 |

### 9.4 OVERVIEW OF SCALES IN THE 1988 NAEP ASSESSMENT

Scale-score analyses were carried out in tire following subject areas in . 2 1988 NAEP assessment.

- Reading: 1 IRT trend scale, linking 1988 results to the 1971 1984 assessments, and 1 IRT cross-sectional scale, newly created in 1988
- Writing: 1 ARM trend scale, linking 1984 and 1988, and 1 ARM cross-sectional scale, newly created ir 1988
- Civics: 1 IRT trend scale, linking 1988 results to the 1976 and 1982 assessments (neither of which had been previously scaled), and 1 IRT cross-sectional scale, newly created in 1988.
- U.S. history: 1 IRT scale, newly created in 1988.
- Geography: 1 IRT scale, newly created in 1988.

One subset of conditioning variables was employed in the creation of plausible values for all of these areas; it included only variables from the common set of background questions administered to respondents in all subject areas. The variables involved are listed in Table C-l in Appendix C. A second subset of subject-specific conditioning variables was additionally included in the creation of plausible values for the subject areas of reading, writing, civics, U.S. history, and geography; these subsets included variables based on subject-related questions administered only to respondents who were adniniscered cognitive items in the corresponding area. Tables C-2 through C11 in Appendix $C$ give the relevant variables and details of exactly how the background effects were coded in order to produce the conditioning vector $y^{c}$ Conditional effect parameters $\Gamma$ and the associated residual variances $\Sigma$ were estimated separately ir each subject area and in each grade/age Estimated effects for each subject and sample are Eiven in Tables C. 12 through C-31. Additicaal information on these analyses is presented in Chapters 10 through 14.

In the course of administering bridge (or trend) sample test forms comparable to those of the 1986 survey to further study trends in reading,
data were sorendipitously obtained for mathematics and science. Supplementary analyses involving these data are described in Chapter 15. These analyses included scale-score analyses as follows:

- Mathematics: 1 IRT scale, linked with the mathematics trend scale created in 1986.
- Science: i IRT scale, linked with the mathematics trend scale created in 1986.

The conditioning variables and codings used in the creation of plausible values for these two subject areas are listed in Tables C-l0 and C-ll in Appendix $C$; estimated effects for the mathematics and science conditioning variables are given in Tables C-38 through C-43.

## Chapter 10

# data analysis for the reading assessment ${ }^{1}$ 

Rebecca Zwick<br>Educprional Testing Service

The analysis of the 1988 reading data had three main goals:

- to continue the long-term reading trend results begun in 1971 for ages 9, 13, and 17,
to produce derailed analyses of reading proficiency for grades 4, 8, and 12, and
- to contin"e the investigation of the anomalous reading results in 1986 . $^{2}$

The details of the first two $t$,es of analyses are given in this chapter. The 1988-1989 investigation of th 1986 reading anomaly is described in The Effect of Changes in the National Assessment: Disentangling the NAEP 1985-86 Reading Anomaly (Beaton \& Zwick, 1990).

This chaptei has three main sections. First, the samples of studints who received rea ing items in the 1988 NAEP assessment are ciescribed. Then, the procedures used for the long-term trend analysis are detailed. Finally, the procedures used for the cross-sectional analysis are discussed.

[^29]${ }^{2}$ In 1986, reading trend results for ages 9 and 17 appeared implausibly low. Their release was therefore delayed and a three-year investigation ensued. (Despite the la. hange in reading proficiency estimates, the 1986 findings resombled past assessments and cther reading measures with respect to the ordering of subgroup differences and th. relation of reading proficiency to background variables and to performance in mathematics and science. It was 'herefore decided to release a cross-sectional report, Who Reads Best? [Applebee, Langer, \& Mullis, 1988], using a scale metric that differed from the 1984 reading scale.) The anomalous 1986 reading trend results are not included in NAEP's reading trend report, but are documented separately in Beaton and Zwick, 1990, whi $h$ describes the investigation of the e results and their subsequent adjustment. In brief, the study showed that changes in assessment technology had affected the 1986 estimates of reading proficiency

### 10.1 SAMPLES OF STUDENTS

In 1988, reading items were administered to 14 samples of students in the 1988 assessment, as shown in Tabla 10-1:

- The semples that constituted the bridge to 1984 (9[ $\operatorname{Br} 84-\mathrm{RW}]$, 13 [ $\mathrm{Br} 84-\mathrm{RW}$ ], and $17[\mathrm{Br} 84-\mathrm{RW}]$ ) played a dual role in the 1988 reading analyses: They served as the basis of the long-term reading trend estimates, reported in The Reading Report Card, 1971 to 1988: Trends from the Nation's Report Card (Mullis \& Jenkins, 1990) and were used in the 1988-1989 phase of the investigation of the 1986 reading anomaly.
- The "focused-BIB" samples for reading (i.e., the balanced incomplete block spiral samples 3 [Main-Rdg], 13 [Main-Rdg], and 17 [Main-Rdg], which received three reading blocks) served as the basis of the grade-level cross-sectional analyses reported in Learning to Read in Our Nation's Schools: Instruction and Achievement in 1988 at Grades 4, 8, and 12 (Langer, Applebee, Mullis, \& Foertsch, 1990).
- The intercorrelation samples, 9[Main-Int], $1.3[$ Main-Int], and 17[Main-Int], which were also a part of the main assessment, received booklets that contained reading, civics, and U.S. history items, and, at grade 12/age 17, geography items. The scaling of the results from these samples allows =esearchers to examine the relation between these subject areas.
- For grade 8/age 13 and grade 12/age 17, th.e main assessment also included samples of students ( 9 [Main-Doc] and $13[M a i n-D o c]$ ) who received two booklets consisting of NAEP reading blocks along with document lieeracy items that had been administered as part of NAEP's 1985 study of adult literacy (Kirsch \& Jungeblut, 1986). These booklets differed f.om the remaining main NAEP booklets for grade 8/age 13 and grade 12/age 17 in that the grid of response ovals for the items followed immediately after each item in the booklet; for the remainder of the main NAEP samples for the two upper age classes, a separate scannable answer sheet was used. (Tabla 10-2 shows the response modes for all portions of the 1988 reading assessment.) Preliminary item analyses showed that when reading items were administered in these document literacy booklets, they behaved in a substantially different manner than in the focused-BIB assessment. Therefore, the reading item responses from these booklets were not scaled, but are available for secondary analysis. Item results for the document literacy blocks (which, unfortunately, showed that large proportions of students failed to reach some items) are also available on NAEP user tapes.

Table 10-1
NAEP 1988 Reading Samples

R $=$ Reading
W $=$ Writing
C $=$ Civics
$H=$ U.S. history
$G=$ Geography
$D=$ Document Literacy

[^30]Tabie 10-2
Response Modes for NAEP 1988 Reading Items

| Sample Code | Sample Type | Booklet <br> Numbers | Response Mode |
| :---: | :---: | :---: | :---: |
| $9[\operatorname{Br} 84-\mathrm{RW}]$ | Bridge to 1984 | 51-56 | Circle response in booklet |
| 13(Br84-RW) | Bridge to 1984 | 51-56 | Circle response in booklet |
| 17[Br84-RW] | Bridge to 1984 | 51-56 | Circle response in booklet |
| $9[\mathrm{Main}$-Rdg] | BIB Main | 8-14 | Fill in oval in booklet |
| 13 [Main-Rdg] | BIB Main | 8-14 | Fill in oval on separate sheet |
| 17[Main-Rdg] | BIB Main | 8-14 | Fill in ova: $n$ separate sheet |
| $9[$ Main-Int] | BIB Intercorrelation | 17-19 | Fill in oval in booklet |
| 13[Main-Int] | BIB Intercorrelation | 29-31 | Fill in oval on separate sheet |
| 17 [Meın-Int] | BIB Intercorrelation | 30-32 | Fill in oval on separate sheet |
| 13[Main-Doc] | BIB Document Literacy | 35-36 | Fill in oval in booklet |
| 17 [Main-Doc] | BIB Document Literacy | 36-37 | Fill in oval in booklet |
| 9 (Br86-RMS] | Bridge to 1986 | 91-93 | Fill in ove in booklet |
| 13[Br86-RMS] | Bridge to 1986 | 91-93 | Fill in oval in booklet |
| 17[Br26-RMS] | Bride to 1986 | 61-66 | Fill in oval in booklet |

- The reading blocks in the bridge-to-1986 samples, 9[Br86-RMS], 13 [Br86-RMS], and 17[Br86-RMS], were used only in the analysis of the reading anomaly and are, therefore, discussed further in this report.


### 10.2 LONG-TERM TREND ANALYSIS—BRIDGE TO 1984 SAMPLES

The 1988 bridge to 1984 included, at each age level, six of the assessment booklets administered in 1984. These booklets contained both reading and writing blocks, as well as background items. Although these bridge booklets represented only about a tenth of the reading booklets administered in the complex 1984 BIB design, ${ }^{3}$ they contained 10 of the 12 reading blocks that were scaled at each grade/age level in 1984. The number of students who were given each of the bridge items ranged from 768 to 927. The samples of students who received these bridge booklets are described in Table $10-1$ and in Chapter 3. The purpose of the long-term reading trend analysis was to add to the reading trend results that extended from 1971 to 1984 for ages 9, 13, and 17.4 Dimensionality analyses conducted following the 1984 assessment showed that the reading items were well summarized by a unidimensional scale (Zwick, 1927a). The analysis steps were as follows:

1. Conduct preliminary item analyses and verify the fit of the 1984 item parameters to the 1988 bridge data. For each item, calculations were made of the percent of students selecting each response, the percent who omitted the item, the percent who did not reach the item, and the correlation between the item score and the block score. Also, for each item block, the internal consistency reliability was computed. The block-level KR-20 reliabilities (for scaled multiple-choice items only) ranged from .66 to .83, with a median of .74 , at age 9 ; from .46 to .74 , with a median of .64 , at age 13; and from. 31 (for a block with only four scaled items) to .75, with a median of .67 , at age 17 . The item analyses revealed that at least 10 percent
${ }^{3}$ The bridge to 1984 included 1984 booklets $16,17,27,34,55$, and 60 at age 9 and booklets $13,16,17,21,34$, and 57 at ages 13 and 17 (see J. R. Johnson, 1987, pp. 120-121). The 1984 BIB assessment included 57 booklets that contained at least one scaled reading block at age 9 and 56 such booklets at ages 13 and 17 .
${ }^{4}$ Note that the current estimates of reading proficiency results for 1971 through 1984 differ slightly from those that appear in The Reading Report Card (NAEP, 1985) for three reasons. The first is that an improvement in the capacity of the computer program used for the conditioning pase of proficiency estimation (see Chapter 9) allowed for an increase in the number of conditioning variables, leading to improved proficiency estimates fnr the years 1971 t:hrough 1984. Also, additional records for 1971 that had been omitted from tapes provided by the previous contractor were recovered. The third change resulted from a recomputation of the 1984 weights for grade 4/age 9 and grade $8 /$ age 13. This change is detailed in Appendix E.
of the students failed to reach 22 items at age 9 , seven items at age 13 , and one item at age 17. Unlike the main NAEP assessment, however, the bridge blocks cannot be altered to reduce speededness. Evidence of speededness in the main assessment is presented below.

Because the purpose of the analysis of the bridge data was to provide a link to the 1984 reading results, it was desirable to use the parameters that had been obtained for the bridge items in the 1984 .tem calibration, provided that the fit of the 1984 parameters to the 1988 data was acceptable. (The 1984 analysis included all three grade/age cohorts in a single calibration.) In 1988, all multiple-choice items were included in the scaling process. There were 99 such items at ages 9 and 13 and 87 at age 17 . The total number of scaled items was 182. (The decision to exclude open-ended items was influenced by consideration of the role of the bridge data in the reading anomaly investigati $n$ : Because a previous study [Zwick, 1988] had shown that scoring inconsistencies had affected these items, their inclusion could have complicated the study of the reading anomaly.) Out of the 182 items, 65 items were administered to grade $8 /$ age 13 and grade $12 /$ age 17,37 items were given to grade 4/age 9 and grade 8 /age 13,25 items were given to grade $4 / a g e 9$ and grade 12/age 17 , and 24 items were given to all three age classes.

For all 182 items to be included in the 1988 scaling, plots of the 1984 item response functions along with the 1988 data showed the fit of the 1984 items to the 1988 data to be acceptable. These item parameters are given in Table F-2 of Appendix F.
2. Obtain the proficiency means and standard errors, and percents of students above each scale anchoring point for the NAEP reporting groups. Although scale values were obtained for the grade/age samples, only the age samples were used for trend reborting, following the NAEP tradition. Sample sizes were $3,782,4,005$, and 3,652 for ages 9,13 , and 17 . For each of the NAEP reporting categories, reading proficiency mıans and standard errors were computed using the technrlogy described in Chapter 9. A list of the conditioning variables, the scheme for coding them, and their estimated effects appear in Tables C-19 to C-2l of Appendix C. In addition, for each reporting category, a determination was made of the percent of students exceeding each of the scale anchoring levels determined in 1984: Rudimentary (150), Basic (200), Intermediate (250), Adept (300), and Advanced (350). The methods for deriving the anchor points is outlined in Chapter 7 and described in detail in Beaton (1987a).

### 10.3 CROSS-SECTIONAL ANALYSIS--MAIN SAMPLES

In 1988, reading items were administered in seven focused BIB booklets, each of which contained three reading blocks, in addition to background items The samples of students who received these items are listed in Tible $10 \cdot 1$ and described in Chapter 3. In addition, at each grade/age level, one reading block was included in each of the three booklets administered to the intercorrelation samples. The numbers of reading items administered to re main samples are given in Table 10-3, along with the numbers of items that
were new in 1988. Reading objectives for the new items are documented in Reading Objectives, 1986 and 1988 Assessmerts (NAEP, 1987a; see Chapter 2).

Table 10-3
NAEP 1988 Reading Items-BIB Samples

|  | Number of <br> Sample Code | Pading Scale Items |
| :--- | :---: | :---: |$\quad$| Number of |
| :---: |
| Reading Scale Items New to 19888 |
| 9[Main-Rdg] |

Of the total of 215 items, 52 items (including three intact bloch.s) were administered to both grade $8 / a g e 13$ and grade 12 age 17,26 items were given to both grade 4/age 9 and grade 8 /age 13 , and 5 items were given to all three age classes. The number of students in the focused-BIB and intercorreiation samples who were given each item ranged from 2,459 to 3,536 .

Four of the 215 items were open-ended; the remainder were multiplechoice. Two of the four open-ended items were administered at grade lí/age 1 only, one at grade 4/age 9 only and one at both grade 4/age 9 and grade 8/ag 13. These items were rated on ordinal scales ly professional judges. Scoring procedures and reliability results are described in Chapter 6.2. For purposes of item response theory (IRT) scaling, the range of possible scores was then dichotomized into "correct" and "incorrect" categories using rules provided by reading experts. Table $10-4$ shows the number of points in the ordital scale for each item, aloug with the dichotomization rule.

Table 10-4
Dichotomization Rules for Open-ended Reading Items Used in Scaling

| NAEP Item | Grade/Age | Score Range for Valid Responses | Scores Considered Correct |
| :---: | :---: | :---: | :---: |
| N015905 High Tech Pizza | 12/17 | 1-4 | 2 . |
| R002406 Small Fruits | 12/17 | 1-2 | 2 |
| R000106 Ant and Dove | $1 / 9$ | 1-5 | 4-5 |
| R000806 Grandpa and Wind | 4/9, 8/13 | 1-5 | 3-5 |

The primary purpose of the analysis of the main NAEP data was to provide reading results for grades 4,8 , and 12 , ind to investigate the relation of
reading proficien.y to student background and attitudes and to teacher attributes and instructional methods. The analysis steps wese as follows.

1. Conduct item analyses. Item analysis procedures like those described in connection with the trend analysis were applied to the main NAEP blocks. block-level KR-20 reliabilities (for multiple-choice items only) ranged from .62 to .84 , with a median of .81 , at grade 4 : from .66 to .87 , with a median of .84 , at grade 8 ; and from .74 to .85 , with a median of .81 , at grade 12. An important findil. of the item ane yses was that, although NAEP assessments are not intended to be speeded, some of the main NAEP reading blocks, like the bridge blocks, tended to be too long for substantial numbers of examinees. At least $l 0$ percent of the students failed to reach 13 items at grade 4, 10 : cems at grade 3 , and three items at age :7. The percent of students who failed to reach (or chcse not to respond to) the open-ended items, which are placed at the end of reading blocks in NAEP, was always at least 20. The information gained from the 1988 assessment about the numbers of items that students can complete was used in determining the number of items for the 1990 item blocks. It is hoped that, by reducing the length of blocks, sprededness problems can be avoided in the future.

It was also discovered in examining the reading results that the perfcrmance on each item block was affected by che position of the block within the booklet. Table 10-5 shows the average percent of students who failed to reach the items in each block for each of the three possible block positions. In nearly, ry case, the average percent not reached is greater for position 3 than for ositions 1 and 2. Particularly notable are the large average percents not reached for the grade 4 blocks R3 and R7 in positi. - 3 . The average percent correct for each block in each of the ihree possible positions is shown in Table lo-v. In nearly every case, the average percent correct declines as the position moves from 1 to 3 . The effect of block position is most severe for grade 4, followed in order by grade 8 and grade 12. The effect is most striking for block R3 at grade 4, for which the corage percent correct for position 1 is nearly 11 percent points higher than for position 3. In NAEP's computation of the percent correct for an item, students who did not reach the item are not included ${ }^{5}$; therefore, these differences in average percents correct are not simply the result of students' failure to reach items that occur in later blocks. Perhaps fatigue leads to mnre errors in these blocks. Further investigaticn Jf this issue is pJanned.

[^31]Toble 10-5
Average Percent of Students Failing to Rear:h Items for Each Block Position

## Block*

Number of
Items

Position
1

Position 3

Grade 4

| R2 | 14 | 5.8 | 5.0 | 7.0 |
| :--- | ---: | ---: | ---: | ---: |
| R3 | 7 | 4.7 | 4.8 | 9.8 |
| R4 | 7 | 2.4 | 2.2 | 6.0 |
| R5 | 15 | 5.5 | 4.1 | 6.8 |
| R6 | 14 | 5.0 | 6.5 | 5.2 |
| R7 | 15 | 3.7 | 3.1 | 10.0 |
| R8 | 12 | 4.6 | 3.6 | 8.4 |

Grade 8

| R2 | 14 | 3.6 | 3.0 | 5.5 |
| ---: | ---: | ---: | ---: | ---: |
| R3 | 9 | 0.9 | 0.3 | 2.8 |
| R4 | 10 | 0.6 | 1.7 | 2.3 |
| R5 | 14 | 2.3 | 1.8 | 2.3 |
| R6 | 18 | 5.1 | 4.8 | 7.0 |
| R7 | 19 | 3.5 | 4.3 | 3.9 |
| R8 | 10 | 2.5 | 2.3 | 3.9 |

Grade 12

| R2 | 14 | 3.9 | 3.0 | 6.1 |
| :--- | :--- | :--- | :--- | :--- |
| R3 | 11 | 4.2 | 4.7 | 6.3 |
| R4 | 19 | 0.9 | 1.6 | 3.1 |
| R5 | $1 / 4$ | 1.4 | 1.4 | 7.0 |
| R6 | 15 | 3.4 | 4.1 | 5.7 |
| R7 | 19 | 2.4 | 3.0 | 3.4 |
| R8 | 18 | 1.5 | 3.7 | 5.9 |

* Blocks R2, R5, and R7 are identical for grades 8 and 12. Except in these cases, identity of block numbers across grades does not imply that blocks are identical.

Table 10-6
Average Item Percent Correct
for Each Block Position

|  | Number of | Position | Posicion | Position |
| :---: | :---: | :---: | :---: | :---: |
| Block* | Items | $\underline{1}$ | $\underline{2}$ | $\underline{3}$ |

Grade 4

| R2 | 14 | 74.5 | 72.9 | 69.9 |
| :--- | ---: | ---: | ---: | ---: |
| R3 | 7 | 72.0 | 69.2 | 61.4 |
| R4 | 7 | 56.1 | 57.7 | 52.7 |
| R5 | 15 | 75.3 | 74.1 | 73.5 |
| R6 | 14 | 69.2 | 65.9 | 65.4 |
| R7 | 15 | 71.0 | 69.6 | 67.5 |
| R8 | 12 | 72.7 | 69.2 | 65.7 |

Grade 8

| R2 | 14 | 58.8 | 57.2 | 53.0 |
| :--- | ---: | ---: | ---: | ---: |
| R3 | 9 | 85.7 | 84.9 | 81.4 |
| R4 | 10 | 73.5 | 75.7 | 68.7 |
| R5 | 14 | 45.9 | 47.0 | 47.6 |
| R6 | 18 | 67.3 | 65.3 | 64.9 |
| R7 | 19 | 71.3 | 67.1 | 65.8 |
| R8 | 16 | 84.7 | 83.6 | 79.4 |

Grade 12

| R2 | 14 | 70.9 | 71.5 | 69.5 |
| :--- | :--- | :--- | :--- | :--- |
| R3 | 11 | 70.8 | 69.7 | 67.5 |
| R4 | 19 | 73.6 | 73.2 | 72.1 |
| R5 | 14 | 62.2 | 62.8 | 61.2 |
| R6 | 15 | 66.0 | 65.9 | 62.0 |
| R7 | 19 | 80.2 | 79.3 | 76.3 |
| R8 | 18 | 76.3 | 75.9 | 72.4 |

* Blocks R2, R.5, and R7 are identical for grades 8 and 12. Except in these cases, identity of block numbers across grades does not imply that blocks are identical.

2. Calibrate the items and investigate differential item functioning across grade levels and racial/ethni and gender groups. Strictly speaking, the findings on reading block position effects imply the need for an item re: onse model that allows item parameters to depend on block position; that is, a model in which each item in the main assessment would have three sets item parameters, one corresponding to each pussible position. Such a model would, of course, be unwieldy and its parameters could not be estimated accurately witi. surrent sample sizes. Fortunately, however, the focustd-BIB portion of the assessment has the property that each block appears in exch position exactly once. Therefore, item parameter estimates based on the focused-BIB assessment can be viewed as appropriately weighted averages of these three sets of parameter estimates. This property of the item parameter estimates would not hold if the three intercorrelation booklets were included in the item calibration (see Tables 4-2, 4-3, and 4-4); hence, the calibration was based only on the focused-BIB portion of the assessment.

For all three grade/ages combined, the BILOG prog. an (Mislevy \& Bock, i982) was used to obtain item parameter estimatas on a provisional scale, based on the three-parameter logistic model. Sampling weigh.ts were not used in this phase of the aralysis. Parameters were estimated even for previously administered items; that is, parameter values for old items were not assumed equal to their previous values. To reduce costs, a systematic sample consisting of half of the students in the focused-r. B samples 9 [Main-Rdg], 13[Main-Rdg], and 17 [Main-Rdg] was used in the item calibration. The three samples were treated as distince subpopulations in the BILOG run; that is, $j_{1}$ estimating the item parameters, the densities for the three grade/age groups were no: assumed to be the same.

Using the method described in Chapter 7, a graphical analysis was conducted to determine whether it was reasonable to assume common item response functions for all three age classes. For each item ard each group, expected propor ic cs correct (see Mislevy \& Skeehan, p. 302) for each of approximately eight proficiency levels were obtained. The depastures of these proportions from the common estimated item response function were examined. In the case of four items, the assumption of a common iteli response iunction for all age classes appeared to be sesiously violated. Therefore, a second calibration was conducted in which these items were allowed to have different item response functions across age classes. Table $10-7$ lists these items and indicaces how they were treated in the second calibration. The first two items refer to a single passage about getting summer jobs. It is not surprising that these items functioned differently for students of different ages: Given an eighth grader and a twelfth gradsr with equal reading proficiency, the older student is more likely to answer coarectly because of greater familiarity with nethods for getting summer jobs. The next two items in Table 10-7 required treatment as a separate item for grade 4. As noted earlier, the response mode for grade 4 differed from that for grades 8 and $1 /$ (Table 10-2). It is unclear, though, why these items in particular should be affected. Perhaps certain items are more susceptible to response mode differences. Using the same method, residuals vere also ei.amined for Black, Hispanic, and White students and for males and femaies. No major or systematic departures were found

Table 10-7
Items for Which Multiple Item Response Functions Were Estima:ed


Item parametor estimates for the 215 items administe. © to the focusedBIB and intercorre ation samples are given in Table F-l of appendix $F$.
3. Obtain the roficiency means and standard erri $s$ on a provisional sca, for the NAEF reporting groups for the focused-BIB ard intercorrelation samples. A: in l98k, responses to reading items were summarized in a single reading scale. Although scale values were obtanned for the grade/age samples, only the grade subsamples of the focused-BIB reading sample were used as the basis of the reading cross-scctional report; sample sizes were 4, 534, 4,404, and 4,250 for grades 4, 8, and 22. For each of the N\&EP reporting categories, means and standard exiors were computed using the tecknology described in Chapter 9. Note that leading background item; were used as conditioning variables for tile focused-BIB samples. However, with the exception of a single item, these items were not administered to the students in the intercorrelation samples, who received civics and history background items (with one reading bacleground item) instead. Because different conditioning models were required, the conditioning procfss was conducted separately for the focused-BIB and intercorrelation samples. For each of these samples, a list of the conditioning vriables, the scheme for coding chem, and their estimated effects, appear in Tables C-12 to C-1.7 of Aypendix $C$.
4. Determine the appropriate metric for reporting, investigate linkage of the 1988 main NaEP results with the 1984 reading scale. Another component of the analysis was tine exploration of the feasibility of linking the 1988 main NAEP results with the reading treno scale established in 1984. Such a linkage appeared unlikely to succeed bezause the 1988 assessment differed in major ways from the 1984 assessment. The time of year at which assessments were administered, the age definition for 17-year-olds, and the response mode
(see Table 10-2) all differed. Furthermore, although 72 of the items administered in 1988 were also given in 1984, these items did not appear within intact 1984 item blocks. Through our investigation of the 1986 reading anomuly, we learned that reading items may behave $n$ a subsiantially different manner when they appear in altered contexts and that other seemingly minor shanges can have major effects on equating. Nevertheless, three equating approaches were applied in an attempt to achieve an approximate linking.If the three equating efforts were to yield similar equating functions, this would support the validity of the link.

Two of the equating efforts took advantage of the existence, at ages 9 and 17, of subsamples of the bridge to 1984 and the 1988 main NAEP samples that had common age definitions and times of assessment. At each of these age levels, the RESOLVE program (which implements the procedures described in Mislevy, 1984) was used to estimate the reading proficiency distribution of the bridge and main NAEP students, based on item responses and item parameters. (The 1984 item parameters were used for the bridge to 1984, it $\in \mathrm{m}$ parameters from step 2, above, were used for the zain NAEP sample.) The linear function required to match the means and standard deviations of the estimated bridge and main NAEP distrzbutions was then obtained. In addition to these two common pof-la-ion equating metheds, a common item equating procedure was applied to items common to 1984 and 1988 despite the fact that items did not appear in intact blocks. The $5 \%$ ocking-Lord (1983) procedure, implemented in the TBLT program (Stocking, 1986; see also Sheehan, 1988) was used to find the best-fitting linear transformation for mapping the provisional parameters for the 68 common items, oltained in the 1988 calibration, to the existing 1984 parameters for these items. (The three items common to 1984 that were treated separat $\mathrm{l}^{2} \mathrm{y}$ acruss age classes in 1988 were not included in the set of items common between $19:$ and 1984. In addition one 1988 open-ended itam that had been adminis.tered in 1984 was not treated as a common item because a study of score drift [2wick, 1988] showed that rating criteria were not applieu consistently in 1984 and 1988. The resulting number of effective common itens was 68.)

The estivacei eyating functions from thes three methods were quite disparate, reinfurning the preliminary conclusion that the two assessments were too different to be linked in a satisfactory way. Therefore, as in 1984, the mean and standard deviation for the three grade/ages cumbined were set to 250.5 and $50 .{ }^{6}$ We plan to link the 1990 main NAEP results to this new scale.

After determining the metric for reporting, another decision that had to be made was whether to combine the results from the intercorrelation samp.es with those from the ocused-BIB samples. As noted earlier, only the focusedBIB samples were used in item ibration, but scale values were obtained for both samples. However, the results from the intercorrelation samples differe ${ }^{1}$

[^32]in two ways from the focused-BIB results. First, they were not balanced with respect to block position and second, they were based on a less complete conditioning model. Examination of subgroup means and standard deviations for the two samples showed some small but systematic differences between the two In particular, the subgroup means for sample 9 [Main-Int] tended to be slightly higher than those for sample 9 [Main-Rdg] atd the standard deviations for sample 13 [Main-Int] tended to be lower than those for 13 [Main-Rdg]. Therefore, only the focused-bIB results were used as the basis for Learning to Read in Our Nation's Scnools: Instruction and Achievement in 1988 at Grades 4, 8, and 12 (Langer, Applebee, Mullis, \& Foertsch, 1990). The scale values for the intercorrelation samples are available on the 1988 public-ust data tapes.
5. Conduct a study of the relation between the reading proficiency oi fourth graders and teacher background and instructional variables. Teacher background data and information on instructional methods used with specific students were collected from the reading teachers of 3,901 fourth graders (about 86 percent of the fourth-grade students in sample 9[main-Rdg]). There are several possible reasons for the absence of teacher data for 14 percent of the students: Sc ve teachers may not have been identified, others were not sampled, and others may have failed to complete questionnaires. Also, teachers were rot required to complete questionnaires for more than ten scudents. Further detail about the rocess for sampling teachers is given in Chapters 3 and 8.

For reasons explained here, the analysis of the relation of these teacher data to reading proficiency requires the use of separate set: of reading scale vilues and sample weights. The goal of these analyses was tu report reading proficiency results for each possible response to selected teacher items. For exampie, student reading proficiencies were computed for each of several levels of teacher education and for each of several levels of frequency of individualized instruction. In order to avoid biases in these analyses (see Chapter 9), it was necessary to include as conditioning variabler the teacher items that had been selected for reporting. These conditioning variables were, of course, unavailable for the nonrandom 14 percent of the focused-BIB students whose teachers did not complate questionnaires. Because the missing data problem affected a large, nonrandom portion of the sample, the use of a common conditioning nodel in which the teacher items were simply treated as missing for certain stodents could produce $e$ substantial :iolation of the assu ption of equal residual variances in each conditioning cell. Therefore, a separate set of plausible values was obtained fo:- students with teacher daia and tiese werc compared to the original set. Because there were some slight differences, the two sets of plausibie values were retained-one to be used for analyzing the relation $\cap f$ reading oroficiency to the teacher data and one for other analyses of ceading data. F $s$ the teacher-based plausible values, a list of the conditioning variables, the scheme for coding them, and their estimated effects, appear in Table C-18 of Appendix C.

In any casc, analyses nvolving the teacher data must be conducted separately from other analyses because of the need to use a separate set of
sampling weightr. Fo\& the teacher analyses, the teacher-based student weights must be used. lne teacher-student weight is the nonresponse-adjusted student weight further adjusted for the teacher's probability of selection and for teacher nonresponse. (Some further adjustments were also applied; see Cr ter 8 and The 1988 National Assessment of Educational Progress-Sampling and Weighting Procedures, Final Report [Rust, Bethel, Burke, \& Hansen, 1990].) The teacher-based plausible values and the teacher-student weights are available on the 1988 public-use data tapes.

Analyses involving the teacher background and instructional variables are included in Learning to Read in Our Nation's Schools: Instruction and Achievement in 1988 at Grades 4, 8, and 12 (Langer. Applebee, Mullis, \& Foertsch, 1990).

Chapter 11
data analisis for the writing assessment ${ }^{1}$

Eugene G. Johnson<br>Educational Testing Service

This chapter describes the arıalyses carried out on the responses to che writing tasks and the background items in the 1984 and 1988 assessments of witing that led to the results reported in The Writing Report Card, 198is-88: Findings from the Nation's Report Card (Applebee, Langer, Muliis, \& Jerkins, 1990) and Learning to Write in Our Nation's Schools: Instruction and Achievement in 1988 at Grades 4, 8, and 12 (Applebee, Langer, Mullis, Jenkins, \& Foertsch, 1990). The emphasis is on the methods and results of the procedures used to develop the average response method scale scores that formed the basis of those reports.

The analysis of the 1988 writing data consisted of twc components. The first component was designed to measure trends in writi.ig achievement since 1984. Trends in writing achievement were measured by comparing the responses to a set of writing tasks by students assessed in 1984 wit' the responses to the same set of writing tasks for students assessed in 198.3. The major analyses were made for trends in average task accomplishment (primary trait), based on a writing scale developed using the dverage response method, although trends in writing mechanics and trends in overall writing fluenc" (based on holistic scoring) were a.so measured. The data forming the bas for these analyses were from the $1988 \mathrm{hr}^{\prime}$ ige-to-1984 (trend' samples and . 1984 main samples (these samples are i ? oelow). The techniques used to measure trends in writing achievemer discussed in section ll.l.

The second component in the analyses of the writing data was desig.ed to analyze the responses to the writing tasks in the main assessment, to develop a cross-sectional writing scal. based on chese data, to examine the association between wricing ability and writing process and instruition, and to determine the effect that time allocated has on writing ability. These analyses were based on the data from the 1988 main assessment sampi.s. Secti $n 1 l .2$ provides a description of the analyses of the cross-sectional data.

[^33]The specific samples used frr the analysis of writing achievement ir 1984 and 1988 are (by age cohert):

| Sample Code | Sample Type |  | Time of Assessment | Age Definition | Modal <br> Grade |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9:84 | 1984 | Main | Winter | Calendar year | 4 |
| 9 [Main-Wrt] | 1988 | Main | Winter, spring | Calendar year | 4 |
| 9 [Main-LWr] | 1988 | Inng Writing | Winter, spring | Calendar year | 4 |
| $9[\mathrm{Br} 84-\mathrm{RW}$ ] | 1988 | Bridge to 1984 | Winter | Calendar year | 4 |
| 13:84 | 1984 | Main | Fall | Calendar year | 8 |
| 13 [Main-Wrt] | 1988 | Main | Winter, spring | Calendar year | 8 |
| 13 [Main-LWr] | 1988 | Long Writing | Winter, spring | Calendar year | 8 |
| 13[Br84-RW] | 1988 | Bridge to 1984 | Fall | Calendar year | 8 |
| 17:84 | 1984 | Main | Spring | Oct. - Sept. | 11 |
| 17 [Main-Wrt] | 1988 | Hain | Winter, spring | Calendar year | 12 |
| 17 [Main-LWr] | 1988 | Long Writing | Winter, spring | Calendar year | 12 |
| 17 [Br84-RW] | 1988 | Bridge to 19 | Spring | Oct. - Sept. | 11 |

## 11.1 geasurement of trends In writing achieverent

The data for the 1988 point in the a.alysis of trends in writing comes from the 1988 bridge-to-1984 samples. which provide a bridge to the 1984 assessment and match that assessment in terms of the time of administration and age definitions. The data for the 1984 point in writing trend comes from the responses of students within the 1984 main (i.e., BIB) assessment. All analyses of trends in writing performance were based on grade-eligible students only. For reasons given below, both the 1988. nd the 1984 points were determined by scores prc, vided by raters scoring the papers in 1988.

The items on which the trends in writing achievement ale based are shown in Table ll-1. The table shows the block that contained the item in 1984 and the trend booklets containirg the itam in 1988. A total of twelve writing tasks were used to measure liends in writing achievement, with six tasks presented at each grade in 1984 and 1988. To allow comparisons in writing ability across grades, three of the six tasks presented to the fourth-grade students in 1988 were also presented to the eighth-grade students; three of the eighth-grade tasks were also presented to the eleventh-grade students; and one task was presented at all three grades.

### 11.1.1 Primary Trait Scoring of the Uriting Tasks and Me sures of Scorer Effect

All writing exercises from the 1988 assessment were scored for task accomplishment (primary tralt). For the purposes of analysis, the student responses wer: coded as 0 mot rated, 1 -unsatisfactory, 2 -minimal, 3 -adequate, and 4 melaboraced. A 20 percent random subsample of all the papers scored were

Table 11-1
Assignment of 1984-1988 Writing Trend Items in 1984 and 1988


* Block V never appeared with any other writing block in 1984 (all other blocks appeared with every other block at the same grade in 1984).
rescored by a second rater to provide an estimate of interrater reliability. Table ll-2 shows scorer reliability for each essay as measured by the intraclass correlation. Additionally, Table ll-2 shows the percentage of exact score agreement between the firs, and second raters. The reliabilities and percents of exact agreement are generally high and are consistent with equivalent values from prior assessments.

Although the measures of scorer agreement in NAEP have been consistently high, we recognized the possibility that there might be variation between the ratings provided by the group of scorers assembled in 1988 and the scorers assembled in 1984. If present, this variation would add a confounding effect in the measurement of trend. The most direct way of controlsing the effect of across-year variation irs scoring would be to eliminate it entirely by rescoring all of the 1984 data, using the seme set of scorers who scored the 1988 data. Unfortunately, resources did not allow for tne rescoring of the full set of 1984 writing papers but did allow for a rescoring of approximately 11, 000 of the papers given in 1984. The rescored papers for a given item constituted approximately a 25 percent sample of all 1984 papers and consisted of all grade-eligible respondents to two or three of the 1984 booklets containing that item.

The hope was that the between-year variability in scoring would be low enough to permit the use of the full set of the 1984 data. Tables 11-3 and 1i-4 show the results of the comparison of the rescore of the 1984 data with the scores assigned to the papers in 1984 . Table 11-3 shows, by grade and item, the average difference between the 1988 rescore and the 1984 score and the standard deviation of the difference. Table ll-4 shows the distribution of the difference between the rescore and the original score, again by age and item. The average difference between the rescore and the original score is -.019 for grade 4, -. 046 for grade 8 and -.056 for grade 11 , differences of the same general magnitude as the between-group differences that were reported in the previous Writing Report Card. Although the 1988 scorers app:ar to have been more stringent on average than the 1984 scorers, the tables show that the difference between the two groups of scorers is not simply a consistent drift.

In light of the differences between the 1984 and the 1988 scoring, direct comparisons between the 1988 results and the original 1984 results were not considered acceptable. Const rently, the 1984 trend point was based on the rescored data only. The resuitant sample sizes for the trend report analyses are given in Table 11-5.
(It should be noted that another option that was considered was to adjust the original 1984 scores to reflect the observed relationship between the rescores and the original scores on the set of rescored data. Such an adjustment of the 1984 scores would ise a multiple imputation procedure in which adi..eted 1984 scores for a given item are drawn from the multinomial distributıon of possible original scores for that item conditional on a given rescore value. While such an approach would use the full set of 1984 data, the results would include a component of uncertainty inherent in the imputation of scores. This component can be iarge: Limited analyses indicate

Table 11-2
Percentages of Exact Score $A_{\mathcal{L}}$ eement and Interrater Reliabilit, for the Primary Trait Scoring of the 1988 Writing Trend Items

| NAEP Item | $\qquad$ Gra: <br> Percent Exact Agreement | $\begin{aligned} & \text { e } 4 \text { - } \\ & \text { Relia- } \\ & \text { bility } \end{aligned}$ | $\qquad$ Grade <br> Percent Exact Agreement | 8 $\qquad$ <br> Relia- <br> bility | $\qquad$ Grade <br> Percent Exact Agreement | $\begin{aligned} & 11- \\ & \text { Relia- } \\ & \text { bility } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N000602 |  |  |  |  |  |  |
| XYZ Company | 97.1 | . 985 | 93.5 | . 920 |  |  |
| N000902 |  |  |  |  |  |  |
| Radio Stretion | 93.5 | . 950 | 87.0 | . 886 |  |  |
| N001002 |  |  |  |  |  |  |
| Appleby House | 90.3 | . 916 | 75.3 | . 688 | 89.3 | . 888 |
| N007602 |  |  |  |  |  |  |
| Flashlight | 87.5 | . 874 |  |  |  |  |
| N014702 |  |  |  |  |  |  |
| Plants | 94.3 | . 946 |  |  |  |  |
| N014802 |  |  |  |  |  |  |
| Spaceship | 91.8 | . 952 |  |  |  |  |
| N000302 |  |  |  |  |  |  |
| Recreation 0pp. |  |  | 85.4 | . 820 | 90.8 | . 931 |
| N0n0402 |  |  |  |  |  |  |
| Food on Frontier |  |  | 79.9 | . 683 | 93.1 | . 863 |
| N000502 |  |  |  |  |  |  |
| Dissecting Frogs |  |  | 76.1 | . 642 |  |  |
| N018002 |  |  |  |  |  |  |
| Space Program |  |  |  |  | 89.9 | . 928 |
| N019002 |  |  |  |  |  |  |
| Job Application |  |  |  |  | 92.3 | . 922 |
| N021002 |  |  |  |  |  |  |
| Bike Lane |  |  |  |  | 84.9 | . 866 |
| A.VERAGE | 92.4 | . 937 | 83.0 | . 773 | 90.0 | . 900 |

Table 11-3
Mean and Standard Deviation of (Rescore - Original)
for the 20\% Res iore of 1984 Writing Responses

| NAEP Item | Grade 4 |  | Grade 8 |  | $\begin{aligned} & \text { Grade } \\ & \text { Mean } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mean | S. $\mathrm{D}_{\text {c }}$ | Mean | S. D. |  | $S_{\text {S }} \mathrm{D}_{\text {L }}$ |
| N000602 |  |  |  |  |  |  |
| XIz Company | -. 010 | . 311 | . 057 | . 559 |  |  |
| N000902 |  |  |  |  |  |  |
| Radio Station | -. 039 | . 342 | -. 034 | . 450 |  |  |
| N001002 |  |  |  |  |  |  |
| Appleby Howse | . 003 | . 339 | -. 055 | . 538 | -. 064 | . 375 |
| N007602 |  |  |  |  |  |  |
| Flashlight | -. 043 | . 367 |  |  |  |  |
| N014702 |  |  |  |  |  |  |
| Plants | . 000 | . 356 |  |  |  |  |
| N014802 |  |  |  |  |  |  |
| Spaceship | -. 021 | . 399 |  |  |  |  |
| N000302 |  |  |  |  |  |  |
| Recreation Opp. |  |  | -. 046 | . 588 | -. 118 | . 547 |
| N000402 |  |  |  |  |  |  |
| Food on Frontier |  |  | -. 117 | . 533 | -. 092 | . 454 |
| N000502 |  |  |  |  |  |  |
| Dissecting Frogs |  |  | -. 063 | . 563 |  |  |
| N018002 |  |  |  |  |  |  |
| Space Program |  |  |  |  | -. 086 | . 517 |
| N019002 |  |  |  |  |  |  |
| Job Application |  |  |  |  | . 031 | . 504 |
| N021002 |  |  |  |  |  |  |
| Bike Lane |  |  |  |  | -. 006 | . 527 |
| OVERALL | -. 019 |  | -. 046 |  | -. 056 |  |

287

Table 11-4
Distribution of (Rescore-Original, , for the 20\% Rescore of 1984 Writing Responses
Percent of Responses Where (Rescore-Original) Equals -1,0 or 1

## NAER Item

N000602
XYZ Company
$2.6 \quad 93.7 \quad 2.6$
Grade 8
Grade 11
Grade 4
Rescore-Original $\begin{array}{lllllllll}-1 & \underline{0} & \underline{1} & \underline{-1} & \underline{0} & \underline{1} & -1 & \underline{0} & \underline{1}\end{array}$

Rescore-Original

N000902
Radio Station
$5.9 \quad 90.8 \quad 3.1$
$10.5 \quad 81.4 \quad 7.5$
N001002
Aprleby House
$\begin{array}{lll}5.3 & 89.5 & 4.9\end{array}$
$15.8 \quad 73.1 \quad 10.3$
$9.5 \quad 86.4 \quad 3.8$
N007602
Flashiight
$8.2 \quad 87.5 \quad 3.9$
N014702
Plants
$4.8 \quad 90.2 \quad 4.1$
N014802
$\begin{array}{llll}\text { Spaceship } & 6.0 \quad 87.7 & \text { 〔. } 3\end{array}$
N000302
Recreation Opp.
$\begin{array}{llllll}11.9 & 75.0 & 10.1 & 15.5 & 75.4 & 6.9\end{array}$
NOOO\&02
Focd on Frontier
$\begin{array}{llllll}1.6 .2 & 75.0 & 1.2 & 13.3 & 81.2 & 4.6\end{array}$
N000502
Dissecting Frogs
$17.0 \quad 70.1 \quad 12.2$
$\begin{array}{llll}\text { N018002 } \\ \text { Space Program } & 14.7 & 77.4 & 6.7\end{array}$
N019002
Job Application
$\begin{array}{lll}6.4 & 83.7 & 7.6\end{array}$
N021002
Bike Lane $\quad 11.6 \quad 75.7$ 11. ${ }^{\text {f }}$

OVERALL
$\begin{array}{lllllllll}5.4 & 89.9 & 4.0 & 12.3 & 76.2 & 9.5 & 11.8 & 80.0 & \mathbf{1 . 9}\end{array}$

Table 11-5
Sample Sizes for Primary Trait Analyses of Trends in Writing Performance

|  | Grade 4 |  | Grade 8 |  | Grade 11 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1988 | 1984 | 1988 | 1984 | 1988 | 1984 |
| NAEP Item | : ridge | Kescore | Bridge | Rescore | Bridge | Rescore |
| N000602 |  |  |  |  |  |  |
| XYZ Company | 1152 | 544 | 1334 | 616 |  |  |
| N000902 |  |  |  |  |  |  |
| Radic, Station | 1234 | 585 | 1364 | 612 |  |  |
| N001002 |  |  |  |  |  |  |
| Appleby House | 925 | 530 | 1256 | 588 | 1041 | 599 |
| N00?602 |  |  |  |  |  |  |
| Flashlight | 614 | 809 |  |  |  |  |
| N014702 |  |  |  |  |  |  |
| Plants | 1285 | 656 |  |  |  |  |
| N014802 |  |  |  |  |  |  |
| Spaceship | 1258 | 6 il |  |  |  |  |
| N000302 |  |  |  |  |  |  |
| Recreation Opp. |  |  | 1372 | 494 | 1242 | 521 |
| N000402 |  |  |  |  |  |  |
| Food on Frontier |  |  | 1339 | 603 | 1212 | 629 |
| N000502 |  |  |  |  |  |  |
| Dissecting Frogs |  |  | 1356 | 641 |  |  |
| N018002 |  |  |  |  |  |  |
| Space Program |  |  |  |  | 1195 | 632 |
| N019002 |  |  |  |  |  |  |
| Job Applifcation |  |  |  |  | 1169 | 603 |
| N021002 |  |  |  |  |  |  |
| Bike Lane |  |  |  |  | 11783 | 636 |

that the standard azrors based on the rescored data only are of the same general size as the standard errors of the full, imputed-up-to-1988 data.)

### 11.1.2 The Writing Trend Scale Based on the Average Response Method

The major analysis of trends in writing achievement was based on the average response method (ARM) of scaling nonbinary data (Beaton and Johnson, 1987, 1990), although analyses of individual items were conducted also. Since the measurement of trend was based on the rescored data, the ARM writing scale established in 1984 could not be used. Instead, a new ARM writing scale was constructed based on the trend items given in 1988. Because certain of the between-item corzelations are not estimable, the ARM technology has been generalized to allow for the imputation of missi.a, correlations.

### 11.1.2.1 Overview of the Average Response Method

The average response method begins with a defined composite of the (primary trait) scores for a set of $p$ exercises and provides, for each assessed student, draws from the distribution of potential values for that composite. If a student had responded to all the exercises going into the composite, then that student's ARM score would be directly calculable, without error, by

$$
\theta=a^{\prime} x
$$

where $x$ is the vector of the subject's scores on the $p$ questions in the composite and a is a vector of $p$ arbitrary constants, which for the ARM writing scale are each equal to $1 / \mathrm{p}$ (since the ARM writing scale is defined as the predicted average performance across the set of $p$ writing questions).

Because each respondent is presented only a subset of the questions, the respondent's compsite value is unknown and so must be estimated. Such an estimate is provided by the ARM technology. Briefly, the ARM technology is a kind of multiple regression that produces for each student a set of plausible values, each of which predicts what that student's composite score might plausibly be, based on the student's scores on the exercises in the composite that were prese, ted to the student and based on the student's status on a selected set of background variables, called the conditioning variable:. (The purpose of the conditioning variables is to improve the prediction of suigroup effects given the sparse quantity of information available for any individual. Their exclusion ;ould lead to biased estimates of subgroup effects. See Chapter 9 for a general definition and description of plausible values and conditioning variables).

Let $x_{1}$ represent the (row) vector of responses of the ith student to the questions in the ARM composite that were presented to that student and let $y_{1}$ be the (row) vector of values of that student's conditioning variables. Then
a plausible value from the conditional distribution of $\theta$ given the observed data $X_{i}$ and $y_{i}$ for student $i$ is

$$
\begin{equation*}
\bar{\theta}_{i k}=x_{1} \hat{\beta}+y_{i} \hat{\Gamma}+x_{1} \alpha_{k}+y_{i} \gamma_{k}+\epsilon_{i k} \tag{11.1}
\end{equation*}
$$

where

| $\bar{\theta}_{\text {ik }}$ | is the kth plausible value of the ARM composite |
| :---: | :---: |
| $\hat{\boldsymbol{\beta}}$ | is the (column) vector giving the change in the composite for unit change in the scores on each of the questions in $x_{1}$ |
| $\hat{\Gamma}$ | is the (column) vector of effects for the conditioning variables |
| $\alpha_{k}$ and $\gamma_{k}$ | are random draws from a multivariate normal distribution with mean vector 0 and variance-covariance matrix $\Sigma$ where $\Sigma$ is the variance-covariance matrix of the parameter estimates $\hat{\beta}$ and $\hat{\Gamma}$. ( $\alpha_{k}$ and $\gamma_{k}$ reflect the uncertainty due to using sample estimates $\hat{\beta}$ and $\hat{\Gamma}$ in the regressinn equation.) |
| $\varepsilon_{\text {ik }}$ | is an estimated residual grawn from a normal distribution with mean 0 and variance $\sigma_{\epsilon}^{2}$ where $\sigma_{\epsilon}^{2}$ is the variance of the predictive distribution of $\theta$ given the observed values of $x_{1}$ and $y_{1}$. |

All parameters in equation (11.1) were estimaied by least-squares technology. To accomplish this, it is sufficient to obtain estiwates of the elements of the population sum of squares and cross products matrix of the conditioning variables and the writing questions:

$$
C \quad-\quad \text { an estimate of } V^{\prime} V=\left[\begin{array}{lll}
Y^{\prime} Y & Y^{\prime} X  \tag{11.2}\\
X^{\prime} Y & X^{\prime} X
\end{array}\right]
$$

In the above, $Y$ is a $N \times q$ matrix containing the values of the $q$ conditioning variables for each of the $N$ students in the population; $X$ is a $\mathrm{N} \times \mathrm{p}$ matrix containing the scores of the N students in the pofulation on the $p$ exercises; and $V=[Y X]$. If $Y$ and $X$ were known for all students in the population, $C$ would be trivially equal to V'V. However, since only a sample of the students in the population were assessed for writing and since each sampled student was only presented a few writing quescions, many of the elenents of $Y$ and $X$ are unknown. Accordingly, V'V must be estimated. The prncedures used to determine an estimate $C$ of $V^{\prime} V$ will be deferred to the next subsection.

Since the ARM composite is the mean of the individual questions, the estimate C generates a complete set of sufficient statistics (the normal equations) for the stanciard least-squares predictin of an ARM composite value
given conditioning variable characteristics and responses to any subset of writing questions. Define the $N$ element column vector $T$ by

$$
T=X a
$$

where the elements of $T, \theta_{1}$, are the values of the cumposite for each student in the population. The exact value of $\theta_{i}$ will not be known unless the student i. was administered all $p$ of the exrecises. The plausible values, $\bar{\theta}_{i k}$, of equation (11.1) are determined by operations on the matrix $C_{\theta}$ where $C_{\theta}$ is the estimated population sum of squares and cross product matrix of the conditioning variables, the writing exercises and the composite. $\mathrm{C}_{\theta}$ is generated by the matrix $C$ and the transformation matrix

$$
H-\left[\begin{array}{ccc}
I_{q} & 0 & 0 \\
0 & I_{p} & a
\end{array}\right]
$$

by

$$
C_{\theta}-H^{\prime} C H=\left[\begin{array}{ccc}
Y^{\prime} Y & Y^{\prime} X & Y^{\prime} T \\
X^{\prime} T & X^{\prime} X & X^{\prime} T \\
T^{\prime} Y & T^{\prime} X & T^{\prime} T
\end{array}\right]
$$

The matrix $C_{\theta}$ can be used to estimate a value of $\theta_{1}$ for student $i$ as follows:

Let $X_{1}$ consist of the columns of $X$ corresponding to the writing exercises preșented to student $i$ and let $V_{1}=\left[Y X_{1}\right]$. The least-squares estimates of $\hat{\beta}$ and $\hat{\Gamma}$ in equation (11.1) are

$$
\left[\begin{array}{l}
\hat{\Gamma}  \tag{11.3}\\
\hat{\beta}
\end{array}\right]-\left[\begin{array}{ll}
Y^{\prime} Y & Y^{\prime} X_{1} \\
X_{1} Y^{\prime} & X_{1}^{\prime} X_{1}
\end{array}\right]^{-1} \quad\left[\begin{array}{l}
Y^{\prime} T \\
X_{1}{ }^{\prime} T
\end{array}\right]
$$

and the standard least-squares point estimate of the composite score for student i is

$$
\hat{\theta}_{i}-x_{i} \hat{\beta}+y_{i} \hat{\Gamma}
$$

This value is the rasan of the predictive distribution of potential $\theta$ s for the individual and, thus, does not take into account the fact that any other value from this predictive distribution might also have been the student's score. By including the terms accounting for the uncertainty in the estimation of a student's composite score, the plausible values $\vec{\theta}_{i k}$ allor the more complete
representation of what is known and what is not known about the student's composite scores. The terms accounting for uncertainty are of two types:

1) $\epsilon_{\text {ik }}$, accounting for variability of potential scores of an individual about the conditional mean (of the distribution given $y_{1}$ ant $x_{1}$ ) and
2) $\alpha_{k}$ and $\gamma_{k}$, accounting for uncertainty due to using sample estimates of $\hat{\beta}$ and $\hat{\Gamma}$ in the regression equation.
$\epsilon_{i k}$ is a random draw from a $N\left(0, \sigma_{\epsilon}^{2}\right)$ distribution, where $\sigma_{\epsilon}^{2}$ is the residual mean-squared-error for the regression defined by (ll.3). The vector

$$
\left[\begin{array}{l}
\gamma_{k} \\
a_{k}
\end{array}\right]
$$

is a draw from a multivariate normal distribution with mean 0 and variancecovariance matrix

$$
\Sigma=\left(V_{1}^{\prime} V_{1}\right)^{-1} \sigma_{\epsilon}^{2} .
$$

The values of $\alpha_{k}$ and $\gamma_{k}$ are held fixed for all student. with the same pattern of missing data.

A further discussion of the generation of ARM plausible values, given an estimate $C$ of the sum of squares and cross product matrix $V \cdot V$, appears in Beaton and Johnson (1990). The next section considers the estimation of V'v for the 1988 and 1984 writing trend scale.

### 11.1.2.2 Estimation of V'V

As noted in the previous subsection, the basis for the estimation of a predicted value for any student is an estimate $C$ of the full sums-of-squares. and-cross products matrix

$$
V^{\prime} V=\left[\begin{array}{lll}
Y^{\prime} & Y & Y^{\prime} X  \tag{11.4}\\
X^{\prime} Y & X & X
\end{array}\right]
$$

from which all other necessary matrices and estimates are deri 3d. For the construction of the NAEP writing trend scale, six separate estima_-3s of the cross-product matrix were created: one for each of the three grades for each of the years 1984 and 1988. The elements of the estimate $C$ of $V$ ' $V$ for a particular grade and year fall into three general types:

Type 1: Elements that are directly estimable from the available data for that grade and year; these are sums of squares and
cross-products involving the colditioning variables and the items presented to that grade in that year.

Type 2: Elements that must be estimated based on relationships observed for another grade in the same year or for the same grade in the other year; these are sums of squares and cross-products involving items and pairs of items not administered to the target grade and year but administered to another grade or yeal.

Type 3: Elements requiring the imputation of between item correlations; these are cross-product terms inv-lving pairs of items that have never been presented together so that the between item correlation is not estimable.

The complexity of the estimation of these three types of elements of the matrix $C$ increases as one moves down the list, with elements of type l being the most straightforward to estimate and elements of type 3 being the most complex. We will consider the estimation of each of the three types in turn.

## 1i.1.2.3 Estimation of Type 1 Elements of $C$

The most directly estimabll elements of the matrix $C$ for a given grade and year are those involving the conditioning variables and the items presented to students of that grade who were assessed in the specified year.

In the matrix $C$, the conditioning matrix $Y$ contains the values of 39 conditioning variables measuring each student's status on a set of demographic, background, and attitude questions as well as specific questions related to the student's attitudes to and experiences in writing. A list of the conditioning variables and the scheme for coding them appears as Table C-5 in Appendix C .

The values of the conditioning variables are kncwn for all students and so Y'Y in the matrix $C$ is directly obtained by taking the sum of squares and cross-products of the conditioning variables for each student, weighting these by the student's sampling weight ard then summing across all students of the given grade and assessment year.

Also directly estimable are sums of squares and certain cross-products involving the writing tasks presented os students in the given grade in the given assessment year. Specifically, if the item $X_{1}$ was presented to a sample of students of the given grade in the given year, then the following terms are estimable:
$Y^{\prime} \mathrm{X}_{1}$ the cross-product vector between the ronditioning variables and
the item, and
$X_{1}$ ' $\lambda$. the sum-of-squares for the item. Furthermore, if another item, $X_{2}$ was also presented to the grade in the given year and if a sample
of students responded to botil $X_{1}$ and $X_{2}$, then the between-item cross-product terms $X_{1}{ }^{\prime} X_{2}$ and $X_{2}{ }^{\prime} X_{1}$ are also directly estimable.

Because of the spiral design, each item is presented to a subsample of the Sull sample of grade-eligible students assessed for writing in a given year. Consequently, the simple procedure used to estimate the elements of Y'Y is inappropriate for estimating the elements $\mathrm{Y}^{\prime} \mathrm{X}_{1}, \mathrm{X}_{1} \mathrm{X}_{1}$ and $\mathrm{X}_{1}^{\prime} \mathrm{X}_{2}$. However, these elements can 'נe consistently estimated in the following manner.

Because of the spiral design, we can assume that the set of students who responded to the item $X_{1}$ is a representaicive sample of the population of all gra'o-eligible students in the given year. Consequently, the appropriately weighted sample mean $\bar{X}_{1}$, and the weighted sample variance, $S_{1}{ }^{2}$, based on the total sample of students of the grade in the assessment year responding to the item, are consistent and unbiased estimates of the population mean and variance for the item. A consistent estimator of the sum-of-squared scores in the population for the item is

$$
\mathrm{X}_{1}{ }^{\hat{}} \mathrm{X}_{1}=\mathrm{W}_{\mathrm{TOT}}\left(\mathrm{~S}_{1}{ }^{2}+\overline{\mathrm{X}}_{1}{ }^{2}\right)
$$

where $W_{\text {TOT }}$ is the sum of weights for all grade-eligible students assessed for writing in the given year.

A consistent estimate of the cross-product element $X_{1}{ }^{\prime} X_{2}$, when a sample of grade-eligible students were presented both items in the given year, is

$$
\mathrm{X}_{1}{ }^{\hat{}} \mathrm{X}_{2}-\mathrm{W}_{\mathrm{TOT}}\left(\mathrm{~S}_{1} \mathrm{~S}_{2} \mathrm{r}_{12}+\overline{\mathrm{X}}_{1} \overline{\mathrm{X}}_{2}\right)
$$

where $S_{1}$ and $\bar{X}_{1}$ are the weighted sample standard deviation and mean based on the fulil sample of grade-eligible students responding to item $l, S_{2}$ and $\bar{X}_{2}$ are the analogous statistics based on the full sample of grade-eligible students respondilıg to item 2 , and $r_{12}$ is the appropriately weighted sample correlation coefficient based on the students responding to both items.

The estimation of cross-products between conditioning variables and items, $Y^{\prime} \mathrm{X}_{1}$, is accomplished in an analogous manner.

Table ll-6 shows the items used in the writing trend scale (by supplying the last three digits of the ID number from Table 11-1) and indicates the elements of the cross-product matrix $V$ 'V that can be directly estimated at each grade ar $\mid$ year. The entries in the table are codes giving the grade and year for which the corresponding element of item by item cross-product matrix j.s estimable. The presence of a 4, 8, or E indicates that the element can be estimated from the 1984 sample of students ir. grade 4, 8 or ll, respectively. 'The presence of an asterisk indicates that the element can also be estimated from the 1988 data. For example, the first element in the table, in the row labeled 003 and the column labeled 003, indicates the grades and years for which the sum-of-squares of the item $N 003$ can be directly estimated from the

Table 11-6
Estimable Between-item Correlations with Grade and Year Where Estimable

|  | 1984 ARM Items |  |  |  |  |  | Grade 4 Trend Items |  | Grade 11 <br> Trend Items |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Item | 003 | 004 | 005 | 006 | 009 | 010 | 147 | 148 | 180 | 190 | 210 |
| 003 | 8E* | 8E* | 8 | 8 | 8 | 8E |  |  | E | E | E |
| 004 |  | 48E; | 8 | 48 | 48 | 48E | 4 | 4 | E | E | E |
| 005 |  |  | 8* | 8* | 8* | 8* |  |  |  |  |  |
| 006 |  |  |  | 48* | 48* | 48* | 4 | 4* |  |  |  |
| 009 |  |  |  |  | 48* | 48* | 4 | 4* |  |  |  |
| 010 |  |  |  |  |  | 48E* | 4 | 4* | E* | E* | E* |
| 147 |  |  |  |  |  |  | 4* | 4 |  |  |  |
| 148 |  |  |  |  |  |  |  | 4* |  |  |  |
| 180 |  |  |  |  |  |  |  |  | E* | E* | E* |
| 190 |  |  |  |  |  |  |  |  |  | E* | E* |
| 210 |  |  |  |  |  |  |  |  |  |  | E* |

4: correlation estimable at grade 4 in 1984
8: correlation esti.•able at grade 8 in 1984
E: correlation estimak-a at grade 11 in 1984

* indicates correlations estimable from 1988 data
\# indicates correlations estimable from 1988 data for grades 8 and 11
data. The " 85 " indicates that $X_{1}$ ' $\mathrm{X}_{1}$ for this item can be estimated for grade 8 and grade 11 students in 1984, the asterisk indicates the $X_{1}{ }^{\prime} X_{1}$, can also be estimated for grade 8 and grade 11 stadents in 1988. The " 8 " in the tiird column of the first row (under the 005) indicates that the cross-product term $\mathrm{X}_{1}{ }^{\prime} \mathrm{X}_{2}$ between items N 003 and N005 can only be estimated for grade 8 students in 1984. The table also indicates for which grades and years the crossproducts between conditioning variables and item responses can be estimated. any time the item sum-of.squares $X_{1}{ }^{\prime} X_{1}$ can be estimated, the conditioning variable by item cross-product vector $Y^{\prime} \mathrm{X}_{1}$ can also be estimated.

Besides indicating the terms of the matrix V'V that are directly estimable for a given grade and year, Table ll-6 also indicates the terms that are not: the Type 2 and Type 3 terms. For example, the sun-of-squares of the item NOO3 is a Type 2 term for grade 4 students in 1984 and in 1988 since it cannot be directly estimated from data from grade 4 students but can be estimated from data from other grades. An example of a 'rype 3 element is the cross-product term between items N 003 and N 0147 . The blank at that position in Table ll-6 indicates that this term cannot be directly estimated for any grade or year. This is because items N003 and N0147 have never been presented together to any student. The procedures for estimating Type 2 terms are given in the next subsection (11.1.2.4). Subsection ll.1.2.5 gives the procedure for estimating Type 3 terms.

### 11.1.2.4 Estimation of Type 2 Elements of C

As described above, a Type 2 element of the cross-product matrix for a given grade and year corresponds to a term that is not directly estimable based on data for that grade and year (the target grade and year), but that can be estimated based on data from another grade or another year (the donor grade and year). The estimation procedure is as -ollows.

Let $X_{1}$ be the set of items held in common between the target grade and year and the donor grade and year and let $X_{2}$ be the set of items presented to the donor but not to the target. For notational convenience, we will operate as if the entire donor und target populetion had been measured and that complete information by student is available for all items presented to the students grade and year. There is no loss of generality because only estimates of the terms of the cross-product matrix are required.

The known information for the target population is the matrix

$$
V_{t}=\left[\begin{array}{ll}
Y_{t} & X_{1 t}
\end{array}\right]
$$

consiscing of the conditioning variables and the items held in common with the donor population. The known information for the donor popuistion is the corresponding matrix

$$
V_{d}=\left[\begin{array}{ll}
Y_{d} & X_{1 d}
\end{array}\right]
$$

plus the set of items $\dddot{X}_{2 d}$.

We seek estimates of the Type 2 terms $V_{t}^{\prime} X_{2 t}$ and $X_{2 t}^{\prime} X_{2 t}$ in the crossproduct matrix

$$
C_{t}=\left[\begin{array}{ll}
v_{t}^{\prime} v_{t} & v_{t}^{\prime} X_{2 t} \\
X_{2}^{\prime}{ }^{\prime} v_{t} & X_{2 t} X_{2 t}
\end{array}\right]
$$

Beaton and Johnson (1987) show that the estimator

$$
V_{t}^{\prime} X_{2 t}=\left(V_{t}^{\prime} V_{t}\right)\left(V_{d}^{\prime} V_{d}\right)^{-1} V_{d} X_{2 d}
$$

is unbiased under the assumption that $\left[X_{1 d} X_{2 d}\right.$ ] and [ $X_{1 t} X_{2 t}$ ] are each distributed with comnon variance matrix $\Sigma$ and mean matrices $Y_{d} B$ and $Y_{t} B$. Under the same assumptions they show that $X_{2 t}{ }^{\prime} X_{2 t}$ can be unbiasedly estimated by

$$
X_{2 t} \hat{\prime} X_{2 t}=X_{2 d} v_{d}\left(V_{d} V_{d}\right)^{-1} V_{t} V_{t}\left(V_{d} V_{d}\right)^{-1} V_{d}^{\prime} X_{2 d}+(N-G) \hat{\Sigma}_{2 \cdot 1}
$$

where
G - trace $\left[\left(V_{d} V_{d}\right)^{-1} V_{t}^{\prime} V_{t}\right]$,
$\mathrm{N} \quad$ is the number of students taking any pair of items
$\Sigma_{2 \cdot 1}-\left(X_{2 d} X_{2 d}-X_{2 d} V_{d}\left(V_{d} V_{d}\right)^{-1} V_{d} X_{2 d}\right) /(N-m)$
and
$m \quad$ is the number of columns of $V_{d}$.
All estimates of Type 2 elements were accomplished in the above manner. Frequently, there were a number of candidates for the donor population. The following hierarchy was followed in selecting the population to be the donor for the given target pcpulation:

1) same grade as the target and the other year
2) same year as the target and the closest grade

3 ) any grade or year where data was available

### 11.1.2.5 Estimation of Type 3 Elements of C

The final step in the construction of an estimate $C$ of the cross-product matrix V'V for a given grade and year is the estimation of the Type 3 elements. These are cross-product terms, $X_{1}{ }^{\prime} X_{2}$, between pairs of items that were never jointly presented to any student in any grade or year. Such item pairs are identified by a blank in Tablf il-6.

For a concrete example, consider the cross-product term between the items NOOO3 and N0147. The item NOOO3 was presented to grade 8 and grade 11 students in 1984 and 1988 while the item N0147 was presented to grade 4 students in 1984 and 1988. Consequently, the cross-product between this pair of items is not directly escimable at every grade and year since the items have never been jointly presented to a sample of students.

Let $X_{1}$ and $X_{2}$ represent such a pair of items and consider estimating $X_{1}{ }^{\prime} X_{2}$ for che target grade and year, $t$. At most one of the two items can have been administered to the target population, although it is possible that neither item was administered to the arget population. Let a index the donor grade and age for item $X_{1}$ and let $b$ index the donor grade and age for item $X_{2}$. (Either a or b, but not both, might correspond to the target population t .)

The known data from the donor population a are the conditioning variables, $\mathrm{X}_{\mathrm{a}}$, and the scorer $\mathrm{X}_{1 \mathrm{a}}$ on the item l . The known data from the donor population $b$ are the conditioning variables, $X_{b}$, and the scores $X_{2 b}$ on the item 2. Assume that, to a reasonable degree of approximation,

$$
X_{1 a}-Y_{\Delta} \beta_{1}+E_{1 a}
$$

and

$$
X_{2 b}-Y_{b} \beta_{2}+E_{2 b}
$$

where $\beta_{1}$ and $\beta_{2}$ are vecturs of unknown constants and $E_{1 a}$ and $E_{2 b}$ are vectors of independent and identically distributed errors where each element of $E_{1 a}$ has moan 0 and variance $\sigma_{1}{ }^{2}$ and each element of $E_{2 b}$ has mean 0 and variance $\sigma_{2}{ }^{2}$. Further assume that, had the items been presented to the target population, then the scores $X_{1 t}$ and $X_{2 t}$ on the items for the target population could be modeled as

$$
\begin{aligned}
& X_{1 t}=Y_{t} \beta_{1}+E_{1 t} \\
& X_{2 t}=Y_{t} \beta_{2}+E_{2 t}
\end{aligned}
$$

where $\beta_{1}$ and $\beta_{2}$ are as above, where the means of $\mathrm{E}_{1 t}$ and $\mathrm{E}_{2 t}$ are zero, and where the variances of each element of $E_{1 t}$ and $E_{2 t}$ are, respectively, $\sigma_{1}{ }^{2}$ and $\sigma_{2}{ }^{2}$.

Then, if $X_{1 t}$ and $X_{2 t}$ had been jointly presented to the target populition, the expectation of $\mathrm{X}_{1 t}{ }^{\prime} \mathrm{X}_{2 t}$ would $\mathrm{b}_{\mathrm{c}}$

$$
\begin{equation*}
\beta_{1}^{\prime} Y_{t} \cdot Y_{t} \beta_{2}+N \sigma_{12} \tag{11.5}
\end{equation*}
$$

where $\sigma_{12}$ is the covariance between the two items after adjusting for the conditioning variables. An unbiased estimate of the first term of (il.5) is

$$
\begin{equation*}
\hat{\beta}_{1}^{\prime} Y_{t}^{\prime} Y_{t} \hat{\beta}_{2} \tag{11.6}
\end{equation*}
$$

where $\hat{\beta}_{1}-\left(Y_{a} Y_{a}\right)^{-1} Y_{a}{ }^{\prime} X_{1 a}$
and

$$
\hat{\beta}_{2}-\left(Y_{b} \cdot Y_{b}\right)^{-1} Y_{b}: X_{2 b}
$$

An estimator of $\sigma_{12}$ is

$$
\begin{equation*}
\hat{\sigma}_{12}-\hat{\sigma}_{1} \hat{\sigma}_{2} r_{12} \tag{11.7}
\end{equation*}
$$

where $\hat{\sigma}_{1}^{2}-\left[X_{1 a}{ }^{\prime} X_{1 a}-X_{1 a} Y_{a}\left(Y_{a}^{\prime} Y_{a}\right)^{-1} Y_{a}^{\prime} X_{1 a}\right] /(N-p)$
and

$$
\hat{\sigma}_{2}^{2}-\left[X_{2 b}^{\prime} X_{2 b}-X_{2 b}^{\prime} Y_{b}\left(Y_{b}^{\prime} Y_{b}\right)^{-1} Y_{b}^{\prime} X_{2 b}\right] /(N-p)
$$

and where $p$ is the rank of $Y_{a}$ and $Y_{b}$. It remains to get an estimate $c f r_{12}$, the correlation between the two irems. The estimate of $r_{12}$ was based on the observed distributions of the between item correlations for the target grade and age.

Let $R_{t}$ be the vector of $t \equiv t w e e n$ item correlations for all pairs of items jointly presented to the target population $t$. A typical element of $R_{t}, r_{-J}$, is the observed correlation between item $i$ and icem $j$, after adjusting for the conditioning variables $Y_{t}$. Let

$$
z_{i j}-\operatorname{arctanh}\left(r_{i j}\right)-k_{2} \log _{0}\left(\left(1+r_{i j}\right) /\left(1-r_{i j}\right)\right\}
$$

be the result of applying Fisher's variance stabilizing transformation to the correlation $r_{i j}$ and l.et $Z_{t}$ be the vector of the $z_{1 j}$ 's. The distribution of $z_{1 j}$ is modeled as

$$
\begin{equation*}
z_{i j}=a+b_{i}+b_{j}+\epsilon_{i j} \tag{11.8}
\end{equation*}
$$

where
a is $\varepsilon$ constant common to all elements of $Z_{t}$;
$b \quad$ is a constani common to all elements of $Z_{t}$ involving the item $i$;
$b_{j}$ is a constant rommon to all elements of $z_{t}$ involving the item $j$; and
$\epsilon_{i j}$ is a normal random variable with mean 0 and variance $\sigma_{2}^{2}$.
Let $\hat{a}, \hat{b}_{i}$, and $\hat{b}_{j}$ be the least-squares estimates of $a, b_{1}$ and $b_{j}$ in (11.8) and let $\hat{\epsilon}_{1 j}$ be the least-squares residual. The set of all leastsquares residuals from the additive fit to $Z_{t}$ was assumed to be a set of normally distributed random variables with common mean 0 and common variance $\sigma_{z}{ }^{2}$.

Let $E_{f}=\left\{\hat{\epsilon}_{i j}\right.$ : i> $j$, items $i$ and $j$ jointly presented to population $\left.t\right\}$ be the set of unique residuals. (That is, the elements of $Z_{t}$ come in pairs, there being a value $z_{i j}$ and a value $z_{j 1}$, which are equal, for any pair of items presented to the target population. Consequently, the least-square residuals $\hat{\epsilon}_{i j}$ and $\hat{\epsilon}_{j 1}$ are identical; only one of these is included in $E_{t}$.)

Let $E_{t}$ bave $K$ elements and let

$$
e_{(1)} \leq e_{(2)} \leq \ldots \leq e_{(K)}
$$

be the ordered values of $E_{t}$. Under the assumptions, the $e_{(i)}$ are order statistics of a sample of size K from a $\mathrm{N}\left(0, \sigma_{2}{ }^{2}\right)$ distribution. Form the standard normal working values

$$
w_{1} \leq w_{2} \leq \ldots \leq w_{K}
$$

where $w_{1}$ is the standard normal deviate for $F$ bility (i-1/3)/(K+1/3). ( $w_{1}$ is a close approximation to the median 0 : me instributior of the $i^{\text {th }}$ order statistic from a sample of K standard t.ormal random variables.)

A regression of the $e_{(1)}$ 's on the $w_{i}$ 's produces estimates of the mean and standard deviation of the normal dis'ribution best fitting the distribution of the residuals in $E_{t}$ : The intercept estimates the mean and the slope estimates the standard deviation, $\sigma_{z}$. The above process was conducted separately for each of the six grade-by-year populations. It was found in each case that the empirical distribution of the residuals was quite closely approximated by a normal distribution with mean 0 and standard deviation $\sigma_{z}$ and that the values of the standard deviations for each of the six populations were nearly the same.

Accordingly, the elements of $E_{t}$ for all six grade-by-year populations were pooled to form a combined set of least-squares residuals witt. M elements (where $M$ is the sum of the $n r^{-j e r}$ of elements in each of the $E_{t}$ ), sorted to form the order statistics $e_{(1)} \leq e_{(2)} \leq \ldots \leq e_{(M)}$ and regressed against the standard normal working values for a sample of size M. The result of this regression was an intercept of 0 and a slope of .09 . The fit of this
regression was excellent, with an $R^{2}=.996$, implying that the prediction of the lesst squares residuals by the regression on the normal working values accounted for 99.6 percent of the variance of the actual values.
Consequently, the distribution of the least-squares residuals from the model (11.8) is closely approximated by a normal distribution with a mean of 0 and a standard deviation of .09 , taken to estimate $\sigma_{z}$ for all six grade-by-year populations.

The imputction of a value for population $t$ of $\bar{r}_{12}$ and, hence, of $X_{1}{ }^{\prime} X_{2}$, for a pair of items that never appeared together was accomplished via the following steps:

1) draw a random variable $\bar{e}_{12}$ from a normal distribution with mean 0 and standard deviation $\sigma_{z}=.09$.
2) form the imputed value $\tilde{z}_{12}=\hat{a}_{t}+\hat{b}_{1 a}+\hat{b}_{2 b}+\bar{e}_{12}$ where
$\hat{a}_{t} \quad$ is the least-squares estimate of the constant common to all Fisher-transformed correlations in the target population;
$\bar{b}_{1 a}$ is the least-squares estimate of the constan_ common to all Fisher-transformed correlations involving the item 1 in the donor population a for the item; and
$\hat{\mathrm{b}}_{2 \mathrm{~b}} \quad$ is the least-squares estimate of the constant common to all Fisher-transformed correlations involving the item 2 in the donor populations $b$ for the item.
3) back-transform $\tilde{z}_{12}$ to form the estimate of the correlation $r_{12}$ :

$$
\tilde{r}_{12}=\left[\exp \left(2 \tilde{z}_{12}\right)-1\right] /\left[\exp \left(2 \tilde{z}_{12}\right)+1\right]
$$

4) form the imputed value of $X_{1} ' X_{2}$ for the target population by

$$
X_{1} \tilde{X}_{2}=\hat{\beta}_{1}^{\prime} Y_{t}^{\prime} Y_{t} \hat{\beta}_{2}+N \hat{\sigma}_{1} \hat{\sigma}_{2} \tilde{r}_{12}
$$

where $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ are defined by (11.6) and $\hat{\sigma}_{1}$ and $\hat{\sigma}_{2}$ are defined by (11.7).

### 11.1.2.6 Application to the Writing Trend Scale

For each of the three grades and each of the two years, separate estimates of the matrix $C$ were made. The order of estimation was as follows. First, a1:- Type 1 elements in all six cross-product natrices were estimated. The second step was the estimation of the Type 2 elements for each grade and year based on the Type 1 estimates from the donor grade and year. The order of preference for selecting the donor population was: (1) same grade, (2) another adjacent grade in the same year, and (3) any avaiiable grade and year Finally, the Type 3 elements were estimated. To allow for the measurement of the error due to imputation of the between-item correlations, five cross-
product matrices were generated for each grade and year, each matrix $C$ being based on a different set of draws from the distribution of correlations.

The resultant matrices were then used as the basis for constructing the $C_{\theta}$ matrices as was detailed ini ll.1.2.1. Five $C_{\theta}$ matrices were created for each grade and year, each based on one of the five $C$ matrices. To approximately account for the effects of the sample design and the amount of Information available, each of the $C_{\theta}$ matrices was scaled to be consistent with a sample of 1,000 . For each of the five $C_{\theta}$ 's for a given grade and age, a single plausible value was computed for each student according to the formulas in ll.l.2.1. This resulted in five plausible values for each student.

### 11.1.3 Other Aıalyses of Trends in Writing Performance

In addition to trends in primary trait scores, trends were also measured for mechanics of writing and for overall writing fluency. Trends in components of mechanics of writing at each age were based on a selected writing prompt given to the age group in both 1984 and 1988. The writing items used for the assessment of the mechanics of writing were "Spaceship" (N014840) for grade 4 and "Recreation Opportunity" (N000310) for grades 8 and 11. All analyses were based on representative subsamples of around 500 responses to each item at each grade and year. In the sample selection, Black students were sampled at a higher rate to provide sufficient sample size to allow for comparisons in performance between Black and White students. The student weights were adjusted to reflect this oversampling of Black students by the following poststratification process: 1) for each grade, the students selected for the writing mechanics analysis were categorized by gender and by race/ethnicity (White, Black, Hispanic, other), producing eight cells; 2) the sampling weights of the students within each cell were then multiplied by a poztctratification factor computed as a ratio whose denominator is the sum of weights of all students in the cell selected for the mechanics analysis and whose numerator is the sum of , he weights of all students in the writing assessment of the specified grade, gender, and race/ethnicity. All papers used in this analysis were scored in 1988; the actual sample sizes are shown in Tiole 11-7.

Table 11-7
Sample Sizes for Mechanics Scoring

|  |  | 1984* | $\underline{1988}$ |
| :--- | :--- | :--- | :--- |
| Grade 4 | Spaceship | 506 | 484 |
| Grade 8 | Recreation Opportunity | 474 | 517 |
| Grade 11 | Recreation Opportunity | 522 | 497 |

[^34]Two writing items for each grade in the uridge samples were holistically scored for overall writing fluency. To allow the measurement of trends in overall writing fluency, a sample of responses in the 1984 assessment to the same f.tems were also holistically scored. The items are:

```
Grade 4 "Spaceship" and "Flashlight"
Grade 8 "Recreation Opportunity" and "Food or the Frontier"
Grade 11 "Recreation Cpportunicy" and "Food on the Erontier"
```

Table 11-E shows the sample sizes fo. the measurement of trends in che fluency of writing.

Table 11-8
Sample Sizes for Holistic Scoring

|  |  | $\underline{1984 *}$ | $\underline{1988}$ |
| :--- | :--- | :---: | ---: |
| Grade 4 | Flashight | 940 | 615 |
|  | Spaceship | 1161 | 1257 |
| Grade 8 | Food on Frontier | 1184 | 1247 |
|  | Recreation Opportunity | 1286 | 1302 |
| Grade 11 | Food on Frontier | 1180 | 1192 |
|  | Recreation Opportunity | 12.54 | 1182 |

[^35]
## 11.2 analysis of the cross -SECTIONAL HRITING dATA

The analysis of the 1988 writing cross-sectional data was based on the data collected from the respondents to the writing items in the 1988 main assessment and consists of three components: (1) analyses based on the responses to the writing items in the focused-BIB booklets, (2) analyses to examine the relationship bet, een writing performance and wri+ing process and instruction, and (3) analys-s to determine the effect of allocated time on measured writing ability. All analyses were made oniy for grade-eligible students.

### 11.2.1 Primary Trait Analysis

The major analyses of the cross-sectional data were based on tre primary trait scores of the responses of students to 15 writing items presented in the focused-BIB portion of the assessment. The specific items and the blocks containing them are shown in Table 11-9. For each grade there are seven blocks of writing items, where each block typically contains a single writing

Table 2l-9

Assigrment of Writing Items for Cross-sectional Writing Assessment


Table 11-10

Sample Sizes for Primary Trait Analyses of Cross-sectional Writing Ferformance

|  |  | $\begin{gathered} \text { Grade } \\ \underline{4} \end{gathered}$ | Grade $\underline{8}$ | Grade 12 |
| :---: | :---: | :---: | :---: | :---: |
| 10003 | Recreation Opp. | - | 1950 | 1830 |
| N0004 | Food On Frontier | - | 1954 | 1800 |
| N0005 | Dissecting Frogs | - | 2612 |  |
| N0009 | Radio Station | 2672 | 2612 | - |
| N0077 | Ghost Story | 2015 | 1955 | 1822 |
| N0147 | Plants | 2012 | - | - |
| N0148 | Spaceship | 2005 | - | - |
| N0180 | Space Program | - | - | 2415 |
| N0210 | Bike Lane | - | - | 2415 |
| W0001 | Favorite Story | 2687 | - | - |
| W0002 | Animals | 2002 | - | - |
| W0003 | Three Wishes | 2644 | - | - |
| $1{ }^{1}$ | Why Favorite Story | - | 2608 | 2441 |
| W0005 | TV Habits | - | 1954 | 1788 |
| Wิ0006 | Personal Incident | - | 2596 | 2407 |
| TOTAL |  | 6679 | 6525 | 6069 |

task. In the focused-BIB design, each student responds to tinree of the seven blocks of writing tasks. The number of students responding to each writing task is shown in Table ll-10.

Books of tables were created presenting population estimates, by item of the proportions of students achieving each of the possible primary trait scores ( 0 -not rateable, 1 -unsatisfactory, 2 -minimal, 3 -adequate, 4 -elaborated) as well as the average primary trait score. These results were presented by each of the common background reporting variables as well as by variables relating to writing process and instruction.

### 11.2.2 The ARM Cross-sectional Writing Scale

The primary analysis of the cross-sectional data was made in terms of average response method writing scale scores based on the 15 items shown in Table 11-9. The same technology as was used to create the ARM trend writing scale was used to create this ARM cross-sectional writing scale, although the target sets of items for the two scales are largely different (there are five items in common between the 15 items making up the cross-sectional scale and the 11 items making up the trend scale).

The steps used to generate ARM plausible values for the cross-sectional writing scule are the same as those for che writing trend scale detailed in subsection ll.1.2. Analogous to the wiiting trend scale, the basis for the estimation of a plausible value for the cross-sectional scale is an estimate C of the full sums-of-squares-and-cross-products matrix

$$
V^{\prime} V=\left[\begin{array}{ll}
Y^{\prime} Y & Y^{\prime} X \\
X^{\prime} Y & X
\end{array}\right]
$$

where, as before, $Y^{\prime} Y$ is the sums-of-squares-and-cross-products matrix of the conditioning variables, $\mathbb{X} X$ is the sums-of-squares-and-cross-products matrix of the 15 items in the cross-sectional assessment, and X'Y is the crossproduct matrix between the items and the conditioning variables. For the construction of the cross-sectional scale, three separate estimates $C$ of the sums-of-squares-and-cross-products matrix were created: one for each of the grades 4, 8, and 12.

The conditioning matrix $Y$ for the cross-sec: onal assessment contains the values of 53 common core conditioning variables (listed in Table C.l in Appendix C) measuring each student's status on a variety of demographic, background, and attitude questions. Tue matrix $Y$ also contains 30 variables related to each student's attitudes toward and experiences in writing. A list of these conditioning variables appears as Table C-4 in Appendix C.

As with the trend scale, the elements of the estimate $C$ of V'V for a given grade fall into three general types: Type lelements directly estimable from available data for that grade; Type 2 elements estimable from relationships observed in another grade; and Type 3 elements involving items
never jointly presented to any student and requiring the imputation of between item correlations.

The Type 1 elements include the sums-of-squares matrix Y'Y of the conditioning variables, the elements of the matrix $X$ ' $Y$ corresponding to the cross-products of items with conditioning variables for the items presented to that grade, and the elements of the matrix X'X corresponding the sums-ofsquares of items and cross-products between items presented to that grade. The estimation procedure for the Type $l$ elements of $C$ was identical to that given in subsection ll.1.2.3.

Table ll-1l shows the items used in the cross-sectional writing scale and indicates the elements of the matrix $V{ }^{\prime} V$ that can be directly estimated at each year. Analogous to Table ll-6, the entries in Table ll-1l are codes giving the grades for which the corresponding element of the item-by-item cross-product matrix is estimable. The presence of a 4,8 , or $T$ indicates that the element can be directly estimated from the 1988 cross-sectional sample of students in grade 4, 8, or 12, respectively. The table also indicates for which grades the cross-products between conditioning variables and item responses can be directly estimated: Any time an item sum-of-squares can be directly estimated, -0 can the cross-products between that item and the conditioning variables.

In addition to indicating the directly estimable terms (the Type 1 terms), the table also indicates the Type 2 and the Type 3 terms. The Type 2 terms for a given grade are identified by the absence of the code for that grade but the presence of a code for a different grade. The Type 3 terms are identified by the absence of codes for all three grades. The estimation procedure for the Type 2 terms was identical to that given in 11.1.2.4 and the procedure for estimating the Type 3 terms was identical to that given in 11.1.2.5.

Separate estimates of the matrix $C$ were made for each grade using the following order of estimation. First, all Type 1 elements in all three crossproduct matrices were estimated followed by the estimation of the Type 2 elements for each grade based on the Type 1 estimates from the donor grade. When possible, the adjacent grade was selected as the donor grade. Finally, the Type 3 elements were estimated. Five cross-product matrices were generated for each grade where each matrix $C$ was based on a different set of draws fiom the distribution of correlations. This ailowed for the measurement of the error due to imputation of the missing between-item correlations.

The resultant matrices formed the basis of the $C_{\theta}$ matrices described in ll.1.2.1. Five $C_{\theta}$ matrices were created for each grade, where each of these was based on a different on of the five $C$ matrices for that grade. To approximately account for the sample design, each $C_{\theta}$ matrix was scaled to be consistent with a sample of 1,000 . For each of the five $\mathrm{C}_{\theta}$ 's for a given grade, a single plausible va_ue was generated for each student via the equations ir 11.1.2.I resulting in five plausible values for each student.

Table 11-11
Estimable Between-itea Correlations for the Gross-seitional Scale with Grade Whire Estimable

Item N0003 N0004 N0005 N0009 N0077 N0147 N0148 N0180 N0210 W0001 W0002 W0003 W0004 W0005 W0006

| N0003 | 8 T | 8 T | 8 | 8 | 8 T |  |  | T | T |  |  |  | 8 T | 8 T | 8 T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N0004 |  | 8T | 8 | 8 | 8 T |  |  | T | T |  |  |  | 8T | 8 T | 8 T |
| N0005 |  |  | 8 | 8 | 8 |  |  |  |  |  |  |  | 8 | 8 | 8 |
| N0009 |  |  |  | 48 | 48 | 4 | 4 |  |  | 4 | 4 | 4 | 8 | 8 | 8 |
| N0077 |  |  |  |  | 48 T | 4 | 4 | T | T | 4 | 4 | 4 | 8T | 8 T | 8 T |
| N0147 |  |  |  |  |  | 4 | 4 |  |  | 4 | 4 | 4 |  |  |  |
| N0148 |  |  |  |  |  |  | 4 |  |  | 4 | 4 | 4 |  |  |  |
| , N0180 |  |  |  |  |  |  |  | T | T |  |  |  | T | T | T |
| N0210 |  |  |  |  |  |  |  |  | T |  |  |  | T | T | T |
| w0001 |  |  |  |  |  |  |  |  |  | 4 | 4 | 4 |  |  |  |
| w0002 |  |  |  |  |  |  |  |  |  |  | 4 | 4 |  |  |  |
| W0003 |  |  |  |  |  |  |  |  |  |  |  | 4 |  |  |  |
| W0004 |  |  |  |  |  |  |  |  |  |  |  |  | 8 T | 8 T | 8 T |
| w0005 |  |  |  |  |  |  |  |  |  |  |  |  |  | 8 T | 8 T |
| w0006 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 8T |

[^36]
### 11.2.3 The Effect of Block Position on Writing Performance

In the course of the analysis of the cross-sectional writing data, it was discovered that the performance on each writ.ing task appeared to be related to the position of that task in the assessment booklet. In the focused-BIB design used for the 1988 writing cross-sectional assessment, each block of writing tasks appeared in three distinct booklets: once as the first cognitive block, once as the second, and once as the third. Siace the samples of studer.ts responding to each booklet are themselves represencative samples of the population, it would be expected, all other things being equal, that the scores of $s^{\uparrow}$ : dents who were presented the task as the first block in their assessment booklet would be closely comparable to the scores uf students presented in the block second or third.

Table ll-12, which gives the mean primary trait score across items by grade and block position, shows that this is not the case. While the mean primary trait score for items when they appear in the first block of a booklet are not significantly different from the means of the items when they appear in the second block, both means are significantly higher than the means of the items when they annear in the last block. The effect occurs at every grade although it appears to be strongest for grade 12. The same phenomenon occurs for many of the individual items.

Table 11-12
Mean Primary Trait Score by Position of Item in 'ooklet*

|  | lst block | 2nd block | 3rd block |
| :---: | :---: | :---: | :---: |
| Grade 4 | 2.00(.02) | 2.04(.02) | 1.93(.03) |
| Grade 8 | 2.08(.02) | 2.05(.02) | 1.99(.03) |
| Grade 12 | 2.20(.02) | 2.20(.03) | 2.05(.04) |

[^37]These results imply that the estimates of writing performance based on averaging across the three positions may provide underestimates of the true writing performance of the students. The lower performance on the third block of exercises may, perhaps, be due to fatigue. Further investigation is planned of this phenomenor, which also occurs in the 1988 cross-sectiona? reading assessment but not in the 1988 cross-sectional civics assessment, is planned.

### 11.2.4 Relating Writing Performance to Writing Process and Instruction

Analyses were conducted to determine the association between the ARM scale scores and the compcsite indices relating to writing process and
instruction derived from the responses of the students to the writing background questionnaire. The indices examined, and the grades at which they were available, are as follows:

Index
Enjoy writing Instruction on Writing Process Revision Planning

## Gracies

$4,8,12$
8, 12
12
12

The questions included in each of the composites are given in Appendix D, along with the values assigned to each of the original responses to derive the composites.

Writing achievement was related tc responses obtained to a teacher questionnaire completed by the writing teachers of roughly 85 percent of the assessed eighth-grade students. Among other information available in the teacher questionnaire was the instructional techniques used by the teacher for the assessed student in particular. It was thus possible to examine how various instructional practices relate to measured writing achievement, and, since certain of these questions are paralleled in the student background questionnaire, to examine the relationship between instructional techniques reported used by the teacher and the student's perceptions of the instructional techniques used.

### 11.2.5 Effect of Time Allocated to the W:iting Task

The final analysis of the 1988 cross-sectional data was designed to determine the effect of time allocated to the writing task on the estimate of writing ability. This analysis was based on the comparison of riting performanct: for two equivalent samples of students in which one sample receives twice as much time as the other to complete the same writing exercise. The data at each grade consist of the responses to three e.tercises, one from each of the three major purposes of writing (informative, imaginative, persuasive). To improve the measure of the effect of allocated time on writing performance, the analysis controlled for the score of another writing exercise of the same type, also given to both samples of students. (For grade 8/age 13 and grade 12/age 17, there were two control exercises for ine persuasive task.) For each grade/age, three writing booklets were administered, with one booklet for each of three categories of writing purposes. The booklets had the following form:

| Persuasive: | $\mathrm{S}_{1}$ | $\mathrm{~L}_{1}$ |
| :--- | :--- | :--- |
| Informative: | $\mathrm{S}_{2}$ | $\mathrm{~L}_{2}$ |
| Imaginative: | $\mathrm{S}_{3}$ | $\mathrm{~L}_{3}$ |

The first task ( $S_{1}, S_{2}, S_{3}$ ) in each booklet was allocated the usual time for completion. The second task ( $L_{1}, L_{2}, L_{3}$ ) was allocated twice the usual time.

The particular writing exercises for the analysis, along with their control exercises, are as follows:

| Grade | Task | Cointrol Exercise | Analysis Exercise |
| :---: | :---: | :---: | :---: |
| 4 | Informative | W000140 | W000220 |
|  | Imaginative | W000340 | N007720 |
|  | Persuasive | N003940 | N014820 |
| 8 | Informative | W000410 | W000530 |
|  | Imaginative | W000610 | N007730 |
|  | Persuasive | N000950 and N000550 | N000330 |
| 12 | Informative | W000410 | W000530 |
|  | Imaginative | W000610 | N007730 |
|  | Persuasive | N021050 and N018050 | N000330 |

Chapter 12
data analysis for the cive-s assesshent ${ }^{1}$

Nancy Allen
Educational Testing Ser-ice

This chapter describes the analyses carried out on the responses to the cognitive and background items in the 1976 and 1982 assessments of ci izenship/social studies and the 1988 assessment of civics. These analyses led to the results presented in The 1988 Civics Report Card: Trends in Achievement from 1976 to 1988 at Ages 13 and 17, and Achievement in 1988 at Grades 4, 8, and 12 (Anderson, Jenkı is, Leming, MacDoneld, Mullis, Turner, \& Wooster, 1990). The emphasis of this chapter is on the methods and results of procedures used to develop the IRT-based scale scores than formed the basis of that report. However, some attention is given to the analysis of open-ended items and mean percents correct for groups of items as reported in The 1988 Uivics Report Card. The theoretic underpinnings of the IRT and plausible value methodology described in this chapter are given in Chapter 9.

The techniques required to develop scale scores for the cross-sectional analysis of the data from the 1988 main BIB-spirsi assessment were different from the techniques required to develop scale scores for the analysis of trends in civics achievement. Acrordingly, these two analyses are presented in separate sections. Section 12.1 pertains to the scaling of the data from the main assessment; section 12.2 contains information about the scaling of the data from the trend bridges.

### 12.1 CROSS-SECTIONAL DATA ANALYSIS

The data from the main BIB-spiraled ossessment of civics in 1988 were used for cross-sectional analyses comparing the levels of civics achievement for various subgroups of the 1988 target populations. The main assessment included two parts: the focused-BIB samples and the intercorrelation samples. It included three student cohorts: students who were either in the fourth grade or 9 years old, students who were either in the eighth grade or 13 years old, and students who were either in the twelfth grade or 17 years old. The bixih date ranges for age-eligible students were based on the 1978, 1974, and 1970 calendai years respectively for ages 9,13 and 17. The sampled students in each of these three cohorts were assesse either in the winter or the spring. The samples in the main assessment are listed, along with the bridge

[^38](or trend) samples, in Table 12-1. (See Chapter 1 and Chapter 3 for descri: :ions of the target populations and the sample design used for the assessment.)

The pool of items used iv the 1988 civics assessment contained a range of open-ended and multiple-crocce questions measuring pexformance on sets of objertives documented in Civics Objectives, 1988 Assessment (NAEP, 1987b). The objectives framework is described in Chapter 2 A total of 220 (one with two parts) disiinct civics items addressing these objectives was administered in 1588 using the BIB-spiral design to alloc: $=$ che items to the assessed students. All 220 items were administered to the mai:. focused-BIB sample and a subgroup of items was administered to the intercorrelation sample.

The "grade-only" portion of the main focused-BIB civics samples (whether the time oi assessment was winter or spring) provided the cross-sectional results that are reported in The 1988 Civics Report Card. In these samples, each student was administered a booklet containing three blocks of civics cognitive items, a block of background questions common to all ko =klets for a particular grade, oge lovel, and a block of civics-related background questions common to all civics berliets for a particular grade، age level. Seven blocks of civics cognitive quesiions were administered at grade 8/age 13 and grade 12 /age 17 in a total of seven booklets for each age. At grade 4/age 9, three blocics of civics cognitive questions were administered in only or order in one booklet. The sample sizes and number of items for the focused-BIB grade/age samples are listed in Table 12-2.

The purpose of the intercorrelaticit samples is to provide proficiencies for reading, civics, U.S. history, and. at grade 12/age 17, geography for the same samples of students. These results are available for secondary analyses. In the intercorrelation samples, each student tho recei d civics items was adrinistered a booklet containing three blocks of subject area cognitive itemo $\pm$ cluding one block of civics items that was also administered to the main focused-BIB samples, as well as a block of backgıound questions common to all bookle*. for a particular grade/age level and ; block of background questions selected from those given to students assessed in the reading, civics, U.S. history, and geography (at grade 12/age 17) main focused-EIB samples. Three blocks of civics cognitive items were administered in three booklets at grade 4/age 9 and grade 8 /age 13. Because of the additional subject area, gcography, only two blocks of sivics cogritive items were administered in two booklets at ${ }_{c}$ raje lic/age 17 . The sample sizes and number of items for ..he intercorrelation grade/age samples are listed in Table 12-2.

It should be noted that one block administered to the main focused-BIB samples at grade 8 /age 13 and grade 12 /age 17 consisted of one open-endec item. This two-part item entailed identifying the President and discussing presidential responsibilities. Each part of the item was scored separately. Both parts were scaled with the multiple-choice items, but they were also analyzed independently.

The next sections contain in some detail a description of the analysis performed using the main BIB-spiraled samples. As is usual in NAEP analyses,

Table 12-1
NAEP 1988 Civics Samples

| Sample Code | Sample Tipe | Subject Areas | Booklet Numbers | Cohort | Time of Assessment | $\begin{gathered} \text { Age } \\ \text { nefn. } \end{gathered}$ | Modal <br> Grade | Sample <br> Size |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 [Main-Civ] | BIB Main | C | 16 | Grade 4/age 9 | Winter, spring | CY | 4 | 2,652 |
| 13[Mainl-Civ] | BIB Main | C | 22-28 | Grade 8/age 13 | Winter, spring | CY | 8 | 5,981 |
| 17[Main-Civ] | BIB Main | C | 22-28 | Grade 12/age 17 | Winter, spring | CY | 12 | 5,683 |
| $9[$ Main-Int] | BIB Intercorrelation | R, C, H | 17-19 | Grade 4/age 9 | Winter, spring | CY | 4 | 2,638 |
| 13[Main-Int] | BIB Intercorrelation | R, C, H | 29-31 | Grade 8/age 13 | Winter, spring | CY | 8 | 2,590 |
| 17(Main-Int] | BIB Intercorrelation | R,C,H,G | 30-32 | Grade 12/age 17 | Winter, spring | CY | 12 | 2,438* |
| 13[BR-Civ] | Bridge to 1976, 1982 | C | 90 | Age 13 | Fall | CY | 8 | 1,938 |
| 17[BR-Civ] | Bridge to 1976, 1982 | C | 90 | Age 17 | Spring | Not CY | 11 | 1,786 |

[^39]

Table 12-2
Sample Sizes and Number of Items for the Main Assessment Grade,'Age Civics Samples

| Sample | Sample Size | No. of MultipleChoice Items | No. of OpenEnded Items |
| :---: | :---: | :---: | :---: |
| Grade 4/Age 9 |  |  |  |
| Main Focused-BIB | 2,652 | 51 | 0 |
| Intercorrelation | 2,638 | 51 | 0 |
| Grade 8/Age 13 |  |  |  |
| Main Focused-BIB | 5,981 | 153 (151)* | 1** |
| Intercorrelation | 2,590 | 72 | 0 |
| Grade 12/Age 17 |  |  |  |
| Main Focused-BIB | 5,683 | 150 (148)* | $1^{* *}$ |
| Intercorrelation | 1,621 | 49 | 0 |
| Total | 21,165 | 219 | $1^{* *}$ |

* Numbers of items in the final scale are included in parentheses when different from the number in the assessment.
** Scored in two parts.
the process began with an examination of the $i^{\prime}$ :ems and blocks of items. This was followed by an assessment of the dimensionality of the civics items in the main assessment. The estimation of item parameters for the unidimensional civics scale was completed next, followed by the generation of plausible values. Finally, the plausible v lues were transformed to the final proficiency scale and points on the proficiency scale were anchored. This section of the chaptcr closes with information about derived background variables, scoring of the open-ended items, and content grouping of the items.


### 12.1.1 Item Anaiysis and Dimensionality Assessment

Table 12-3 shows the number of items, KR-20 reliability, mean number correct, standard deviation, and mean percent correct for each block. These values were calculated for the weighced item results of all multiple-choice items within a block, whether they were used in the scaling process or not. The table also gives the number of students who were administered the block and the percent not reaching the last item in the block. The results for the blocks administered to each grade/age level indicated that the blocks differ in number of items, average difficulty, reliability, and percent not reaching the last item, and so are not parallel to one another.

Table 12-4 contains information about the effect of the position of blocks withjn booklers on the average percent correct for items within each block presented to the focused-BIB samples at grade 8 and grade 12. The three blocks presented to grade 4/age 9 students in the focused-BIB sample were presented in only one booklet (in one order), and so are not included in the table. The averages for the grade-only portion of the focused-BIB samples show that the order of blocks within booklets did not have a large or consistent effect on proficiency in the civics focused-BIB assessment.

Content area experts considered the civics items to be fundamentally related to one another and, therefore, recommended a unidimensional scale. The purpose of a dimensionality analysis was to make sure that this decision appeared reasonable in light of the data. So, the full-information factor analysis method developed by Bock, Gibbons, and Muraki (1985) was applied to the data using the TESTFACT program (Wilson, Wood, \& Gibbons, 1983).

Initially, blocks of items at each grade/age level were analyzed separately. One-, two-, three-, and four-factor solutions were examined. Only the results of che two-factor solutions are presented here, because the first two factors of higher-order solutions were similar to the factors in the two-factor solutions.

The dimensionality results for the civics blocks are shown in Table 12-5. Four blocks had items that contributed to 'eywood cases, making estimation of a solution impossible. Those items were deleted from the dimensionality analysis. In each block, the amount of variance explained by the first factor in a two-factor solution ranged from 18 to 34 percent. Although the results show that the data are not strictly unidimensional, the percent of variance explained by the first factor was much larger then the

Table 12-3
Descriptive Statistics for Main Assessment Civics Blocks

| Grade/Age | Block | $\begin{aligned} & \text { Number } \\ & \text { of Items } \end{aligned}$ | KR-20 | Mean <br> Number <br> Corkect | S.D. | Mean Percent Correct | $\begin{gathered} \text { Focused-BIB } \\ N \end{gathered}$ | Intercorrelation N | Percont Not Reaching the Last Item |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4/9 | C2 | 15 | . 73 | 10.4 | 3.0 | . 69 | 2652 | 869 | 2.1 |
|  | C3 | 16 | . 72 | 9.3 | 3.2 | . 58 | 2652 | 884 | 5.1 |
|  | C4 | 20 | . 77 | 10.2 | 4.2 | . 51 | 2652 | 885 | 3.5 |
| 8/13 | C2 | 26 | . 81 | 14.0 | 5.0 | . 54 | 2597 | 858 | 2.7 |
|  | C3 | 24 | . 81 | 17.0 | 4.3 | . 71 | 2575 | 0 | 1.9 |
|  | C4 | 30 | . 85 | 19.4 | 5.8 | . 65 | 2563 | 0 | 2.1 |
|  | C5 | 27 | . 81 | 15.7 | 5.0 | . 58 | 2527 | 0 | 1.6 |
|  | C6 | 24 | . 76 | 11.6 | 4.5 | . 48 | 2553 | 873 | 6.3 |
|  | C7 | 22 | . 72 | 10.3 | 4.1 | . 47 | 2581 | 859 | ${ }^{2} 1$ |
|  | C8 | 1 |  |  |  |  | 2547 | 0 |  |
| 12/17 | C2 | 26, | . 86 | 18.5 | 5. | . 71 | 2436 | 0 | 1.4 |
|  | C3 | 26 | . 85 | 13.6 | 5.4 | . 52 | 2441 | 0 | 2.4 |
|  | C4 | 25 | . 82 | 14.3 | 5.0 | . 57 | 2434 | 815 | 5.0 |
|  | C5 | 27 | . 85 | 19.5 | 4.9 | . 72 | 2442 | 0 | 0.9 |
|  | C6 | 24 | . 84 | 15.2 | 5.0 | . 63 | 2426 | 806 | 3.8 |
|  | C7 | 22 | . 84 | 14.1 | 4.9 | . 64 | 2441 | 0 | 2.2 |
|  | C8 | 1 |  |  |  |  | 2429 | 0 |  |

Table 12-4

## Effect of Block Position on Average Item Percent Correct for the Main Focused-BIB Civics Samples

| Block** | Position <br> Grade 8 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| C2 |  | 3 | Maximum Absolute <br> Difference |  |
| C3 | 57 | 57 | 55 |  |
| C4 | 75 | 74 | 74 | 2 |
| C5 | 67 | 68 | 68 | 1 |
| C6 | 62 | 61 | 59 | 1 |
| C7 | 53 | 51 | 50 | 3 |
| C8 | 50 | 49 | 49 | 3 |
|  | 66 | 65 | 64 | 1 |
| Grade 12 |  |  |  | 2 |
| C2 | 74 | 75 | 72 |  |
| C3 | 54 | 55 | 56 | 3 |
| C4 | 61 | 60 | 61 | 2 |
| C5 | 75 | 75 | 74 | 1 |
| C6 | 67 | 67 | 66 | 1 |
| C7 | 69 | 67 | 67 | 1 |
| C8 | 77 | 75 | 76 | 2 |
|  |  |  |  | 2 |

* Note: A full BIB configuration was not implemented at grade 4/age 9. blocks C2, C5, C6, C7, and C8 are identical for grades 8 and 12. Except in these cases, identity of block numbers across grades does not imply identity of blocks. Standard errors for mean percents correct are approximately 0.5.

Table 12-5

## Results of the Full-Information Factor Analyses of Tetrachoric Matrices of Civics Item Responses


percent of variance explained by the second factor, and the factor analytic solutions had no clear interpretation in terms of the item content categories. This supported the use of a unidimensional scale to summarize the results.

### 12.1.2 Estimation of Item Parameters

The computer program BILOG (Mislevy \& Bock, 1982) was used to estimate the item parameters of the three-parameter IRT model for 217 of the 219 mu'tiple-choice items and the two sections of the open-ended item (for a total of 219 items in the final :scale), using a random subsamyle of 7,859 of the 21,165 students in the maj.n assessment samples. Most items had approximately 1,000 responses in the su'ssample. The actual range of responses per item was from 972 to 2,656 . After examination of the items for differential item functioning across groups, students from all three grade/age groups and from both the main focused-BIB and intercorrelation samples were included in the scaling process. The responses were not weighted. (See Chapter 9 and Beaton, 1987b, for further descriptions of the scaling process.)

The two items that were dropped from the scale were excluded because of lack of fit to the IRT mode?. Neither of these items had monotonically increasing empirical item characteristic curves. The NAEP item numbers for these items are P065804 and P006001. They were the 13 th and 15 th items in block C5 for both grade 8/age 13 and grode 12/age 17. Other than appearing in the same block, the items were unrsiated. No items were dropped because of their differential item functioring with respect to the different age groups, the two types of samples, the twu gender groups, or the several racial/ethnic groups.

Of the 217 multiple-choice items included in the final scale, 64 had only two choices, or two choices and an "I don't know" alternative. Consequently, these items had low discrimination parameter values with high "guessing" parameter values (about .50).

In the final scale, there were 36 items in common for grade 4/age 9 and grade 8/age 13, and 99 items in common for grade $8 /$ age 13 and srade 12/age 17. There were no it ms in common across all three grade/age groups. Fifteen, eighteen, and fifty-one items were administered only at grade 4/age 3, grade 8 /age 13 , and grade 12 /age 17 , respectively.

Talle F-3 in Appendix F lists the estimated item rararieters. These item parameter estimates are direct output from the BILOG program specifying three subpopulations, prior to any rescaling. Because of the jndeterminacy of the IRT scale, the origin and size of the scale were set prorisionally by standardizing the distribution of the calibration sample of examinees to have a mean of zero and a variance of one.

### 12.1.3 Generation of Flausible Valnes

Univariate plausible values were generated using the M-GROUP computer program (Sheehan, 1985) according to the conditioning procedure described in

Chapter 9. The final student veights were used at this stage of :he analysis. Conditioning was conducted separately for each of the three grade/age groups and for the me in focused-BIB and intercorrelation samples because different conditioning background variables were available for each group. The weighted means and standard deviations of the plausible values for the main focused-BIB were compared to those for the intercorrelation samples (Table 12-6). Because the means for the two types of samples were disparate, and because at grade 8/age 13 and grade 12/age 17 the focused-BIB assessment balanced the order of administration of the blocks, only results for the "grade-only" portion of the focused-BIB samples are raported in The 1983 Civics Report Card.

Taれ19 12-6
Civics Means and Standard Deviacions $n^{n}$ the Calibration Scale for Grade/Age $M a^{2}$ : Assessment 'B Spiral Samples

| Grade/Age | Sample | ```First Plausible Value``` |  | All Five <br> Plausible Values |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Mean | $\underline{S} L_{\text {d }}$ | Mean | S. $\mathrm{D}_{\text {, }}$ |
| 4/9 | Focused-BIB | -. 79 | . 62 | -. 79 | . 62 |
|  | Intercorrelation | -. 83 | . 64 | -. 84 | . 64 |
| 3/13 | Focused-BIB | . 12 | . 72 | . 12 | . 72 |
|  | Intercorrelation | . 16 | . 69 | . 17 | . 68 |
| 12/17 | Focused-BIB | . 84 | . 76 | . 84 | . 76 |
|  | Intercorrelation | . 75 | . 78 | . 78 | . 77 |

The codings of the civics-specific conditioning variables are presented in Appendix: $C$ in Table C-6. Commen core conditioning variables were also used. For grade 12/age 17, the "modal age, > modal grade" category was deleted from the age-by-grade variable, rescause students above grade 12 were not sampled. The estimatpd conditioning effects for he six samples defined by the three grade/age groups and the mait. focused-BIB and intercorrela ion samples are given in Appendix C in Tables C-22 through C-27. The values of the conditioning effects are expressed in the metrics of cinc original calibration scale. Definitions of derived conditioning variables are given in A.ppendix D (see also section 12.1.6.)

### 12.1.4 The Einal Proficiency Scale

In order tu resolve the linear indeterminacy of the original IRT calibration scale, an overall weighted mean of 250.5 and weighted standard deviation of 50 across all students in the main focused-BIB samples was selected. These values for overail mean and standard deviation have been used for other NAEP subject arer. scales. Although the ci.vics proficiency scale, because of this selection, is seemingly expressed in the same units as those other NAEP proficiency scales, it is not appropria.te to compare civics proficiency scores with seores on the other subject area scales. Any other
convenient transformation of the original civics plausible values could have been chosen, so there is no link in the construction of the civics proficiency scale to the scales of any other subject area.

Each grade/age sample was given equal weight when calculating the slope and intercept of the transformation. For each grade/age of the main focused. BIB samples, the weighted means of the five plausible values were averaged ( $M_{1}, M_{2}$, and $M_{3}$ ). These averages were then averaged across the three grade/age grouk.. This overall average, M(calibrated), based on values in the original BILOG calibrated scale, was transformed to the value 250.5. The geometric mean of the we.-ghted standard deviations for the five plausible values for each grade/age group was found and squared to estinate the variance for each grade/age group ( $\mathrm{V}_{1}, \mathrm{~V}_{2}$, and $\mathrm{V}_{3}$ ). Using an analysis of variance approach, these variances and the square of the averages of the five weighted means for the grade/age groups were added together to find the sum of squares of the plausible values divided by sample size, $\Sigma \mathrm{X}^{2} / \mathbb{N}\left(\mathrm{SS}_{1}, \mathrm{SS}_{2}\right.$, and $\left.\mathrm{SS} \mathrm{S}_{3}\right)$. For instance, for grade/age level 4/9,

$$
S S_{1}=V_{1}-M_{1}{ }^{2}
$$

The three valucs of $\Sigma \mathrm{X}^{2} / \mathbb{N}$, one for each grade/age group ( $\mathrm{SS}_{1}, \mathrm{SS}_{2}$, and $\mathrm{SS}_{3}$ ), were averaged. This average was treated as the estimate for $\Sigma \mathrm{X}^{2} / \mathrm{N}$ for the overall sample. It was combined with $M$ (calibrated) to calculate the overall standard deviation, SD(calibrated). Thus,

$$
\mathrm{SD}(\text { Calibrated })=\sqrt{\frac{\mathrm{SS}_{1}+\mathrm{SS}_{2}+\mathrm{SS}_{3}}{3}+[\mathrm{M}(\text { Calibrated })]^{2} .}
$$

The transformatior sed to generate proficiency scores with an overall mean and standard deviation for all three grade/age groups of 250.5 and 50 , respectively, is

$$
\begin{aligned}
\theta(\text { proficiency })- & \frac{50}{\text { SD(Calibrated) }} \circ \theta(\text { calibrated }) \\
& -\frac{50}{s \overline{D(c a l i b r a t e d)}} \bullet M(\text { Calibrated })+250.5
\end{aligned}
$$

or
$\theta($ proficiency $)=$ slope $\cdot \theta($ calibrated $)+$ intercept.

For the 1988 civics proficiency scale, the slope and intercept are 51.78 and 247.64 , respectively. This transformation was applied to the main
focused•BIB and intercorrelation samples for all three grade/age groups. Coverall summar statistics for the samples are presented in Table 12-7.

Table 12-7
Means and Standard Deviations on the Civics Proficiency Scale

|  |  | First |  | All Five |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Grade/Age |  | Slausible Value |  | Plausible Values |  |

Item parameters on the calibrating scale may be transformed using the intercept and slope so that the conditional probability of correct response given a proficiency score can be obtained. They are

```
a(proficiency) - a(calibrated)/slope;
b(profiriency) = slope - b(calibrated) + intercept; and
c(proficiency) = c(calibrated).
```

The transformation of the estimated conditioning effects is

$$
\Gamma(\text { proficiency })-\text { slope } \cdot \Gamma(\text { calibrated })+\text { intercept } .
$$

### 12.1.5 Anchoring the Points on the Civics Proficiency Scale

The same anchoring techniques used for the 1986 mathematics and science scales were applied to the 1988 civics cross-sectional scale, using data from the main focused-BIB samples. Four levels (200, 250, 300, and 350) kore selected on the civics scale and chosen as anci.or points. A subject-area committee defined each proficiency level, describing the types of questions that most students attaining that level would be able to answer correctly and that most students at least one level lower would ansuer incorrectly. The committee selected benchmark items that exemplify each level of proficiency from the group of items identified in the arachoring process.

Possible exemplar items were selected by identifying items for which more than 65 percent of the students at a certain proficiency level (i.te anchor level of the item) correctly answered the item while less than 50 percent of the students at the next lower proficiency level correctly answered the item. In addition, items were selected only if the difference between the nercent correct for the two proficiency levels was larger than 30 and the number of students answering the question at each of the two proficiency levels was larger than 10 . Students were considered to be at a certain proficiency level if their proficiency score was within 12.5 points of the proficiency level. For more details of the anchoring process, see Chapter 7 and Beaton (1987a).

Civics educators wat were members of the subject-area ccmmittee examined the sets of identified items at a particיlar anchor level as well as items that almost met the anchoring criteria and used their expert judgment to characterize each proficiency level. Their goal was to contrast the tasks at a particular anchor level with those at levels just above and below. The characterizations selected by the civics/social studies experts for each anchor level are listed in Table 12-8. Exemplar items selected by the committee are given in The 1988 Civics Report Cart.

Table 12-8
Civics Anchor Levels and Descriptions

Anchor Level
200
250

300

350

## Description

Recognizes the Existence of Civic Life
Understands the Nature cf Political Institutions and the Relationship Between Citizen and Covernment

Understands Specific Government Structures and Functions

Understands a Variety of Political Institutions and Processes

### 12.1.6 Derived Background Variables

Derived variables based upon tackground questions were usea for two purposes: as conditioning variables, or as reporting variables used to define subgroups. Some of these variables are common to all the subject areas; others are specific to the 1983 civics assessment. Derived variables used for conditioning are listed in Table C-6 of Appendix C and defined in Appendix D Derived variables used for reporting are defined in Appendix G. Variables derived for purposes of reporting have been placed in the data sets on the public-use data tapes; variables derived for conditioning purposes were merely calculated in the analysis process.

### 12.1.7 Scoring the Open-ended Item

As indicated earlier, one civics block presented to students in the grade 8/age 13 and grade $12 / a g e ~ 17$ main focused-BIB samples contained an openended item with two parts, the firsl part asking students to identify the prosident and the second asking them about presidential responsibilities. These two parts were included in the scaling process, but were also analyzed separately. Chapter 6.2 contains the interrater reliabilities frr the two parts of the item as they were originally scored. The right/wrong scoring of the categories of responses for the two parts of item P018200 (P018201 and P018202) are indicated in Table 12-9. The percent agreement for the raters, when the item is dichotomized, are given in Table 12-10.

Table 32-9
Dichotomous Scoring of the Iwo Pairts of the Open-ended Civics Iten (P018200)

| First Scale (P018201) | Sccond Scale (P018202) |
| :---: | :---: |
| Incorrect: 0 | Incorrect: $0-2,9$ |
| Correct: 1 | Correct: $3-4$ |

Table 12-10
Percent Agreement for the Ratings of the Two Portions of the Dichotomusly Scored Open-ended Civics Item

| Grade/Age | Portion | $N$ | Percent Agreement |
| :---: | :---: | :---: | :---: |
| $8 / 13$ | P018201 | 623 |  |
|  | P018202 | 584 | 99.5 |
|  |  |  | 93.0 |
| $12 / 17$ | P018201 | 574 | 99.7 |
|  | P018202 | 556 | 95.7 |

### 12.1.8 Content Grouping of the Items

Although only one civics proficiency scale was developed, subject-area experts who - $\cdots$ thored the report requested mean percent-correct values for sets of items related in content. The items includea in these sets are listed in The 1988 Civics Report Card.

### 12.2 TREND DATA ANALYSIS

For the 1988 study of trends in civics achievement, students were administered items used in the citizenship/social studies assessments conducted in 1976 and $1982^{2}$. The 1976 assessment included samples of 17 -yearolds who had dropped cut of school or graduated prior to assessment; these students were not included in the 1988 trend study. The bridge assessment consisted of one booklet each for ages 13 and 17. Because there were few reusable civics items from the previous assessments for age 9, a trend booklet could not be compiled; for that reason, a bridge assessment for that age was not feasibie. In order to match the characteristics of the previous assessments, age-only samples of students were defined using common age definitions (age 13 birth dates based on the 1974 calendar year, age 17 birtt. dates ranging from October 1, 1970 to September 30, 1971), common times of testing ( 13 -year-olds in the fall, $17-\mathrm{y}$ ar-olds in the spring), and a common mode of administration (bookiets were paced with an audiotape). The modal grades for the age 13 and age 17 samples were 8 and 11 , respectively.

A total of 134 multiple-choice cognitive questions were administered as trend items- 35 at age 13 only, 39 at age 17 only, and 60 at both ages. Two open-ended items were included-one at age 17 only, and one at both ages. These two items were included in the scaling process and examined independently. Sixteen of the items that had been administered as trend items were deleted from the analysis (Table 12-11) because the item itself or the direc $\quad$ ns for the item had been changed significantly in the item review process-4 at age 13 only, 6 at age 17 only, and 6 at both ages.

Table 12-11
Items Deleted from the Civics Trend Analysis Because of mext Changes

| Age | Block | Items |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 13 | C9 | P000301, | P000701, | P002001, P010001 |
|  | Cl0 | P003901, | P004801, | P004301 |
|  | Cll | P005701, | P005901, | P007101 |
| 17 | C9 | P008801, | P008901, | P010001, P000301, P000701 |
|  | Cl0 | P003901, | P004101, | P004801, P004301 |
|  | Cll | P005701, | P005901, | P007101 |

Each student at a particular age level vas adminiscered 2 booklet containing the same three blocks of civics cognitive items as well as the

[^40]block of civics background questions common to the civics focused-BIB sam- ${ }^{\text {² }}$ and the block of general background questions common to all the BIB samples. In addition, six noncognitive questions were included in one of the cognitive blocks for age 17. These background questions were used for reporting purposes only (not for conditioning). Although the cognitive items had never been administered within the same blocks before, they were presented aurally using a tape recorder as in past assessments, limiting the response time fo. each item. Many of these items were presented in the cross-sectional assessment also, but in printed form.

The trend data analysis examined data from three points in time: 1976, 1982, and 1988. A three-population univariate scale was fit to the trend data for these three assessments at each age level. Due to the differences in age defintion, time of testing, and mode of administration between the civics bridge and main assessments, no link can be made between the civics trend scale and the civics cross-sectional scale. The sample sazes and number of items from each assessment are given in Table 12-12.

Table 12-12
Number of Items and Sample Sizes
for the Civics Trend Assessment

| Assessment |  |  | - Number of Multiple-choice | Oms - |
| :---: | :---: | :---: | :---: | :---: |
| 13 | 1976 | 19,952 | 64 | 1 |
|  | 1982 | 7,268 | 48 | 0 |
|  | 1988 | 1,938 | 85 | 1 |
|  | Total | 29,158 | 85 | 1 |
| 17 (in-school) | 1976 | 17,866 | 69 | 2 |
|  | 1982 | 6,751 | 48 | 0 |
|  | 1988 | 1,786 | 87 | 2 |
|  | Total | 26,403 | 87 | 2 |
| Total | 1976 | 37,818 | 85 | 2 |
|  | 1982 | 14,019 | 65 | 0 |
|  | 1988 | 3,724 | 120 | 2 |
|  | Total | 55,561 | 120 | 2 |

- Not all examinees received all items in 1976 and in 1982.

The steps in the civics trend analysis are documented in the following sections. As for the cross-sectional analysis, the first step was to gather item and block information. Next the trend items were calibrated and
plausible values were generated after conditioning on available background variables. Finally the age 13 and age 17 scales were linked and placed on the final civics trend proficiency s.ale. Derived background variables and the scoring of the open-ended items are referred to in the last sections of the chapter.

### 12.2.1 Item Analysis

Table 12-13 contains the number of items, KR-20 reliability, mean, standard deviation, and mean percent correct for each block, as well as the number of students who were administered the block. The average values were calculated using examinee weights and all of the multiple-choice items in the block, including those that were not scaled. The 1988 item-level statistics were not very different from those for the 1976 and 1982 assessments. The percent of examinees not reaching items in the bridge blocks was almost always zero because the items were administered with a tape-recording to pace response time.

Table 12-13
Descriptive Statistics for Civics 1988 Trend Blocks

| Age | Block | Number of Items | KR-20 | Mean Number Correct | S. D. | Mean Percent Correct | N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13 | C9 | 34 | . 79 | 22.8 | 5.2 | . 67 | 1938 |
|  | Cl0 | 27 | . 78 | 15.2 | 4.5 | . 56 | 1938 |
|  | Cll | 34 | . 82 | 21.9 | 5.6 | . 64 | 1938 |
| 17 | C9 | 33 | . 81 | 19.0 | 5.3 | . 58 | 1786 |
|  | Cl0 | 32 | . 86 | 22.2 | 5.8 | . 70 | 1786 |
|  | Cll | 34 | . 89 | 25.2 | 6.2 | . 74 | 1786 |

### 12.2.2 Estimation of Item Parameters

The first step in the scaling process was the estimation of item parameters for the trend items. This item calibration was performed using the BILOG progran separately for each of the two age groups, using combined data fron the three assessments and treating each assessment sample as a sample from a separate subpopulation. The calibration was performed on a subsample of all the available subjects, resulting in approximat. iy 500 examinees in each assessment year for each item. The responses were not weighted for this part of the analysis.

Three items were subsequently dropped from the age 13 trend scale and two items were dropped from the age 17 trend scale because of lack of fit to the IRT model. Most of these items had nonmonotonic empirical item response functions; however, one had diff: =ent item response functicas for the 1988 and 1976 data. The NAEP item numb,rs and the reason tiese items were excluded are listed in Table 12-14.

Table 12-14
Items Delated from the Civics Trend Analysis
Due to Lack of Model Fit

| Age | Block | Item | Reason for Exclusion |
| :--- | :--- | :--- | :--- |
| 13 | C9 | P002601 | Not monotonic |
|  | Cll | P005804 | Not monotonic |
|  |  |  | Not monotonic |
|  |  |  | P006001 |
| Cll |  |  | Not monotonic |
|  |  |  | Discrepant IRFs |

As a result of these deletions and the inclusion of the open-erded items, 83 items were scaled for age 13 and 87 items were scaled for age 17. A list of the items scaled for each of the two ages, along with their item parameter estimates, appears in Tables F-4 and F-5 in Appendix F.

### 12.2.3 Generation of Plausible Values

The generation of plausible values was conducted independently by age for each of the three assessment years. Because there were fewer background variables available for past trend studies, fewer conditioning variables were used in the creation of the plausible values on the trend scale than on the cross-sectional scale. The final student (booklet or package) weights were used for the 1976 and 1982 data in this part of the analysis. Appendix $C$ give the codings for the conditioning variables (Tasle C-7) and the estimated conditioning effects (Tables C-28 through C-33) for the two age groups. The estimated conditioning effects in the tables are expressed on the scale of the original calibration.

### 12.2.4 Linkng the Age 13 and Age 17 Trend Scales

Using the Stocking-Lord (1983) equating procedure, implemented in the TBLT program (Stocking, 1986), the item p-rameters for the age 13 trend scale were resceled by deriving a linear equating function based on the items cc.mon to the ge 17 trend scale. This function was used to rescale the original parameter estimates for all of the age 13 trend items in the scale to an interim scale. The equating procedure and a study of the error involved in thr procedure are described in Appendix D of Expending the Now Design: The NAE'P 1985-86 Technical Report (Beaton, 1988). The equating function for the age 13 civics trend data is

$$
\theta(\text { interim 13) }-.76 \bullet \theta(\text { caiibrated 13) - . } 96 .
$$

The original age 13 item parameter estimates and estimated conditioning effects can be transformed to the new interim scale using the relationships given at the end of section 12.1.4.

### 12.2.4 The Final Proficiency Scale

Because the trend and cross-sectional scales were not linked, the linear indeterminacy of the trend scale was resolved by setting the mean and standard deviation of the 1988 age 13 trend scale to 50 and 10 , respectively. The mean of the five plausible value means on the age 13 interim scale was found, as we!. 1 as the geometric mean of the five plausible value standard deviations on the age 13 interim scale for this sample of students. These values were used as the untransformed mean, $M$ (calibrated) and standard deviation, SD (calibrated) when calculating the function to be used to transform all of the age 13 data on the interim scale and the age 17 data on the original scale too the final trend scale. The transformation is

$$
\theta(\text { proficiency })=12.13 \bullet \theta(\text { calit ated })+60.50 .
$$

Overall summary statistics for the trend samples are given in Table 12.15. As for the age 13 interim data transformation, item parameter estimates and estimated conditioning effects could be transformed from the age 13 interim scale and the age 17 original scale to the final trend proficiency scale using the relationships given at the end of section 12.1.4.

Table 12-15
Means and Standard Deviations on the Civics Trend Proficiency Scale

| Age | Assessment | First |  | All Five |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Mean | S. $\mathrm{D}_{\text {- }}$ | Mean | S. D. |
| 13 | 1976 | 49.05 | 9.53 | 49.08 | 9.51 |
|  | 1982 | 49.08 | 9.01 | 19.12 | 8.99 |
|  | 1988 | 50.09 | 10.03 | 50.00 | 10.00 |
| 17 | 1976 | 61.66 | 12.17 | 61.70 | 12.12 |
|  | 1982 | 61.21 | 12.56 | 61.35 | 12.61 |
|  | 1988 | 59.58 | 12.45 | 59.61 | 12.31 |

### 12.2.5 Derived Background Varfables

In the trend analysis, all derived variables based upon backgrourd questions were used both for conditioning and in reporting (to define subgroups). Derived conditioning variables are described in Appendix 0 ; derived reporting variabies are described in Appendix G. The variabies
derived for reporting purposes have been placed in the data sets on the public-use data tapes.

### 12.2.6 Scoring the Open-ended Items

The two open-ended items in the bridge assessment were scored using the guidelines in Table 12-16. Interrater reliabilities for the two items as they were originally scored are given in Chapter 6. Percent agreements for the dichotomized items are listed in Table 12-17.

Table 12-16
Dichotomous Scoring of the Open-ended Civics Trend Items

| P021001 |  | P021101 |
| :--- | :--- | :--- |
| Correct: | 1-6 | Correct: |
| Incorrect: | $7-11$ | Incorrect: $8-9$ |

Table 12-17
Percent Agreewent for the Ratings of the Dichotomously Scored Open-ended Civics Trend Items

| Grade/Age | Irem | N | Percent Agreement |
| :---: | :---: | :---: | :---: |
| $8 / 13$ | P021101 | 203 | 97.0 |
|  |  |  |  |
| $12 / 17$ | P021001 | 371 | 99.2 |
|  | P021101 | 370 | 98.9 |

Chaptar 13
DATA ANALYSIS FOR THE U.S HISTORY ASSESSHENT ${ }^{1}$

Norma A. Norris<br>Educational Testing Service

In 1988, U.S. history items were administered to seven samples of students, shown in Table 13-1 and described as follows:

Students in the U.S. history focused-BIB spiral samples- 9 [Main-His], 13 [Main-His], and 17 [Main-His]-received three blocks of U.S. history items. Their responses were used for grade-level cross-sectional analyses. These analyses compared the levels of U.S. history achievement for various subgroups, which are reported in The U.S. History Report Card: The Achievement of Fourth-, Eighth-, and Twelfth-grade Students in 1988 and Trends from 1986 to 1988 in the Factual Knowledge of High-school Juniors (Hammack, Hartoonian, Howe, Jenkins, Levstik, MacDonald, Mullis, \& Owen, 1990).

The intercorrelation samples, 9[Main-Int], 13[Main-Int], and 17[Main-Int], were also included in the grade-level cross-sectional analyses. These samples of students received one block of U.S. history items and pzovide a way to compare student achievement across subject areas.

The lridge sample of grade 11 age 17 students was designed to measure trends in U.S. history achievement between the 1986 and 1988 U.S. history assessments. Students were administered three blocks of previously assessed U.S. history items according to th.e procedures used in the 1986 assessment. The results from the two assessments were compared and reported in The U.S. History Report Card cited above.

### 13.1 CROSS-SECTIONAL DATA ANALYSIS

In 1988, 241 U.S. history items, 56 of which had also been administered in 1986, were administered to the focused-BIB/intercorrelation samples. Two of these items were open-ended, one at grade $8 /$ age 13 and one at grade 12/age 17. The rest were multiple-choice. Scoring procedures for the two ordinal scales for the open-ended items are described in Chapter 6.2. For purposes of IRT scaling, the ordinal scales were dichotomized using the rules described in Table 13-2.

[^41]335

Table 13-1
MAEP 1988 I.S. History Samples

| Sample Code | Sample Type | Subiect Areas | Booklet Numbers | Cohort | Time of Assessment | $\begin{gathered} \text { Age } \\ \text { Defn. } \end{gathered}$ | Modal Grade | Sample size |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 [Main-His] | Main Focused-BIB | ${ }^{\mathrm{H}}$ | 15 | Grade 4/age 9 | Winter, spring | cy | 4 | 2,664 |
| 13 [Main-His] | Main Focused-BIB | H | 15-21 | Grade 8/are 13 | linter, spring | CY | 8 | 5,988 |
| 17 [Main-His] | Main Focused-bIB | H | 15-21 | Grade 12/age 17 | Winter, spring | CY | 12 | 5,780 |
| 9 [Main-Int] | BIB Intercorrelation | R,C,H | 17-19 | Grade 4/age 9 | Winter, spring | CY | 4 | 2,638 |
| 13 [Main-Int] | BIB Intercorrelation | R, C, H | 29-31 | Grade 8/age 13 | Winter, spring | CY | 8 | 2,590 |
| 17 [Main-Int] | BIB Intercorrelation | R,C,H,G | 30-31 | Grade 12/age 17 | Winter, spring | CY | 12 | 1,632 |
| 17[Br86-His] | Bridge to 1986 | H | 67 | Grade 11/age 17 | Spring | Not CX | Y 11 | 2,349 |

[^42]CY = Calendar year: birth dates in 1978, 1974, and 1970 for ages 9,13 , and 17

Not CY - (age 17 only) : birth dates between October 1, 1970 and September 30, 1971

Table 13-2
Dichotomized Variables for U.S. History

## Grade 8/Age 13

H024901 Settlers in America

$$
\begin{aligned}
& 1 \text { or } 2=0 \text { (wrong) } \\
& 3,4, \text { or } 5=1 \text { (right) }
\end{aligned}
$$

## Grade 12/Age 17

HO25003 Presidential Power

```
0, 1, or 2 - 0 (wrong)
3 or 4-1 (right)
```

Preliminary item analyses were conducted separately for each of the grade/age samples to check the validity and reliability of the items. For each item, the percent of stulents selecting each response, the percent who onitted the item, the percent who failed to reach the item, and the correlation between item scora and the block score were calculated. Also, for each block, the internal consistency reliability coefficient was computed. No i乞ems were excluded at this stage based on the results of these analyses.

Table 13-3 shows, for each block of multiple-choice items in both the focused-BIB and intercorrelation samples, the number of items, the mean proportion correct, the KR-20 reliability coefficient, and the number of students who responded to at least one item in the block.

The following table shows, for each block of multiple-choice U.S. history items, the range of percents of items in the $t$ ik that were not reached by students.

Table 13-4
Range of Percents of Items Not Reached for Multiple-choice U.S. History Blocks

| Block | Grade 4 | Grade 8 | Grade 12 |
| :---: | :---: | :---: | :---: |
| H2 | .1-1.4 \% | . 9 - 2.8 \% | .4-9.7\% |
| H3 | . 3 - 3.7 \% | .6-3.9\% | .6-3.1\% |
| H4 | . 9 - 3.6 \% | .5-1.8\% | .4-2.1\% |
| H5 | - | .5-3.1\% | .9-3.0\% |
| H6 | - | . 6 - $5.5 \%$ | . $6-4.4 x$ |
| H7 | - | . $4-8.3$ x | . 8 - 7.7 \% |

13.1.1 Scaling

In 1988, 237 U.S. history items were scaled and responses to the history items were summarized in a single U.S. history proficiency scale. Table 13-5 shows the number of items scaled for each of the samples. The history scale

Table 13-3
Descriptive Statistics for Multiple-choice U.S. History Blocks

| Grade/Age | Block | Number of Items | Focused-BiB Sampie ! Sean |  |  | $\begin{aligned} & \text { - Intercorrelation Sample - } \\ & \text { Mean } \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade 4/Age 9 | H2 | 15 | . 63 | . 73 | 2660 | . 64 | . 74 | 866 |
|  | H3 | 15 | . 52 | . 71 | 2660 | . 53 | . 70 | 880 |
|  | H4 | 15 | . 56 | . 72 | 2660 | . 57 | . 69 | 861 |
| Grade 8/Age 13 | H2 | 26 | . 75 | . 86 | 2534 | . 75 | . 87 | 858 |
|  | H3 | 26 | . 65 | . 82 | 2560 | - | - | - |
|  | H4 | 26 | . 64 | . 81 | 2538 | - | - | - |
|  | H5 | 26 | . 44 | . 69 | 2543 | . 43 | . 67 | 854 |
|  | H6 | 28 | . 54 | . 78 | 2574 | . 57 | . 76 | 858 |
|  | H7 | 28 | . 44 | . 75 | 2552 | - | - | - |
| Grade 12/Age 17 | H2 | 28 | . 54 | . 82 | 2458 | . 57 | . 81 | 815 |
|  | H3 | 25 | . 56 | . 80 | 2458 | - | - | - |
|  | H 4 | 25 | . 54 | . 81 | 2461 | - | - | - |
|  | H5 | 26 | . 56 | . 79 | 2459 | - | - | - |
|  | H6 | 28 | .60 | . 85 | 2463 | . 72 | . 85 | 810 |
|  | H7 | 28 | . 61 | . 85 | 2459 | - | - | - |

339
was derivad using the item response theory (IRT) methodology extensively documented in Chapter 9 of this report. Only a brief outline of the scaling procedures is given here.

Table 13-5
U.S. History Profyciency Scale Item Information, by Sample

## Sample Code

9 [Main-His] and 9 [Main-Int] 13[Main-His] and 13[Main-Int] 17 [Main-His] and 17 [Main-Int] 17 [ Br 86 -His]

Cohort
Grade 4/age 944
Grade 8/age 13158
Grade 12/age 17
Grade 11/age 17
159

No. of History<br>Scale Items

0 (0nly item percents correct were reported)

Three U.S. history items were excluded from ths U.S. history proficiency scale because of lack of fit to the IRT model. On these items, two grade/age samples had different empirical response curves. In one case (item H003401), one grade/age sample had an item response curve that was not monotonically increasing. Table 13-6 identifies the U.S. history items excluded from the scale. Only the first rater's (dichotomized) scores on the two open-ended items (H024901 and H025003) were used in scaling. The second rater's scores were used only for estimation of interrater reliability.

Table 13-6
U.S. History Item Scores Excluded from IRT Scale

Description
Emancipa~ion Proclamation
American Revolution
H012601
H022401

Association with F. D. Roosevelt

Grade/A.E.
8/13, 12/17
$4 / 9,8 / 13$
8/13, 12; 7

## Item Calibration

For the combined focused BIB/intercorrelation samples across all three grade/age levels, the BILOG program (Mislevy \& Bock, 1982) was used to obtain item parameter estimates on a provisional scale based on the three-parameter logistic model. Parameters were estimated even for previously administered items; farameter values were not assumed to be equal to their 1986 values.

## Conditioning

Before proficiency estimation was initiated, conditioning variables were derived for each respondent. A common set of conditioning variables was used in all subject areas in the 1988 assessment, along with background items specific to the subject area being scaled. The common set of conditioning variables is listed in Tar $\mathrm{i}_{\text {, }} \mathrm{C}-\mathrm{l}$ of Appendix G . The specific history background items that were used as conditioning variables in the U.S. hisiory scaling and reporting are listfd in Table C-8 of Appendix C. Each of the U.S. history grade/age samples for which proficiency values were estimated were conditioned using the common set of conditioning variables (common across all subjects areas within a given grade/age sample) and the gzade/age background items spe:ific to the respective U.S. history sample. The one exception was the sample at the grade $12 /$ age 17 level, where the category "modal age $>$ moda. grade" was not used, inasmuch as no one in this sample can be enrolled in a grade above the modal grade (12). Tables C-34, C-35, and r. 36 of Appendix C list the estimated effects for the connon cond'tioning variables and the U.S. history attitude items that were obtained from the M-CROUP program for each of the grade/age samples.

## Proficiency Estimation

Using the iterative method described by Mislevy (1985) ard implenented in the M-GROUP program (Sheehan, i-3j), a U.S. hiscory proficier:y distribution was estimated for each respondent. The $M$ GROUP program was applied to each grade/age separately, and from each respondent's distribution five random values were drawn an ${ }^{\text {a }}$ saved. These "plausible values" were transformed by s candardizing the combined distribution for the three grade/ages to a mean of 250.5 and a standard deviation of 50.0 . The five plausible values for each respondent were then used f(r estimating demogiaphic group statistics.

### 13.1.2 Anchoring

The U.S. bistory paoficiency scale was "anchored" using the same procedures lescribed in Chapter 7. Based on the ranse of student performance in the assessment, the following levels of U.S. history proficieacy were defined:

- Level 200: Knows Simple Historical Facts
- Level 250: Knows Beginning Historical Information and has Rudimentary Interpretive Skills
s Level 300: Understands Basic Historical Terms and $R$ ationships
- Level 350: Interprets Historical Infurmation and Ideas

To provide the basis for the anchoring process, NAEP used empirical procea:ures to delineate sets of items that discriminatsd between adjacent
performance levels on the scale-that is, items likely to be answered correctly by students performing at a particular level on the scale and much less likely to be answered correctly by students performing at the next lower level.

The sets of items represented at each of the four levels were studied by a panel of distinguisk.ed history educators, who carefully considered and articulated the types of knowledge, skills, and reasoning abilities demonstrated by correct responses to the items in each set. This information was then placed in the context of the assessment framework and used to characterize students' understanding of the significant events, people, and policies that have shaped our nation's history, as weil as their ability to interpret and analyze historical information.

Table 13-7 shows the percentages of students in each grade who per ormed at or above each level of U.S. history proficiency.

Table 13-7
U.S. History Scale Anchoring:

Percentages At or Abcve Each Level (with Standard Errors), by Grade

## Level

| 200 | $76.0(1.0)$ |
| ---: | ---: |
| 250 | $15.9(0.9)$ |
| 300 | $0.2(0.1)$ |
| 350 | $0.0(0.0)$ |

200
300
350
0.0 (0.0)

Grade 8
96.0 (0.3)
67.7 (0.9)
12.7 (0.5)
0.1 (0.0)

Grade 12
99.4 (0.0)
88.9 (0.6)
45.9 (1.3)
4.6 (0.5)

### 13.1.3 Classification

The primary objectives of the 1988 U.S. history assessment were to measure students' knowledge of the significant events, persons, and documents that have shaped our nation's history, and to assess their inderstanding of how these fit into the major chronological time periods of our past. To address these objectives, the U.S. history items were classified as follows:

## Context

- Political Life
- Economic Life
- Cultural, Social, and Family Life


## Chronology of Events

- Chronolegy
- Documents
- Persons


## Historical Periods

- Exploration and Colonization, up to 1763
- The Revolutionary Era, the Constitution, and the New Republic, 1763-1815
- Economic and Social Development of the Antebellum Republic, 1790-1861
- Crisis of the Union: Origins of the War, the War, and Reconstruction, 1850-1877
- The Rise of Modern America and World War I, 1877-1920
- The United States, 1920-1941
- World War II and the Postwar Era, 1931-1968
- Modern Post-irdustrial Era. 1968 to the present

Based on these slassifications, statistical analyses were performed for different subgroups (e.g., male, female) in each of the grade/age samples. The means and standard errors were generated at the item level, and across the group of items within each of the classification categories. Differences between the subgroups within each of the categories also were compared.

### 13.2 TREND ANALYSES

To provide information about trends in students' knu.ledge of U.S. history, 105 U.S. history items were re-administered in 1988 to a bridge sample of grade ll/age 17 students. The 1988 sample of grade 11 students was compared to the equivaient sample from the 1986 assessment.

The U.S. history trend items were not scaled. Given time and cost constraints, it did not seem beneficial to do so, because the only previous U.S. history assessment was from the 1986 sample of grade 1l/age 17 students and the modal grade of 11 is no longer being assessed.

Based on preliminary item analyses in which the 1988 results were compared with the results for the 1986 items, the item statistics for the 1988 and the 1986 samples were found to be comparable.

Using the item classifications prcviously mentioned for the crosssectional analyses, the means and standard errors were generated for both the 1986 and 1988 samples. The results of the U.S. history trend analyses are reported in The U.S. History Report Card: The Achievement of Fourth-, Eighth-, and Twelfth-grade Students in 1988 and Trends from 1986 to 1988 in the Factual Knowledge of High-school Juniors (Hammack, Hartoonian, Howe, Jenkins, Levstik, MacDonald, Kullis, \& Owen, 1990).

Chapter 14
data analysis for the geography assessment ${ }^{1}$

Norma A. Norris
Educational Testing Service

In 1988, geography items were administered to two samples of students, as shown in Table 14-1.

Students is. the fncused-BIB sample for geography, 17 [Main-Geo] received three blocks of geography items. Students in the intercorrelation sample for geography, $17[M a i n-I n t]$, received a block of geography items, a block of reading items, and a block of either U.S. history or civics items.

These two samples were analyzed as a single population in the crosssectional analyses, in which the levels of geography achievement fo- various subgroups were compared. The results of these analyses are reported in The Geography Learning of High-School Seniors iAllen, Bettis, Kurfman, MacDonald, Mullis, \& Salter, 1990).

### 14.1 CROSS-SECTIONAL DATA ANALYSES

In total, 78 geography items were administered in 1988 to the focusedBIB/intercorrelation sample. All of these itens were multiple-choice.

Preliminary item analyses were conducted to check the validity and reliability of the items. For each item, the percent of students solecting each response, the percent who omitted the item, the percent .io did not reach the item, and the correlation between the item score and the block score were calculated. Also, for each block, the internal consistency reliability was computed. No items were excluded based on the results of thase analyses.

Table 14-2 shows, for each block in both the focused-3IB and intercorrelation samples, the number of items, the mean proportion correct. the ha-20 reliability coefficient, and the number of $12 / a g e 17$ studencs w.s responded to at least one item in the block.

Percents of students not reaching items ranged from . 2 to 8.2 percent for items in block G2, from .5 to 9.9 percent for items in block G3, and from 1.1 to 9.0 percent for items in block G4.

[^43]Table 14-1
NAEP 1988 Geography Samples

| Sample Cods: | Somple Type | Subject Areas | Booklet Numbers |  | Cohort | Time of Assessment. | Age Defn. | Modal Grade | Sample Size |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17 [Main-Geo] | Focused-BIB Main | G | 29 | Grade | 12/age 17 | Winter, spring | CY | 10 | 2,446 |
| 17 [Main-Int] | BIB Intercorr. | R, C, H,G | 30, 32 | Grade | 12/age 17 | Winter, spring | CY | 12 | 1,623 |

$\mathrm{R}=\quad$ Reading<br>C - Civics<br>H = U.S. listory

G - Geography
CY = Calendar year: birth dates in 1978, 1974, and 1970 respectively for ages 9, 13, and 17

## Table 14-2 <br> Descriptive Statistics for Geography Blocks

| Block | $\begin{aligned} & \text { Number } \\ & \text { of Items } \end{aligned}$ | -_ Focused-BIB Sample |  |  | - Intercorrelation Sample - |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Mean Proportion Correct | KR-20 | N | Mean Proportion Correct | KR-20 | $\underline{N}$ |
| G2 | 26 | . 57 | . 79 | $24 亏 8$ | . 56 | . 79 | 803 |
| G3 | 26 | . 54 | . 79 | 2438 | - | - | - |
| G4 | 26 | . 56 | . 84 | 2438 | . 57 | . 83 | 805 |

In 1983, the responses to the 78 geography items were summarized on a single geography profici $n$ y scale, derived using the item response theory (IRT) methodology extensively documented in Chapter 9 of this report. Only a brief outline of the scaling procedures is given here.

## Item Calibration

For the grade/age sample, the BILOG program (Mislevy \& Bock, 1982) was used to obtain item parameter estimates on a provisional scale, oased on the three-parameter logistic model.

## Conditioning

Before proficiency estimation was initiated, conditioning variables were derived for each respondent. A common set of conditioning variables was used in all subject areas in the 1988 assessment, along with background items specific to the subject area being scaled. The common set of conditioning variabies is listed in Table C-l of Appendix C. The geography-specific background items that were used as conditioning variables in the geography scaling and reporting are listed in Table C-9 of Appendix C. The one exception was the sample at the grade $12 /$ age 17 level, where the category "modal age, $>$ modal grade" was not used, inasmuch as no one in that sample can be enrolled in a grade above the modal grade (12). Table C-37 of Appendix $C$ lists the estimated effects for the common conditioning variables and the geography backf,=und items that were obtained from the M-GROUP program.

## Proficiency Estimation

Using the iterative method described by Mislevy (1985) and implemented in the M-GROUP program (Sheehan, 1985), a geography proficiency diztribution was estimated for each respondent, and from each respondent's distribution five random values were drawn and saved. These "plausible values" were transformed by standardizing to a mean of 285.0 and a standard deviation ii 40.0. (This mean and standard deviation were chosen to be similar to those obtained for grade 11 reading proficiency in 1984. The same s'candardizarion was used in the U.S. history and literature proficiency cales in 1986.) The five plausible values for each respondent were then used for estimating demographic group statistics.

### 14.1.2 Classifica+'on

The objectives for NAEF's 1988 geography assessment reflected a brnadbased consensus of university professors, classroom teachers, social science researchers, school administrators, and curriculum specialists. In brief, the assessment framework emphasized that students should be able to use skills and tools of geography, including maps, charts, and globes; that they should
know and understand the concepts underlying cultural and physical geography, including the locations of places, resources, and cultural areas; and that they should be able to apply geography principles. To ddress these objectives, the geography items were classified as follows:

- Knowing locations
- Using the skills and tools of geography
- Understanding cultural geography
- Understanding physical geography

Based upon Lhese classifications, statistical analyses were performed for different subgroups (e.g., male, female). The means and standard errors were generated at the item level and across the group of items within each of the classifications. Differences between the subgroups within each of the classifications also were compared.

Chapter 15

# data analysis for mathematics and science ${ }^{1}$ 

Kentaro Yamamoto<br>Educational Testing Service

The mathematics and science items were part of the samples used in 1988 to bridge back to the 1986 trend samples. This chapter describes the technical details of the item-parameter estimation and scaling that were performed for trend analyses of responses to mathematics and science cognitive items in the 1988 assessment. The results of the analyses are presented in greater detail in The Effect of Changes in the National Assessment: Disentangling the NAEP 1985-86 Reading Anomaly (Beaton \& Zwick, 1990)

To maintain the comparability of measurement instruments, booklets for the 1988 reading bridge to 1986 were identical to those used in 1986 and therefore included science and mathematics blocks. The 1988 mathematics and science crend analyses are limited to data from blocks that appeared in the same booklets as the reading blocks in the 1986 assessment. For age 17, the number of mathematics and science blocks available for trend analysis was smaller in 1988 than in 1986. However, siniee every 1986 trend booklet for ages 9 and 13 contained a block from each of the three schject areas, the complete sets of trend blocks that were available in 1986 for both ages were also available for analysis in 1988.

The combination of blocks within booklets, the composition of item blocks, the mode of administration, the sample definition, and the time of testing were identical for the age 9 and age 13 samples in the 1986 assessment and the 1988 bridge to 1986. Consequently, trend analyses for these two ages were straightforward; trend analyses for age 17, however, were not.

In 1986, the reading trend for age 17 was assessed as part of the BIB spiral portion of the assessment, while the science and mathematics trends were assessed apart from reading under a paced-tape mode of administration Since the overarching aim of the 1988 bridge study was to replicate the booklets and administration procedures for the 1986 assessment of trends in reading, booklets frora the BiB spiral portion of the 1986 assessment were again administered in 1988 under the same administration conditions as in 1986. In particular, the administration of mathematics and science items in the spiral portion made use of paper and pencil, rather than paced tape. An implication of this mode of administration was that the data from the 1988 age
${ }^{1}$ Maxine Kingston, Edward Kulick, Michael Narcowich, and Minh.sei Wang performed the data analyses for this chapter; Edward Kulick produced the figure. Robert Mislevy provided consultation on scaling and Rebecca Zwick provided valuable editorial assistance.

17 trerd assessments of mathematics and science are comparable to the 1.986 BIB assessnent, but not directly to the 1986 trend assessment. As a result, the design t. D align the 1988 trend point for age 17 student to the past trend was more complicated than before. For age 17 in 1988, two types of equa' ink were necessary-one based on common populations across different modes of administration for the 1986 BIB and trend, and one based on common items (similarly placed) for ine 1986 BIB and the 1988 trend.

The main objective of the 1988 trend assessments of mathematics and science was to evaluate t'he differences between the 1986 and 1988 assessments. The 1988 trend point was to be added to the existing trend line. Since these analyses closely follow those conducted in 1986, readers desiring more detailed descriptions are referied to relevant chapters in Expanding the New Design: The NAEP 1985-86 Techrical Report (Beaton, 1988). This chapter will consider details specific to the 1988 analysis.

### 15.1 SAMPLING OF STUDENTS AND ITEMS FOR MATHEMATICS AND SCIENCE

For ages 9 and 13, the combination of blocks, composition of item blocks, mode of administration, age definition, and time of testing in 1986 were identical to those in the 1988 bridge to 1986. Three booklets, identical to those used in 1986 including background questions, were used to measure trend for these ages. Each booklet contained one r.ading, one mathematics, and one science block. Each student in the sample was administered one of these booklets. The mathematics and science portinns were presented aurally using a tape recorder as in past assessments. The tape recorder was turned off for the reading block.

For age 17, the mathematics and science booklets of the 1986 trend assessment were not used in 1988, since the 1986 mathematics and science trend booklets for age 17 did not include reading blocks. Instead, the booklets used in 1988 were identical to a subset of booklets used for the 1986 BIB assessment and consisted of six bolklets, five of which contained at least one reading block and either a mathematics or a science trend block from the 1986 assessment. The sixth booklet, which did not contain mathematics or science blocks, was included only for the reading assessment in 1988. Three trend blocks that appeared in the 1986 age 17 trend assessments were used for the 1988 age 17 trend assessment, even though some booklets included additional mathema .cs and science blocks used only for the cross-sectional assessment in 1986. Only one of the first two trend blocks of either mathematics or science was included in four of the booklets; the fifth booklet contained both a mathematics and a science block (details of block arrangements are documented in Chapter 4). The 1988 age 17 sample was defined using the same age definition as the 1986 BTB assessment and received a print-administered assessment instead of the paced administration of the pre-1988 trend assessments. Unlike the samples at ages 9 and 13, in which every student received both a mathematics and a science block, about ore-fifth of the age 17 sample received both; the rest received a block of either mathematics or science items.

The proficsencies of the three ages cannot be placed on a single scaie without a cross-sectional study or a vertical equating across ages, neither of which w, re possible in the 1988 mathematics and science trend assessment. The mathemati; $s$ and science scales were derived from the 1986 cross-sectional assessment (see E. G. Johnson, 1988, and Yamamoto, 1988). The 1988 trend analysis added a new trend point to the existing trend line up to 1986.

The specific mathematics and science samples for 1988 and 1986 are shown in Table 15-1.

The items used for the analysis of the 1988 data set are the same as those used for the 1986 trend analyses; that is, the same items were excluded as in 1986 for reasons of lack of fit of the estimated item response function to the empirical regression curve in either the bridge or the cross-sectional data. Three :athematics items, one from each age group, were excluded from the scaling. The calculator items were excluded from the analysis. Seven science items were dropped from the scaling for age 9 , seven were dropped for age 13, and four were dropped for age 17.

Using current methods, it is possible to assess the change over tine in either item characteristics or proficiencies of populations, but nct both at the same time. This is true for any analysis, whether based on lassical test theory, item response theory, or proportions correct. To asses change ir item characteristics, we are forced to assume that the ability istribution of the population remains stable; to assess change in the ability distribution of the population, we must assume that the item characteristics are stable (see the discission of common-item equating in Cnapter 10). However, we know that these assumptions are rot strictly justified. Societal and instructional changes may produce gradual alterations in item furetioning over time. If there is evidence that this is occurring, it may bir desirable to allow for changes in the parameters of these common items. Permitting item characteristics to vary in this way is feasible only if common-population equating methods are available to link the newly obtained results to past trend lines. This is the approach that was used in analyzing the 1988 mathematics data at age 17 and science data at all three ages.

### 15.2 SGALING OF the mathematics trend data

Mathematics Trend Scaling for Ages 9 and 13
From the item analysis, it was found that the 1988 response distributions of all response choices, including "omits," were quite similar to the 1986 data. The mean weighted propurtion correct at the block level was computed; these values were compared with the 1986 results, as shown in Table 15-2. At each block level for all age groups, the 1988 sample showed higher weighted proportion correct vilues than the 1986 sample.

In estimating item parameters in 1986, combined data from the three most recent trend assessments (1977, 1982, and 1986) were used. Thus, the 1986 trend analysis assumed the characteristics of all items were stable across the three assessments. Item parameters estimated in 1986 were kept unchanged for

Table 15-1
Mathematics and Science Samples, 1988 Assessment

|  |  |  |  | Mode of |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Subject Areas | Booklet Numbers | Admini- <br> stration | Cohort | Time of Testing | $\begin{aligned} & \text { Age } \\ & \text { pefn. } \end{aligned}$ | Modal Grade | Sample Size |
| Sample_Code | Sample Type |  |  |  | Cohort |  |  |  |  |

Mathematics and Science

| $86: 9 a$ | 1986 bridge | RMS | $91-93$ | Tape | Age 9 | Winter | CY | 4 | 6,932 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $9[B r 86-$ RMS $]$ | 1988 bridge | RMS | $91-93$ | Tape | Age 9 | Winter | CY | 4 | 3,711 |
|  |  |  |  |  |  | Fall | CY | 8 | 6,200 |
| 86:13a | 1986 bridge | RMS | $91-93$ | Tape | Age 13 | Fall | CY | 8 | 3,942 |

Mathematics

| $86: 17$ | 1986 main | RMS | $14,36,68$ | Print | Grade 11/age 17 | Spring | Not CY | 11 | $6,151 *$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 86:17b | 1986 bridge | RMS | $94-95$ | Tape | Age 17 | Spring | Not CY | 11 | 3,868 |
| $17[$ Br86-RMS] | 1988 bridge | RMS | $61,62,65$ | Print | Grade 11/age 17 | Spring | Not CY | 11 | $1,852 \star$ |

Science

| 86:17 | 1986 main | RMS | $47,62,68$ | Print | Grade 11/age 17 | Spring | Not CY | 11 | $5,611 *$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 86:17b | 1986 bridge | RMS | $94-95$ | Tape | Age 17 | Spring | Not CY | 11 | 3,868 |
| 17[Br86-RMS] | 1986 bridge | RMS | $63,64,65$ | Print | Grade 1l/age 17 | Spring | Not CY | 11 | $1,862 *$ |

[^44]Table 15-2
Mathematics Weighted Mean Proportion Correct

|  | BLock | 1986 | (N) | 1988 | (N) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Age } 17 \\ & \text { (paper) } \end{aligned}$ | 1 | 59.1 | (2211) ${ }^{\bullet}$ | 61.3 | ( 619) | 35 |  |
|  | 2 | 63.4 | (2233) ${ }^{\text {a }}$ | 65.7 | ( 62.4) | 35 |  |
|  | 3 | 65.3 | (2263) ${ }^{\text {a }}$ | 67.0 | ( 609) | 24 | (19) |
|  | Total | 62.3 | (6151) ${ }^{\text {a }}$ | 64.4 | (1852) | 94 |  |
|  | Noncalculator | 61.0 |  | 62.7 |  | 75 |  |
| $\begin{aligned} & \text { Age } 17 \\ & \text { (taped) } \end{aligned}$ | 1 | 60.3 | (1934) ${ }^{\text {b }}$ |  |  | 35 |  |
|  | 2 | 62.1 | (1934) ${ }^{\text {b }}$ |  |  | 35 |  |
|  | 3 | 64.5 | (1934) ${ }^{\text {b }}$ |  |  | 24 | (19) |
|  | Total | 62.0 | $(3868){ }^{\text {b }}$ |  |  | 94 |  |
|  | Noncalculator | 60.8 |  |  |  | 75 |  |
| A.ge 13 <br> (taped) | 1 | 63.9 | (2075) | 65.3 | (1405) | 37 |  |
|  | 2 | 58.5 | (2054) | 60.5 | (1281) | 37 |  |
|  | 3 | 57.4 | (2071) | 60.0 | (1256) | 24 | (16) |
|  | Total | 60.3 | (6200) | 62.2 | (3942) | 98 |  |
|  | Noncalculator | 61.4 |  | 63.2 |  | 82 |  |
| $\begin{aligned} & \text { Age } 9 \\ & \text { (tal }{ }^{2} \text { d) } \end{aligned}$ | 1 | 55.2 | (2315) | 58.2 | (1274) | 26 |  |
|  | 2 | 57.3 | (2361) | 62.4 | (1240) | 26 |  |
|  | 3 | 73.0 | (2256) | 76.7 | (1197) | 16 | (11) |
|  | Total | 60.2 | (6932) | 64.2 | (3711) | 68 |  |
|  | Noncalculator | 57.1 |  | 62.1 |  | 57 |  |

the 1988 assessment for ages 9 and 13 after the fic of the 1988 data i the item parameters was examined visually, as well as by means of the chi-square test, for every item. Consequently, the same linear funcrion as in 1.986 was used to transform provisional imputed values to the mathematics proficiency scale. Although the use of previously estimated item parameters was justified at ages 9 and 13 , this was not the case at age 17 . Hence, $\cdot$ item parameters applicable to age 9 and age 13 were kept unchar:ged for the niathematics trend analysis; they are presented in Tables F-8 an $\mathcal{F}$-9 in Appendix $F$.

The coexistence of item parameters that fit in vario..s degrees to the data from a particular year comes from the need to place several samples from different years on a scale based upon common-item equating. ${ }^{2}$ When coramon-item parameters are estimated on multiole data sets, the fit of the estimated item response functions to the weighted means of expected proportions correct, given an ability level, is maximized Because of this averaging over multiple data sets, it is possible that the estimated item parameters will fit very well to the combined data sets as a whole, but le!.s well, each data set separately. For each item, fit of the estimated item p. .ueters was examined also for the some of the major subpopulations, such as male, female, white, Black, and Hispanic. Although a few items indicated that the estimated item parameters fit less well to a particular subpopulation, the examination of these items did not reveal any explanation for the misfit.

For ages 9 and 13, the same common-item equating procedure that was employed in the 1986 trend analysis was used to align the 1988 point to the trend up to 1986. A brief description of the procedure follows. From the item parameters estimated in 1986 and background variables of 1988, the proficiency scores wer imputed for the 1988 bridge data fo: each age using the M-r KOUP computer program based on the plausible values methodology (Sheehan, 1985; see Mis ${ }^{-}$, 1988b, for a detailed discussion). Appendix C gives the conditioning $v$, sables (Table $C \cdot 10$ ) and tre estimated conditioning effects (Tables C-38 and (:-39) for ages 9 and 13. The same linerr constants as in 1986 were used to transform provisional imputed scores to the final proficiency scores for mathematics trend. The transformation constants for all three ages are listed in Table 15-3.

Table 15-3
Coefficients of the Linear Transformation of the Trend scale from Original Units to the Mathematics Proficiency Scale

| Age | Intercept |  | Slope |
| ---: | :--- | ---: | :--- |
| 9 | 218.42 |  | 35.84 |
| 13 | $26 \ldots .58$ |  | 34.57 |
| 17 | 303.25 |  | 31.84 |

[^45]
## Mathematics Trend Scaling for Age 17

To scale the age 17 mathematics trend data, new item parameters were estimated using the subsample from the 1986 BIB assessment equivalent to the 1988 trend sample. Use of the estimated item parameters in 1986 mathematics trend is not appropriate for the 1988 assessment for age 17 , because of the different mode of administration for the 1986 and the 1988 trend assissments for that age. For example, on all five items of a type referred to as "estimate" items, use of paper and pencil instead of a tape recorder had a dramatic effect. "Estimate" items ask the student to select a.ı answer among several options, all of which are rounded so that none of them is exactly correct. The property of the response options is indicated by the word "about" being positioned before "how much" or "how many" in a question. When an "estimate" item was presenced under taped administration, enough time was allowed for rough estimation of the (typically) large number, but not enough time was allowed for the numerical calculation of the answer. However, because under paper-and-pencil administration it is possible to spend more time to answer, the examinee may opt to perform the calculation rather than the estimation. In such a case, it is more appropriate to treat an "estimate" item as two different items under different modes of administration. Figure 15-1 presents the observed item regression curves of the 1986 BIB data and 1986 bridge data for one of the "estimate" items, along with the item response function estimated for the 1986 bridge data.

Therefore, for age 17 , both equating methods, common-item (between the 1986 BIB and 1988 bridge samples) and common-population (between the 1986 BIB and 1986 bridge samples), were used to place the 1988 trend sample on a scale comparable to the 1986 reported scale. The procedure took place as follows. The item parameters for the total set of 73 items were estimated based on the two data sets: the 1986 BIB assessment and the 1988 bridge to 1986. Both samples included grade- and age-eligible students in order to maintain an adequate sample size for the estimation accuracy. This resulted in a second set of item parameters for age 17. The new item parameters are listed in Table F-10, Appendix F; the old parameters appear in Beaton (1988). The rationale for estimating parameters for all items instead of only "estimate" items comes from the main objective of the 1988 bridge to 1986, namely to examine the possibility of effects due to changes in assessment procedures. For each item, fit of the estimated item parameters was examined for some of the major subpopulations, such as male, female, 'Mile, B1_ck, and Hispanic.

From the fbove estimated item parameters and background ir.formation for the appropriate sample, proficiency sc res were imputed for each student in the 1986 BIB and 1988 bridge-to-1986 samples. Appendix C gives the conditioning variables (Table C-10) and the estimated conditioning effects (Table C-40) for age 17. Then the mean and standard deviation of the imputed st sres of the age-only subsample of the 1986 BIB were calculated. Constants were calculated and used to match the means and standard deviations of the proficiency scores of the 1986 trend sample and the age-only subsample of the 1986 BIB sample. Subsequently, by applying the same linear transformation to the provisional imputed values of the 1988 trend age-only sampie, the 1988

Figure 15-1
A Plot of Observed Proportion Correct of the 1986 BIB Spiral and Trend Assessments with the Estimated Iter Response Funceion for an "Estimate" Item

trend point was aligned witn the trend line up to 1986 . The transformation constants for age 17 data are listed in Table 15-3.

### 15.3 SCALING OF THE SCIENCE TREND DATA

The 1988 science trend analysis followed procedures and methods similar to those for the mathematics analysis. From the item analysis, it was found that the 1988 response distributions of all response choices, including "omits," were quite similar to the 1986 data. The mean weighted proportion correct at a block level was computed; these values were compared with the 1986 results, and are presented in Table 15-4.

In 1986, item parameters wr :e estimated for the age 9, 13, and 17 samples. The trend items for age 13 and age 17 were estimated together because the majority of the items were common to both ages. For the 1988 data, because of the change in the mode of administration for age 17, those items had to be estimated separately from the age 13 items. To obtain the best estimates of proficiencies for the two years, items for age 13 were reestimated using BILOG (Mislevy \& Bock, 1982) on the 1986 and 1988 bridge data sets. It was found that, for one of 63 items in 1986, "I don't know" responses were treated as wrong when they should have been treated as "omit." This error was found only in the 1986 bridge data set for age 9. There are two reasons for judging that the effect of this error or the proficiency score is very small: It involved only 8 percent of the responses for a single item, and the subjects who selected the "I don't know" option had the lowest mean proportion correct among all options. In fact, using the trend item parameters from 1986 estimated on the incorrect data sets, we compured the means of the ability distributions of two data sets with and without correction of the 1986 age 9 trend and found that they differed by about . 07 on the proficiency scale. In order to assess administration effects as accurately as possible, however, the itom parameters for all items were estimated for age 9 based on the 1986 and 1988 ccrrected bridge data sits. For each item, fit of the estimater item parameters was examined for some of the major subpupulations, such as male, female, White, Black, and Hispanic. The estimated item parametars for three ages are listed in Tables F-1l, F-12, and F-13 in Appendix F. Although a few items indicated that the estimated item parameters fit less well to a particular subpopulation, the examinacion of these items did not provide any clear explanations.

The imputed proficiency values of the 1988 sample were calculated from the responses on cognitive items and background questions based on the item parameters estimated on $t^{\prime}$.e :rend samples of 1986 and 1988. The imputed vaiues of the 1988 sample were transformed to become comparable to the trend scale of 198i. Note that the 1986 sample was used twice to obtain two separate sets of trend item parameters, the one for the data up to and :ncluding 1986 and the other for the data from 1986 and 1988. This design enabled us to use common-population equating iasad on the same sample, anc also to express the difference in the distribution of proficiency between 1986 and 1988 in terms of the trend scale established in 1986. The linear transformations were derived separately for ages 9 and 13 to match, within

Table 15-4
Scierice Weighted Mean Proportion Correct

|  | Blor $\underline{\text { k }}$ | 1986 | (N) | 1988 | (N) | No. of Items |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age 17 <br> (paper) | 1 | 60.5 | (2223) ${ }^{\text {a }}$ | 60.6 | ( 634) | 27 |
|  | 2 | 59.0 | (1935)* | 60.7 | ( 619) | 32 |
|  | 3 | 53.7 | (2282) ${ }^{\text {a }}$ | 56.3 | ( 609) | 23 |
|  | Total | 58.0 | (:511) ${ }^{\text {a }}$ | 59.5 | (1862) | 82 |
| $\begin{aligned} & \text { Age } 17 \\ & \text { (taped) } \end{aligned}$ | 1 | 63.3 | (1934) ${ }^{\text {b }}$ |  |  | 27 |
|  | 2 | 63.4 | (1934) ${ }^{\text {b }}$ |  |  | 32 |
|  | 3 | 58.9 | (19\%4) ${ }^{\text {b }}$ |  |  | 23 |
|  | Total | 62.1 | $(3868){ }^{\text {b }}$ |  |  | 82 |
| Age 13 <br> (taped) | 1 | 52.5 | (2075) | 53.8 | (1405) | 25 |
|  | 2 | 54.2 | (2054) | 54.7 | (1281) | 31 |
|  | ? | 56.2 | (2071) | 57.8 | (1256) | 27 |
|  | Fotai | 54.3 | (6200) | 55.5 | (3942) | 83 |
| $\begin{aligned} & \text { Age } \quad 9 \\ & \text { (taped) } \end{aligned}$ | 1 | 59.4 | (2315) | 62.6 | (1274) | 18 |
|  | 2 | 52.5 | (2361) | 53.5 | (1240) | 25 |
|  | 3 | 68.5 | (2256) | 69.0 | (1197) | 20 |
|  | Total | 59.5 | (6932) | 61.0 | (3711) | 63 |

[^46]each age cohort, the two means and standard deviations of proficiencies of the 1986 bridge sample, one based on the item parameters estimated on the data until 1986 and the other based on the item parameters estimated on the 1986 and 1988 data. The linear constants derived from those transformations were applied to the 1988 data set to obtain trend points for 1988. For age 17, we applied an equating method identic.al to that used for the age 17 mathematics data. Appendix $C$ gives the conditioning variables (Table C-11) and the estimated conditioning effects (Tables C-41, C-42, and C-43) for all three ages. Table 15-5 presents the linear coefficients used for the three ages.

Table 15-5
Coefficients of the Linear Transformation of the Trend Scale from Original Units to the Science Proficiency Scale

| Age | Intercept |  | Slope |
| ---: | :--- | :--- | :--- |
|  |  |  |  |
| 9 | 225.59 |  | 41.15 |
| 13 | 254.19 |  | 36.92 |
| 17 | 289.34 |  | 43.05 |

## PART III

Statistical Summary of 1988 NAEP Data

## Chapter 16

# STATISTICAL SUMMARY OF THE 1988 NAEP SAMPLES AHD estimates of the proficiencies of amer-can students ${ }^{1}$ 

Bruce A. Kaplan
Educational Testing Service

The analysis of the 1988 NAEP data has resulted in the production of many thousands of tables containing estimates of the proficiency of students, and various subgroups of students, in American schools. This chapter gives some selected results from the assessment as well as a statistical summary of the 1988 NAEP sample.. The chapter assumes a general familiarity with the structure of NAEP as summarized in the Introduction and the overview Chapters 1 and 7.

Three of the many types of NAEP results are presented here:

- results of the instrument development process, including the sizes of the item pools and numbers of booklets;
- results of the sampling process, including the numbers of students in each sample by selected subgroups; and
- results of the parameter estimation process, including estimates of the rrificiencies of several populations of students in reading, writing, civics, U.S. history, geography, mathematics, and science.

Interpretive results from the estimates presented here have been reported in the NAEP subject area trend and cross-sectional reports. The 1988 public-use data tapes and user guide (Rogers, Kline, Johnson, Mislevy, \& ?ust, : 390) are available for those who wish to estimate other parameters of student performance from the NAEP data or to search for possible explanations for the population characteristics that are reported here.

The technical details ef the estimation process that underlie these tables are covered in previous parts of this report and not repeated here. A detailed discuss' , of how to read and use the tables of bacleground and proficiency results is given by Zwick (1987b).

[^47]
### 16.1 HEASUREMENT INSTRUMENTS

In 1988 a total of 34 assessment booklets and questionnaires was printed for age class 9, 49 for age class 13, and 53 for age class 17. These booklets are enumerated by age level and by type of meacurement instrument in Table 16.1. Some of the instruments were used at more ther: one age/grade level.

The item pool used to develop these booklets is described in Table 16-2. In general, there are two types of items, cognitive and roncugnitive. The cognitive items are developed to measure proficiency in particular subject areas, such as reading and mathematics. Cognitive items may be open-ended or multiple-choice. The noncognitive items are usually questions about the student's or teacher's backgrounds .nd attitudes but may also , sbe other areas such as school policies or teaching methods. Because many items were used at more than one age class, the total number of items in an item pool is not the sum of the tem pools used for the three age classes.

All of the ite $s$ in the sibject area pools were used for the main NAEP assessment, but not all could be used for the various bridge assessmunts. Table 16-3 shows the number of cognitive items in each subject area that were used in the separate samples.

The excluded student, teacher, and schocl questionnaires contained only noncognitive questions. The number of items in the noncognitive pools is the same as the number of items in the questionnaires. More info, nation about the instruments that were developed is provided in Chapters 2 and 4.

### 16.2 SAMPLE CHARACTERISTICS

In this section, the characteristics of the final NAEP sample is described. The process by which the sample was selected is discussed in Chapter 3.

In the 1988 main assessment, NAEP contacted 1,29 schools, of which 1,030 contributed data to the assessment. The disposition of these schools is shown in Table 16-4. Some of the schools were unwilling to cooperate; others were believed to be eligible from the sampling frame, but were not. The cooperation rate is calculated as the sum of cooperiting schools and the schools that were found to have no eligible students divided by the same sum plus the schools that refused or were from districts that refused to cooperate.

Table 16-4 also shows the number of schools in several categories: region of the country (northeast, southeast, central, west), school governance (public, private, Catholic, Bureau of Indian Affairs, Department of Defense), size and type of community, degree of urbanicity, grade span of $s$ :hool, number f teachers, and number of students.

For the 1988 bridge (trena) studies, NAEP contacted 558 schools, of which 441. conti ibuted data to the $v$ us bridge assessments. Table 16.5
supplies the same information for the schools assessed for the bridge st adies that the previous table supplies for the main assessment schools.

The numbers of respondents to the teacher questionnaire are sumnarized in Table 16 . The first column in this table includes the number of teachers who responded by age class and subject area. The final column contains the number of students whose teachers responded to the questionnaire.

NAEP is administered in units called assessment sessions. if the number of students attending an assessment session is less than a predetermined number, the students missing from the session are assigned to a makeup ser ion and then assessed. Table $16-7$ shows the number of regular and makeup sessions in 1988 NAEP by age cliss for the main NAEP and two bridge samples.

Altogether, $1 \Xi 3,542$ students were involved in 1988 NAEP, including excluded students. The breakdown by are class and b: sample is shown in Table 16-8

Tables 16-9 through 16-11 display the distrıbution of the students assessed in the mai.l NAEP assessment in several basic categories for the three age classes: gender, racial/athnic grouping, region of the country, parental education, and size and type of community. These tables have four columns:

- eligible by age, which means that the students were in an appropriate age group;
- eligible by grade, which means that the students were in an appropriate grade;
- eligible by age and by grade, which means that the students were of both an appropriate age and appropriate grade; and
- eligible by age or by grade, which is the total number of students for whom data were collected.

Tables 16-12 through 16-19 contain the distribution of students in $t^{\circ} \geq$ same categories by age class for the bridge samples. Tables 16-12 to 16 -1 contain he distributions for the bridge to 1984 sample. Tables 16-15 to 16-17 dısplay the distributions for the bridge to 1986 sample. Table 16-18 and Table 16-19 enumerate the students in the two age classes assessed as part of the civics bridge.

Similarly, Tables 16-20 through 16-23 contain the discribution of excluded students by age class. The distribution for the excluded students in the main and bridge samples combined are displayed in Tables 16-20 and 16-21 for grade 4/age 9 and grade $8 /$ age 13, respectively. Table $16-22$ contains the distribution of excluded students for the main sample grade 12/age 17 stucents, while Table 16-23 contains the distribution of excluded students for the bridge samples of grade 1l/age 17. These two samples could not be combined because of different age definitions.

### 16.3 POPULATION ESTIMATES

The 1988 NAEP samples were desighed far entimating the size and attributes of a number of different populations $f$ students. The estimation procedures use sampling weights, developed by Westat, Inc, that are used in conjunction with the members of the sample (see Chapter 3). In this chapter, all estimates of population paramecers use these sampling weights.

Table 16-24 shows the sizes of the various samples and the sums of their sampling weights by rade/age. In mast cases, the sum of the weights for a given sample is an escimate of the number of students who are in the population represented by the sample. In other words, the sum of the weights is an estimate of the number of eligible stud $s$ in the grade or age of interest.

The main assessment can be divided into winter and spring subsamples. These subsamples each have their own sets of reights, as well as a set of weights that allows the combination of the two subsamples. The sample sizes and the estimated population sizes for the winter and spring subsamples, as well as the combined main assessment sample are provided in Table 16-24. The combined set of weights will be used in subsequent tables.

Note that the samples for the main asse nent, the samples for all three age classes of the bridge to 1984 , and the samples for the oldest age class for the bridge to 1986 are grade and age samples. The samples for the younger , , age classes of the bridge to 1986 and the samples for the civics bridge are age-only samples.

The sum of the weights of the excluded students estimates the numier of ineligible students in the respective grade/age class. The l7-year-old exc..uded students are split into two samples, one for which the modal grade is $\therefore 2$ (for the main samples), and one for which the modal grade is 11 (for the bridge samples). This split was necessary because of differences in the time of testing and age definitions use, for the bridge and main samples (see Chapter 3).

In most cases, the number of students in a grade/age combination is not of interest; a researcher will be interested in estimating the number of students at either a grade or an age level. For the samples that contain both grade- and age-eligible students, an estimate of the numier of students at an age level can be made by summing the weights of only the age-eligible students and adding the corresponding sample of age-eligible exc ${ }^{-}$ded students. An estimate of the number of students in a grade samp e can be made by summing the weights of grade-eligible student. plus the weights of gradeeligible students from the appropriate excluded student sample.

From the main NAEP samples, the next group of tables estimates how many students are age-eligible and grade-eligible by age class. Tables 16-25 through 16-27 show how many st dents at a perticular grade level are at, in, or above the modal age for thac grade, and how many at a particular age level are at, in, or above the modal grade for that age. Alon; with the counts from
these samples, the sum of the weights (Weighted N) for each category is presented, and these sums are estimates of the numbers of students in these categories in the population. The standard errors of these estimates and coefficients of variation are. ' given. (The coefficient of variation is defined as 100 times the standa, d error divided by the weighted N.)

Tables 16-28 through 16-34 contain the same type of information for the several bridge booklets, by age level. Tables 16-28 to $16-30$ have the identical format as the main assessment tables, but contain the information for the bridge to 1984. Table $16-33$ is also of the same format, and contains the data for grade 11 /age 17 bridge to 1986. Table 16-31 and 16-32 are for the other two age-only samples of the bridge to 1986. Since these are ageonly samples, the partitioning of the sample by modal age groupings provides no added information. Instead we supply information by booklet. This is useful because each booklet was weighted so that the sum of the weights of all students completing a booklet estimates the population size. Table 16.34 is constructed for the civics bridges. These are also age-only samples, with one booklet per age group, so the information can be provided on one table.

The next tables show the sizes of the estimated populations of asse sable students and the weighted percentages for various NAEP reporting categories. These categories include gender, racial/ethnic grouping, region of the country, parents' education, and size and type of community. The estimated subpopliation percentages for the main NAEP samples are shown in Tables 16-35 through 16-37, separately by age eligibility, grade eligibility, and grade/age eligibility. Tables 16-38 to $16-45$ show the same information for the bridge samples. In a similar manner, Tables $16-46$ to $16-49$ show the estimated total population of excluded students and the weighted percentages by demographic subgroups.

Students were assigned proficiency values in a subject area only if they received at least one assessment block in that area, and thus the sample sizes of students who have proficiency values vary from one subject area to another. Tables 16-50 through Table 16-50 show the number of students with proficiency values in each subject area by age and grade combinations.

Tables 16-61 co 16-70 contain population estimaces of student proficiencies by grade and by the subpopulations of gender and race/etrnicity The information about proficiency includes the mean and standard deviation of each subpopulstion as well as the value of the 5 th, 10 th , 25 th, 50 th (median), 75 th , 90 th , and 95 th percentiles. Results are shown separately for each subject area. Standard errors of the estimates are included in parentheses.

Tables 16-71 through 16-109 contain results for more finely defined subpopulations. The major reporting variables (gender, race/ethnicity, parental education) are cross-classified with one another. For axample, Table 16-72 cross-classifies gender, racial/ethnic grouping, and parerital education with the racial/ethnic grouping for fourth graders. Information included about these subpopulations is the actual sample size, the estimated population size (and its coefficient of variation), the proportion of students in each subpopulation (anci its standard error), and the average proficiency if the students (and its standard error).

Measurement Instruments Developed for 1988 NAEP
Age Class
Instruments
$\underline{9} \quad 13$ ..... 17
Student Assessment Booklets

| Main Sample | 22 | 36 | 37 |
| :--- | ---: | ---: | ---: |
| Bridge to l984 | 6 | 6 | 6 |
| Bridge to l986 | 3 | 3 | 7 |
| Civics Bridge | 0 | 1 | 1 |
| Total | 31 | 46 | 51 |

## Questionnaires

| Excluded Student Questionnaire | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- |
| Teacher Questionnaire | 1 | 1 | 0 |
| School Characteristics Questionnaire | 1 | 1 | 1 |
| Total | 3 | 3 | 2 |

Table 16-2
Numbers of Distinct Items Administered, by Age Class

|  | - AGE CLASS - _ |  |  | Total <br> Distinct Items* |
| :---: | :---: | :---: | :---: | :---: |
|  | 9 | 13 | 17 |  |
| Common Backgiound | 66 | 68 | 98 | 110 |
| Reading 125 |  |  |  |  |
| Backgro id and Attitude | 125 | 137 | 193 | 229 |
| Cogniti | 168 | 187 | 210 | 384 |
| Writing |  |  |  |  |
| Background and Attitude | 45 | 80 | 86 | 89 |
| Cognitiva | 16 | 17 | 17 | 35 |
| Cfivics |  |  |  |  |
| Rackground and Attituca | 9 | 25 | 40 | 74 |
| Gognitive | 51 | 168 | 174 | 239 |
| U.S. History 98 |  |  |  |  |
| Background and Attitude | 9 | 27 | 62 | 98 |
| Cognitive | 45 | 161 | 211 | 290 |
| Geography |  |  |  |  |
| Background and Attitude | 0 | 0 | 28 | 28 |
| Cognitive | $\eta$ | 0 | 78 | 78 |
| Document Litoracy |  |  |  |  |
| Background and Attitude | 0 | 0 | 0 | 7 |
| Cornitive | 0 | 57 | 57 | 57 |
| Mathematiss |  |  |  |  |
| Background and Attitude | 3 | 29 | 69 | 79 |
| Crgnitive | 68 | 84 | 142 | 222 |
| Science |  |  |  |  |
| Background and Attitude | 16 | 28 | 45 110 | 61 195 |
| Cognitive | 63 | 58 | 110 | 195 |
| Excluded Stude.tt Questionnaire | 67 | 67 | 67 | 67 |
| Teacher Questionnaire | ¢7 | 91 | 0 | 131 |
| School Characteristics and Policies Questionnaire | 159 | 164 | 171 | 234 |
| Total Distinct Items | 989 | 1432 | 1844 | 2674 |

[^48]Table 16-3
Numbers of Distinct Cognitive Items by Age Class and Sample Typ:

|  | $\underline{9}$ | AGE CLASS |  | Total <br> Distinct Items* |
| :---: | :---: | :---: | :---: | :---: |
|  |  | . 13 | 17 |  |
| Reading |  |  |  |  |
| Crnss-sectioral | 83 | 100 | 110 | 215 |
| Lridge to 1984 | 105 | 108 | 96 | 193 |
| Bridge to 1986 | 31 | 35 | 72 | 91 |
| Writing |  |  |  |  |
| Cross-sectional | 10 | 11 | 11 | 23 |
| Bridge to 1984 | 6 | 6 | 6 | 12 |
| Civics |  |  |  |  |
| Cross-sectional | 51 | 155 | 152 | 221 |
| Civics Bridge | 0 | 96 | 101 | 127 |
| U.S. History |  |  |  |  |
| Cross-sect ial | 45 | 161 | 162 | 241 |
| Bridge to . 36 | 0 | 0 | 1.05 | 105 |
| Geography |  |  |  |  |
| Cross-sectional | 0 | 0 | 78 | 78 |
| Document Literacy |  |  |  |  |
| Cross-sectional | 0 | 57 | 57 | 57 |
| Mathematics |  |  |  |  |
| Bridge to 1986 | 68 | 84 | 142 | 222 |
| Science |  |  |  |  |
| Bridge to 1986 | 63 | 58 | 110 | 195 |

[^49]Table 16-4
Characteristics of Schools in Main NAEP (Cross-stctional) Samples

|  | 4/9 | 8/13 | 12/17 | Tital |
| :---: | :---: | :---: | :---: | :---: |
| TOTAL ORIGINAL SAMPLE | 384 | 520 | 394 | 1298 |
| C00PERATING | 327 | 399 | 304 | 1030 |
| OUT-OF RANGE OR CLOSED | 11 | 14 | 11 | 36 |
| NO ELIGIBLES ENROLLED | 4 | 39 | 13 | 56 |
| DISTRICT REFUSED | 33 | 40 | 46 | 119 |
| SCHOOL REFUSED | 9 | 28 | $?$ | 57 |
| COOPLRATION RATE | 88.7 | 86.6 | 82.8 | 86.1 |
| REPLACEMENTS |  |  |  |  |
| REPLACEMENTS FOR REFUSALS | 15 | 18 | 23 | 56 |
| REPLACEMENTS COOPERATING | 9 | 14 | 8 | 31 |
| TOTALS |  |  |  |  |
| COOPERATING SCHOOLS | 336 | 413 | 312 | 1061 |
| COMPLETING QUESTIONNAIRES | 316 | 389 | 289 | 994 |
| REGION |  |  |  |  |
| NORTHEAST | 69 | 87 | 60 | 216 |
| SOUTHEAST | 8 f | 105 | 85 | 276 |
| CEI IRAL | 81 | 102 | 79 | 262 |
| WEST | 100 | 119 | 88 | 307 |
| SCHOOL TYPE |  |  |  |  |
| PUBLIC | 282 | 321 | 272 | 875 |
| PRIVATE | 13 | 33 | 19 | 65 |
| CATHOLIC | 41 | 59 | 21 | 121 |
| BUREAU OF INDIAN AFFAIRS | 0 | 0 | 0 | 0 |
| DEPT OF DEFENSE | 0 | 0 | 0 | 0 |
| SIZE AND TYPE OF COMMUNITY |  |  |  |  |
| RURAL | 34 | 42 | 30 | 106 |
| LOW METRO | 37 | 45 | 32 | 114 |
| HIGH METRO | 35 | 41 | 31 | 107 |
| BIG GITY | 47 | 56 | 44 | 147 |
| FRINGE | 43 | 68 | 35 | 146 |
| MEDIUM CITY | 49 | 48 | 29 | 126 |
| SMALL PLACE | 91 | 113 | 111 | 315 |

Table 16-4 (continued)
Characteristics of Schools in Main NAEP (Cross-sectiunal) jamples

|  | 4/9 | 8/13 | 12/17 | Total |
| :---: | :---: | :---: | :---: | :---: |
| URBANICITY |  |  |  |  |
| URBAN | 115 | 137 | 87 | 339 |
| SUBURBAN | 125 | 149 | 106 | 380 |
| RURAL | 95 | 226 | il8 | 339 |
| GRADE SPAN |  |  |  |  |
| KINDERGARTEN TO GRade 12 | 18 | 36 | 50 | 104 |
| KINDERGARTEN TO GRADE 6 | 228 | 22 | 0 | 250 |
| Kint ergarten to grade 8 | 68 | 120 | 0 | 188 |
| GRADE 6 OR 7 TO GRADE 8 | 6 | 144 | 0 | 150 |
| GRADE 7 TO GRADE 9 | 0 | 46 | 3 | 49 |
| GRade 7 T0 GRade 12 | 0 | 30 | 26 | 56 |
| GRADE 9 T0 GRade 12 | 0 | 14 | 187 | 201 |
| GRADE 10 T0 12 | 0 | 0 | 45 | 45 |
| KINDERGAT'TEN TO GRADE 3 | 15 | 0 | 0 | 15 |
| NUMBER OF TEACHER |  |  |  |  |
| UNKNOMN | 1 | 1 | 1 | 3 |
| 1 - 4 | 6 | 12 | 3 | 21 |
| $5-9$ | 28 | 40 | 11 | 79 |
| 10-19 | 124 | 85 | 37 | 246 |
| 20-49 | 166 | 199 | 103 | 468 |
| 50-74 | 11 | 55 | 54 | 120 |
| 75-99 | 0 | 12 | 49 | 61 |
| $100+$ | 0 | 9 | 54 | 63 |
| NUMBER OF STUDENTS |  |  |  |  |
| UNKNOWN | 1 | 1 | 1 | 3 |
| 1 - 99 | 10 | 18 | 9 | 37 |
| 100-299 | 93 | 103 | 52 | 248 |
| $300-499$ | 121 | 73 | 42 | 236 |
| 500-749 | 71 | 87 | 38 | 196 |
| $750-999$ | 29 | 69 | 26 | 124 |
| 1000-1499 | 10 | 45 | 61 | 116 |
| $150 \mathrm{C}+$ | 1 | 17 | 83 | 101 |

372

Table 16-5
Characteastics of Schools in NAEP Bridge Samples

|  | $\underline{9}$ | 13 | 17 | Total |
| :---: | :---: | :---: | :---: | :---: |
| TOTAL ORICINAL SAMPLE | 190 | 223 | 135 | 568 |
| COOPERATING | 154 | 173 | 114 | 441 |
| OUT-OF RANGE OR CLOSED | 10 | 4 | 0 | 14 |
| NO ELIGIBLES ENROLLED | 3 | 30 | 7 | 40 |
| DISTRICT REFUSED | 12 | 10 | 21 | 43 |
| SCHOOL REFUSED | 11 | 6 | 13 | 30 |
| COOPERATION RATE | 87.2 | 92.7 | 78.1 | 86.8 |
| REPLACEMENTS |  |  |  |  |
| REPLACEMENTS FOR REFUSALS | 7 | 12 | 11 | 30 |
| REPLACEMENTS COOPERATING | 2 | 8 | 6 | 16 |
| TOTALS |  |  |  |  |
| COOPERATING SCHOOLS | - 6 | 181 | 120 | 457 |
| CCMPLETING QUESTIONNAIZES | 152 | 167 | 110 | 429 |
| REGION |  |  |  |  |
| NORTHEAST | 41. | 38 | 26 | i05 |
| SOUTHEAST | 37 | 48 | 27 | 112 |
| CENTRAL | 38 | 57 | 25 | 120 |
| WEST | 40 | 38 | 42 | 120 |
| Scrour Type |  |  |  |  |
| PUBLIC | 174 | 130 | 95 | 349 |
| PRIVATE | 12 | 23 | 10 | 45 |
| Catholic | 20 | 28 | 15 | 63 |
| BUREAU OF INDIAN AFFAIRS | 0 | 0 | 0 | 0 |
| DEPT OF DEFENSE | 0 | 0 | 0 | 0 |
| SİE AND TYPE OF COMmUNITY |  |  |  |  |
| RURAL | 13 | 19 | 8 | 40 |
| LOW METRO | 16 | 17 | 2 | 35 |
| HIGH SIETRO | 24 | 24 | 22 | 70 |
| BIG CITY | 15 | 11 | 22 | 48 |
| FRINGE | 22 | 25 | 18 | 65 |
| MEDIUM CITY | 16 | 21 | 15 | 52 |
| Small place | 50 | 64 | 33 | 147 |

Table 16-5 (continued)
Characteristics of Schools in NAEP Bridge Samples

|  | $\underline{9}$ | 13 | 17 | Total |
| :---: | :---: | :---: | :---: | :---: |
| URBANICITY |  |  |  |  |
| URBAN | 48 | 46 | 39 | 133 |
| SUBUT3AN | 66 | 73 | 50 | 189 |
| RUR: | 41 | 62 | 31 | 134 |
| GRADE SPAis |  |  |  |  |
| KINDERGARTEN TO GRADE 12 | 12 | 25 | 12 | 49 |
| kINDERGARTEN TO GRade 6 | 95 | 10 | 0 | 105 |
| KINDERGARTEN TO GRADE 8 | 39 | 62 | 0 | 101 |
| GRADE 6 OR 7 TO GRADE 8 | 3 | 44 | 0 | 47 |
| GRADE 7 TO GRADE 9 | 0 | 12 | 0 | 12 |
| GRADE 7 TO GRADE 12 | 0 | 13 | 10 | 23 |
| GRADE 9 TO GRADE 12 | 0 | 15 | 81 | 96 |
| CRADE 10 TO 12 | 0 | 0 | 17 | 17 |
| $r$ INDERGARTEN TO GRADE 3 | 7 | 0 | 0 | 7 |
| NUMBER OF TEACHERS |  |  |  |  |
| UNC. ISSIFIFD | 0 | 0 | 0 | 0 |
| 1 - 4 | 4 | 5 | 2 | 11 |
| $5-9$ | 20 | 20 | 5 | 45 |
| 10-19 | 49 | 43 | 14 | 106 |
| 20-49 | 77 | 79 | 35 | 191 |
| 50-74 | 6 | 23 | 28 | 57 |
| 75-99 | 0 | 5 | 17 | 22 |
| 100 + | 0 | 6 | 19 | 25 |
| NUMBER OF STUDENTS |  |  |  |  |
| UNCLASSIFIED | 0 | 0 | 0 | 0 |
| I - 99 | 5 | 8 | 3 | 16 |
| 100-293 | 44 | 56 | 21 | 121 |
| :90-499 | 56 | 40 | 10 | 106 |
| 500-749 | 34 | 27 | 10 | 71 |
| $750-999$ | 12 | 16 | 17 | 45 |
| 1000-1499 | 4 | 25 | 18 | 47 |
| $1500+$ | 1 | 9 | 41 | ; 1 |

Table 16-6
Numbers of Responses to Neacher Questionnaire

Sample
Grade 4 READTNG
Grade 8. WRITING

Number of Students with Responding Teachers

3901
3570

Table 1f-7
Numbers of Assessment Sessions by Sample, Type of Session, and Age Cla: s

|  | 9 | 13 | 17 | Total |
| :---: | :---: | :---: | :---: | :---: |
| MAIN SAMPLE* |  |  |  |  |
| REGULAR | 582 | 635 | 511 | 1728 |
| MAREUP | 0 | 15 | 68 | 83 |
| BRIDGE TO 1984 SAMPLE |  |  |  |  |
| REGULAR | 184 | 185 | 110 | 479 |
| MAKEUP | 1 | 1 | 23 | 25 |
| BRIDGE TO 1986 SAMPLE |  |  |  |  |
| REGULIR | 335 | 217 | 131 | 683 |
| MAREUP | 1 | , | 24 | 25 |
| CIVIU'S BRIDGE |  |  |  |  |
| REGULAR | 0 | 105 | 97 | 202 |
| Hakeup | 0 | 0 | 20 | 20 |
| TOTAL |  |  |  |  |
| REGULAR | 1101 | 1142 | 849 | 3092 |
| MAKEUP | 2 | 16 | 135 | 153 |
| COMBINED | 1103 | 1158 | 984 | 3245 |

* Includes focused-BIB, intercorrelation, ard document literacy samples.

Table 16-8

## Numbers of Students Assessed and Excluded by Sample and Age Class

|  | 9 | 13 | 17 | Total |
| :---: | :---: | :---: | :---: | :---: |
| ASSESSED |  |  |  |  |
| MAIN NAEP | 23012 | 31601 | 32710 | 87323 |
| BRIDGE TO 1984 | 5188 | 5500 | 4622 | 15310 |
| BRIDGE TO 1986 | 3711 | 3942 | 7052 | 14705 |
| CIVICS BRIDGE <br> (TOU 1976 AND 1982) | 0 | 1933 | 1786 | 3724 |
| EXCLUDED |  |  |  |  |
| MAIN NAEP | 1554 | 2213 | 1527 | 3294 |
| BRIDGES | 699 | 851 | 538 | 208§ |
| TOTAL | 34164 | 46045 | 48235 | 128444 |

* Includes focused-BIB, intercorrelation, and dociment literacy samples.

Table 16-9

Numbers of Students in Main Sample by Type of Eligibility and Subgroup Classification: Grade 4/Age 9

|  | Age | Grade | Age \& Grade | Age or Grade |
| :---: | :---: | :---: | :---: | :---: |
| TOTAL | 16366 | 17137 | 10491 | 23012 |
| SEX |  |  |  |  |
| Male | 8227 | 8708 | 4966 | 11969 |
| Female | 8139 | 8429 | 5525 | 11043 |
| RACE/ETLINICITY |  |  |  |  |
| White | 9335 | 9645 | 6138 | 12842 |
| Black | 2831 | 3104 | 1823 | 4112 |
| Hispanic | 3336 | 3476 | 1956 | 4856 |
| Other | 864 | 912 | 574 | 1202 |
| REGION |  |  |  |  |
| Northeast | 3099 | 3061 | 2163 | 3997 |
| Southeast | 4559 | . 1897 | 2732 | 6724 |
| Central | 3349 | . 3518 | 2127 | 4740 |
| West | 5359 | 5661 | 3469 | 7551 |
| PARENT'S EDUCATION |  |  |  |  |
| Les $=$ than High School | 797 | 942 | 438 | 1301 |
| High Schoo' | 230 r | 2453 | 1411 | 3342 |
| Greater High School | 1147 | 1333 | 831 | 1649 |
| Graduate lege | 5759 | 6156 | 4042 | 7883 |
| Unknown | 6273 | 5163 | 3712 | 8724 |
| SIZE AND TYPE OF COMMUNITY |  |  |  |  |
| Rural | 1422 | 1432 | 859 | 1995 |
| Disidvantaged Urban | 1917 | 2042 | 1178 | 2781 |
| Advantaged Urban | 1990 | 2078 | 1411 | 2657 |
| Big City | 2332 | 2679 | 1609 | 3402 |
| Fringe | 2316 | 2385 | 1593 | 3108 |
| Medium Cicy | 2442 | 2500 | 1523 | 3419 |
| Small Places | 3947 | 4021 | 2318 | 5650 |

Tabie 16-10
Numbers of Students in Main Sample
by Type of Fligibility and Sutgroup Classification, Grade 8/Age 13

|  | Age | Grade | Age \& Grade | Age or Grade |
| :---: | :---: | :---: | :---: | :---: |
| TOTAL | 2.2471 | 23801 | 14671 | 31601 |
| SEX |  |  |  |  |
| Male | 10923 | 11804 | 6608 | 16119 |
| Female | 11548 | 11997 | 8063 | 15482 |
| RACE/ETHNICITY |  |  |  |  |
| White | 14008 | 14719 | 9643 | 19084 |
| Black | 3702 | 4153 | 2248 | 5607 |
| Hispanic | 3659 | 3769 | 2046 | 5382 |
| Other | 1102 | ${ }^{1} 160$ | 734 | 1528 |
| REGION |  |  |  |  |
| Northeast | $4{ }^{\text {¢ }} 4$ | 4843 | 3319 | 6108 |
| Southeast | 6022 | 6484 | 3695 | 8811 |
| Central | 4943 | 5102 | 3115 | 6930 |
| West | 6922 | 7372 | 4542 | 9752 |
| PARENT'S EDUCATION |  |  |  |  |
| Less than High School | 1890 | 2152 | 1015 | 3028 |
| High School | 5937 | 6.28 | 3685 | 8580 |
| Greater than High School | 3951 | 4356 | 2895 | 5412 |
| Graduated College | 8401 | 8788 | 5932 | 11257 |
| Unknown | 2224 | 2100 | 1102 | 3227 |
| SIZE AND TYPE OF C' MUNITY |  |  |  |  |
| Rural | 1331 | 1399 | 790 | 1940 |
| Disadvantaged Urban | 2634 | 2738 | 1525 | 3847 |
| Advantaged Urban | 2098 | 2325 | 1580 | 2843 |
| Big City | 3179 | 3223 | 1996 | 4406 |
| Fringe | 4465 | 4768 | 3267 | 5966 |
| Medium City | 3275 | 3408 | 2088 | 4595 |
| Small Places | 5489 | 5940 | 3425 | 8004 |

Table 16-11
Numbers of Students in Main Sample by Type of Eligibility and Subgroup Classification, Grade 12/Age 17

|  | Age | Grade | Age \& Grade | Age or Grade |
| :---: | :---: | :---: | :---: | :---: |
| TOTAL | 25531 | 24316 | 17137 | 32710 |
| SEX |  |  |  |  |
| Male | 12361 | 11571 | 7527 | 16405 |
| Female | 13170 | 12745 | 9610 | 16305 |
| RACE/ETHNICITY |  |  |  |  |
| White | 17273 | 16670 | 12224 | 21719 |
| Black | 4645 | 4224 | 2808 | 6061 |
| Hispanic | 2770 | 2614 | 1576 | 3808 |
| 0 ther | 843 | 808 | 529 | 1122 |
| REGION |  |  |  |  |
| Northeast | 4719 | 4514 | 3447 | 5786 |
| Southeast | 7857 | 7293 | 5170 | 9980 |
| Central | 5869 | 5831 | 3916 | 7784 |
| West | 7086 | 6678 | 4604 | 9160 |
| PaRENs'S EDUCATION |  |  |  |  |
| Less than High School | 2398 | 2187 | 1280 | 3305 |
| High School | 6522 | 6014 | 4041 | 8495 |
| Greater than High School | 6235 | 5974 | 4440 | 7769 |
| Graduated Colle | 9581 | 9469 | 7004 | 12046 |
| Unknown | 704 | 582 | 322 | 964 |
| SIZE AND TYPE OF COMMUNITY |  |  |  |  |
| Rural | 1131 | 1090 | 675 | 1546 |
| Dispdvantaged Urban | 2647 | 2300 | 1500 | 3447 |
| Advantaged Urban | 3152 | 3360 | 2450 | 4062 |
| Big City | 4572 | 4380 | 3203 | 5749 |
| Fringe | 3357 | 3148 | 2257 | 4248 |
| Medium City | 2705 | 2572 | 1878 | 3399 |
| Small Places | 7967 | ? 466 | 5174 | 10259 |

Table 16-12
Numbers of Students in Bridge to 1984 Sample
by Type of Eligibility and Subgroup Classification, Grade 4/Age 9

|  | Age | Grade | Age \& Grade | Age or Grade |
| :---: | :---: | :---: | :---: | :---: |
| TOTAL | 3782 | 3979 | 2573 | 5188 |
| SEX |  |  |  |  |
| Male | 1863 | 1984 | 1167 | 2680 |
| Female | 1919 | 1995 | 1406 | 2508 |
| RACE/ETHNICITY |  |  |  |  |
| White | 2245 | 2305 | 1530 | 3020 |
| Black | 693 | 782 | 481 | 994 |
| Hispanic | 688 | 733 | 456 | 965 |
| Other | 156 | 159 | 106 | 209 |
| REGION |  |  |  |  |
| Nor theast | 969 | 1048 | 763 | 1254 |
| Southeast | 993 | 1127 | 642 | 1478 |
| Central | 801 | 783 | 479 | 1105 |
| West | 1019 | 1021 | 689 | 1351 |
| Parent's education |  |  |  |  |
| Less than High School | 159 | 191 | 102 | 248 |
| High School | 561 | 663 | 382 | 842 |
| Greater than High School | 189 | 195 | 130 | 254 |
| Graduated College | 1545 | 1679 | 1136 | 2088 |
| Unknown | 1321 | 1242 | 820 | 1743 |
| SIZE AND TYPE OF COMMUNITY |  |  |  |  |
| Rural | 283 | 304 | 186 | 401 |
| Disadvantage. Urban | 346 | 396 | 211 | 531 |
| Advantaged Urban | 617 | 610 | 424 | 803 |
| Big City | 380 | 412 | 273 | 519 |
| Fringe | 576 | 592 | 433 | 735 |
| Medium City | 424 | 444 | 289 | 579 |
| Small Places | 1156 | 1221 | 757 | 1620 |

## Number. of Students in Bridge to 1984 Sample

 by Type of Eligibility and Subgroup Classification, Grade 8/Age 13|  | Age | Grade | Age \& Grade | Age or Grade |
| :---: | :---: | :---: | :---: | :---: |
| TOTAL | 4005 | 4133 | 2638 | 5500 |
| SEX |  |  |  |  |
| Male | 1964 | 2024 | 1160 | 2828 |
| Female | 2041 | 2109 | 1478 | 2672 |
| RACE/ETHNICITY |  |  |  |  |
| White | 2890 | 2958 | 1956 | 3892 |
| Black | 576 | 619 | 357 | 838 |
| Hispanic | 358 | 378 | 214 | 522 |
| Other | 181 | 178 | 111 | 248 |
| REGIOY |  |  |  |  |
| Northeast | 884 | 904 | 651 | 1137 |
| Southeast | 840 | 887 | 532 | 1195 |
| Central | 1199 | 1206 | 746 | 1659 |
| West | 1082 | 1136 | 70s | 1509 |
| PARENT'S EDUCATION |  |  |  |  |
| Less than High School | 299 | 325 | 168 | 456 |
| High School | 1227 | 1271 | 785 | 1713 |
| Greater than High School | 414 | 466 | ? 09 | 571 |
| Graduated College | 1686 | 1724 | 1173 | 2237 |
| Unknown | 369 | 333 | 197 | 505 |
| SIZE AND TYPE OF COMMUNITY |  |  |  |  |
| Rural | 257 | 240 | 166 | 331 |
| Disadvantaged Irban | 357 | 371 | 207 | 521 |
| Advantaged Urban | (78 | 655 | 440 | 823 |
| Big City | 21 | 234 | 174 | 381 |
| Fringe | 715 | 715 | 469 | 961 |
| Medium City | 375 | 395 | 281 | 489 |
| Small Places | 1422 | 1473 | 901 | 1994 |

Table 16-14
Numbers of Students in Bridge to 1984 Sample
by Type of Eligibility and Subgroup Classification, Grade 11/Age 17

|  | Age | Grade | Age \& Grade | Age or Grade |
| :---: | :---: | :---: | :---: | :---: |
| TOTAL | 3652 | 3664 | 2694 | 4622 |
| SEX |  |  |  |  |
| Male | 1667 | 1653 | 1179 | 2141 |
| Female | 1985 | 2011 | 1515 | 2481 |
| RACE/ETHNICITY |  |  |  |  |
| White | 2577 | 2620 | 1995 | 320? |
| Black | 638 | 631 | 424 | 845 |
| Hispanic | 281 | 275 | 177 | 379 |
| Other | 156 | 138 | 98 | 196 |
| REGION |  |  |  |  |
| Northeast | 792 | 821 | 584 | 1029 |
| Southeast | 944 | 959 | 682 | -221 |
| Central | 642 | 660 | 504 | 798 |
| West | 1274 | 1224 | 924 | 1574 |
| PARENT'S EDUCATION |  |  |  |  |
| Less than High School | 29; | 284 | 174 | 407 |
| High School | 1051 | 1041 | 755 | 1337 |
| Greater than High School | 636 | 654 | 498 | 792 |
| Graduated College | 1564 | 1580 | 1211 | 1933 |
| Unknown | 96 | 99 | 53 | 142 |
| SIZE AND TYPE OF COMMUNITY |  |  |  |  |
| Rural | 159 | 153 | 126 | 186 |
| Disadvantaged Urban | 51 | 62 | 32 | 81 |
| Advantaged Urban | 663 | 684 | 521 | 826 |
| Big City | 702 | 736 | 499 | 939 |
| Fringe | 632 | 628 | 485 | 775 |
| Medium City | 483 | 473 | 355 | 601 |
| Small Places | 962 | 928 | 676 | 1214 |

Table 16-15
Numbers of Students in Briuge to 1986 Sample by Type of Eligibility and Subgroup Classification, Age 9

|  | Age | Grade | Age \& Grade | Age or Grade |
| :---: | :---: | :---: | :---: | :---: |
| TOTAL | 3711 | 2498 | 2498 | 3711 |
| SEX |  |  |  |  |
| Miale | 1837 | 1160 | 1160 | 1837 |
| Femaie | 1874 | 1338 | 1338 | 1874 |
| RACE/ETHNICITY |  |  |  |  |
| White | 2225 | 1560 | 1560 | 2225 |
| Black | 586 | 397 | 397 | 586 |
| Hispanic | 726 | 431 | 431 | 726 |
| Other | 174 | 110 | 110 | 174 |
| REGION |  |  |  |  |
| Northeast | 946 | 759 | 759 | 946 |
| Southeast | 1043 | 639 | 639 | 1043 |
| Sentral | 801 | 507 | 507 | 801 |
| ', 'est | 921 | 593 | 593 | 921 |
| PARENT'S EDUCATION |  |  |  |  |
| Less than High Schcol | 141 | 87 | 87 |  |
| Hi.gh School | 545 | 378 | 378 | 545 |
| Greater than High Schc i | 281 | 209 | 209 | 281 |
| Graduated College | 15\%1 | 1134 | 1134 | 1571 |
| Unknown | 1145 | 679 | 679 | 1145 |
| SIZE AND TYPE OF COMMUNITY |  |  |  |  |
| Rural | 279 | 180 | 180 | 279 |
| Disadvantaged Urban | 349 | 213 | $21^{\circ}$ | 349 |
| Advantaged Urban | 636 | 406 | 406 | 636 |
| Big City | 350 | 249 | 249 | 350 |
| Fringe | 535 | 408 | 408 | 535 |
| Medium City | 411 | 269 | 269 | 411. |
| Small Places | 1151 | 773 | 77.1 | 1151 |

Table 16-16
Numbers of Students in Bridge to 1986 Sample by Type of Eligibility and Subgroup Classification, Age 13

|  | Age | Grade | Age \& Grade | Age or Grade |
| :---: | :---: | :---: | :---: | :---: |
| TOTAL | 3942 | 2545 | 2545 | 3942 |
| SEX |  |  |  |  |
| Male | 1963 | 1193 | 1193 | 1963 |
| Female | 1979 | $1 こ 52$ | 1352 | 1979 |
| RACE/ETHNICITY |  |  |  |  |
| White | 2756 | 182: | 1822 | 2756 |
| Black | 639 | 40 C | 400 | 639 |
| Hispanic | 388 | 216 | 216 | 388 |
| Other | 159 | 107 | 107 | 159 |
| REGION |  |  |  |  |
| Northeast | 905 | 632 | 632 | 905 |
| Southeast | 843 | 482 | 482 | 843 |
| Central | 1104 | 705 | 705 | 1104 |
| We:st | 1090 | 726 | 726 | 1090 |
| FARENT'S EDUCATION |  |  |  |  |
| Less than High School | 278 | 152 | 152 | 278 |
| High School | 992 | 602 | 602 | 992 |
| Greater than High School | 619 | 443 | 443 | 619 |
| Graduated College | 1719 | 1170 | 1170 | 1719 |
| unknown | 327 | 175 | 175 | 327 |
| SIEE AND TYPE OF COMMUNITY |  |  |  |  |
| Rural | 203 | 130 | 130 | 203 |
| Disadvantaged Urban | 391 | $? 30$ | 230 | 391 |
| Advantaged Urban | 554 | 392 | 392 | 554 |
| Big City | 313 | 213 | 213 | 313 |
| Fringe | 726 | 482 | 482 | 726 |
| Medium City | 382 | 275 | 275 | 382 |
| Small Places | 1373 | 823 | 823 | 1373 |

Table 16-17
Numbers of Students in Bridge to 1986 Sample by Type of Eligibility and Subgroup Classification, Grade 11/Age 17

|  | Age | Grace | Age \& Grade | Age or Grade |
| :---: | :---: | :---: | :---: | :---: |
| T0TAL | 5581 | 5638 | 4167 | 7052 |
| SEX |  |  |  |  |
| Male | 2660 | 2671 | 1939 | 3392 |
| Female | 2921 | 2967 | 2228 | 3660 |
| RACE/ETHNICITY |  |  |  |  |
| White | 4077 | 4106 | 3178 | 5005 |
| Black | 888 | 895 | 591 | 1192 |
| Hispanic | 420 | 419 | 264 | 575 |
| Other | 196 | 218 | 134 | 280 |
| REGION |  |  |  |  |
| Northeast | 1320 | 1349 | 978 | 1691 |
| Southeast | 1428 | 1400 | 1010 | 1818 |
| Central | 969 | 1054 | 802 | 1221 |
| West | 1864 | 1835 | 1377 | 2322 |
| PARENT'S EDUCATION |  |  |  |  |
| Less than High School | 440 | 411 | 242 | 609 |
| High School | 1284 | 1283 | 916 | 1651 |
| Greater than High School | 1326 | 1341 | 1028 | 1639 |
| Graduated College | 2363 | 2426 | 1871 | 2918 |
| Unknown | 150 | 163 | 98 | 215 |
| SIZE AND TYPE OF COMMUNITY |  |  |  |  |
| Rural | 221 | 241 | 177 | 285 |
| Disadvantaged Urban | 98 | 116 | 71 | 143 |
| Advantaged Urban | 1146 | 1182 | 922 | 1406 |
| Big City | 1033 | 1033 | 730 | 1336 |
| Fringe | 943 | 942 | 699 | 1186 |
| Medium City | 649 | 670 | 500 | 819 |
| Small Places | 1491 | 1454 | 1068 | 1877 |

Table 16-18
Numbers of Students in Civics Bridge by Type of Eligibility and Subgroup Classification, Age 13

|  | Age | Grade | Age \& Grade | Age or Grade |
| :---: | :---: | :---: | :---: | :---: |
| TOTAL | 1938 | 1298 | 1298 | 1938 |
| SEX |  |  |  |  |
| Male | 988 | 594 | 594 | 988 |
| Female | 950 | 704 | 704 | 950 |
| RACE/ETHNICITY |  |  |  |  |
| White | 1374 | 942 | 942 | 1374 |
| Black | 247 | 166 | 166 | 247 |
| Hispanic | 224 | 129 | 129 | 224 |
| Other | 93 | 61 | 61 | 93 |
| REGION |  |  |  |  |
| Northeast | 487 | 354 | 354 | 487 |
| Southeast | 318 | 197 | 197 | 310 |
| Central | 543 | 338 | 338 | 543 |
| West | 590 | 409 | 409 | 590 |
| PARENT'S EDUCATION |  |  |  |  |
| Less than High School | 119 | 64 | 64 | 119 |
| High School | 554 | 358 | 358 | 554 |
| Greater than High School | 325 | 233 | 233 | 325 |
| Graduated College | 791 | 567 | 567 | 791 |
| Unknown | 142 | 72 | 72 | 142 |
| SIZE AND TYPE OF COMMUNITY 102 |  |  |  |  |
| Rural | 102 | 62 | 62 | 102 |
| Disadvantaged urban | 176 | 105 | 105 | 176 |
| Advantaged Urban | 317 | 228 | 228 | 317 |
| Big City | 150 | 102 | 102 | 150 |
| Fringe | 364 | 252 | 252 | 364 |
| Medium City | 193 | 143 | 143 | 193 |
| Small Places | 636 | 406 | 406 | 636 |

Table 16-19
Numbers of Students in Civics Bridge
by Type of Eligibility and Subgroup Classification, Age 17

|  | Age | Grade | Age \& Grade | Age or Grade |
| :---: | :---: | :---: | :---: | :---: |
| TOTAL | 1786 | 1333 | 1333 | 1786 |
| SEX |  |  |  |  |
| Male | 818 | 591 | 591 | 818 |
| Female | 968 | 742 | 742 | 968 |
| RACE/ETHNICITY |  |  |  |  |
| White | 1263 | 992 | 992 | 1263 |
| Black | 310 | 199 | 199 | 310 |
| Hispanic | 142 | 91 | 91 | 142 |
| Other | 71 | 51 | 51 | 71 |
| REGION |  |  |  |  |
| Northeast | 378 | 281 | 281 | 378 |
| Southeast | 459 | 321 | 321 | 459 |
| Central | 337 | 279 | 279 | 337 |
| West | 612 | 452 | 452 | 612 |
| PARENT'S EDUCATION |  |  |  |  |
| Less than High School | 154 | 100 | 100 | 154 |
| High School | 427 | 291 | 291 | 427 |
| Greater than High School | 434 | 328 | 328 | 434 |
| Graduated College | 725 | 590 | 590 | 725 |
| Unknown | 4 C | 20 | 20 | 40 |
| SIZE AND TYPE OF COMMUNITY |  |  |  |  |
| Rural | 91 | 73 | 73 | 91 |
| Disadvantaged Urban | 32 | 23 | 23 | 32 |
| Advantaged Urban | 331 | 268 | 268 | 331 |
| Big City | 348 | 245 | 245 | 348 |
| Fringe | 303 | 236 | 236 | 303 |
| Medium City | 226 | 164 | 164 | 226 |
| Smail Places | 455 | 324 | 324 | 455 |

Table 16-20
Numbers of Excluded Students in Main and Bridge Samples by Type of Eligibility and Subgroup Classification, Grade 4/Age 9

|  | Age | Grade | Age \& Grade | Age or Grade |
| :---: | :---: | :---: | :---: | :---: |
| TOTAL | 1480 | 1315 | 542 | 2253 |
| SEX |  |  |  |  |
| Male | 899 | 817 | 299 | 1417 |
| Female | 581 | 497 | 243 | 835 |
| RACE/ETHNICITY |  |  |  |  |
| White | 506 | 410 | 133 | 783 |
| Black | 308 | 243 | 83 | 468 |
| Hispanic | 567 | 537 | 282 | 822 |
| Other | 99 | 125 | 44 | 180 |
| REGION |  |  |  |  |
| Northeast | 269 | 195 | 82 | 382 |
| Southeast. | 344 | 288 | 66 | 566 |
| Central | 200 | 138 | 44 | 294 |
| West | 667 | 694 | 350 | 1011 |
| SIZE AND TYPE OF COMMUNITY |  |  |  |  |
| Rural | 67 | 52 | 10 | 109 |
| Disadvantaged Urban | 304 | 279 | 129 | 454 |
| Advantaged Urban | 95 | 74 | 34 | 135 |
| Big City | 305 | 306 | 152 | 459 |
| Fringe | 239 | 209 | 99 | 349 |
| Medium City | 223 | 190 | 68 | 345 |
| Small Places | 247 | 205 | 50 | 402 |

$$
\mathrm{Ta} \text { le } 16-21
$$

Numbers of Excluded Students in Main and Bridge Samples by Type of Eligibility and Subgroup Classification, Grade 8/Age 13

|  | Agre | Grade | Age f Grade | Age o: Grade |
| :---: | :---: | :---: | :---: | :---: |
| TOTAL | 1754 | 1852 | 542 | 3064 |
| SEX |  |  |  |  |
| Male | 1125 | 1161 | 317 | 1969 |
| Female | 579 | 649 | 191 | 1037 |
| RACE/ETHNICITY |  |  |  |  |
| White | 810 | 908 | 250 | 1468 |
| Black | 418 | 404 | 78 | 744 |
| Hispanic | 381 | 389 | 144 | 626 |
| Other | 145 | 151 | 70 | 226 |
| REGION |  |  |  |  |
| Northeast | 419 | 427 | 137 | 709 |
| Southeast | 385 | 405 | 78 | 712 |
| Central | 369 | 417 | 91 | 695 |
| West | 581 | 603 | 236 | 948 |
| SIZE AND TYPE OF COMMUNITY |  |  |  |  |
| Rural | 89 | 99 | 21 | 167 |
| Disadvantaged Urban | 331 | 309 | 89 | 551 |
| Advantaged Urban | 95 | 109 | 42 | 162 |
| Big City | 268 | 250 | 47 | 471 |
| Fringe | 276 | 325 | 113 | 488 |
| Medium City | 295 | 321 | 131 | 485 |
| Small Places | 400 | 439 | 99 | 740 |

Numbers of Excluded Students in Main Sample by Type of Eligibility and Subgroup Classification, Grade 12/Age 17

|  | Age | Grade | Age \& Grade | Age or Grade |
| :---: | :---: | :---: | :---: | :---: |
| TOTAL | 1055 | 708 | 236 | 1527 |
| SEX |  |  |  |  |
| Male | 684 | 417 | 126 | 975 |
| Female | 371 | 290 | 110 | 551 |
| RACE/ETHNICITY |  |  |  |  |
| White | 476 | 366 | 119 | 723 |
| Black | 300 | 207 | 68 | 439 |
| Hispanic | 214 | 95 | 35 | 274 |
| Other | 65 | 40 | 14 | 91 |
| REGION |  |  |  |  |
| Northeast | 201 | 139 | 51 | 279 |
| Southeast | 287 | 198 | 55 | 430 |
| Central | 225 | 133 | 45 | 313 |
| West | 342 | 238 | 75 | 505 |
| SIZE AND TYPE OF COMMUNITY |  |  |  |  |
| Rural. | 26 | 30 | 5 | 51 |
| Disadvantaged Urban | 264 | 127 | 52 | 339 |
| Advantaged Urban | 41 | 33 | 14 | 60 |
| Big City | 160 | 108 | 36 | 232 |
| Fringe | 120 | 93 | 29 | 184 |
| Medium City | 102 | 62 | 20 | 144 |
| Small Places | 342 | 255 | 80 | 517 |

Table 16-23
Numbers of Excluded Students in Bridge Samples by Type of Eligibility and Subgroup Classification, Grade 1l/Age 17

|  | Age | Grade | Aze \& Grade | Age or Grade |
| :---: | :---: | :---: | :---: | :---: |
| T0TAL | 361 | 310 | 133 | 538 |
| SEX |  |  |  |  |
| Male | 247 | 207 | 88 | 366 |
| Female | 114 | 103 | 45 | 172 |
| RACE/ETHNICITY |  |  |  |  |
| White | 203 | 183 | 88 | 298 |
| Black | 70 | 60 | 22 | 108 |
| Hispanic | 56 | 26 | 9 | 73 |
| 0 ther | 32 | 41 | 14 | 59 |
| REGION |  |  |  |  |
| Northeast | 79 | 74 | 39 | 114 |
| Southeast | 83 | 63 | 25 | 121 |
| Central | 62 | 60 | 27 | 95 |
| West | 137 | 113 | 42 | 208 |
| SIZE AND ${ }^{\text {TPPF }}$ OF COMMUNITY |  |  |  |  |
| Rural | 19 | 15 | 8 | 26 |
| Disadvantaged Urian | 7 | 15 | 4 | 18 |
| Advantaged Urban | 48 | 50 | 37 | 66 |
| Big City | 44 | 22 | 11 | 55 |
| Fringe | 84 | 52 | 22 | 114 |
| Medium City | 59 | 67 | 27 | 99 |
| Small places | 100 | 89 | 29 | 160 |

Numbers of Students by Sample and Age Class

|  | Age Class 9 |  | Age Class 13 |  | Age Class 17 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample | Total | Sum of Weights | Total | Sum of Weights | Total | Sum of Weights |
| Main Assessment ${ }^{\text {a }}$ |  |  |  |  |  |  |
| Winter and spring combined | 23012 | 4477209 | 31601 | 3737197 | 32710 | 4024260 |
| Winter only | 12293 | 4497709 | 16489 | 3724549 | 18542 | 4044142 |
| Spring only | 10719 | 4460873 | 15112 | 3749449 | 14168 | 3999942 |
| Civics Bridge (to 1976 and 1982) ${ }^{\text {b }}$ | -- | -- | 1938 | 2941846 | 1786 | 343942: |
| Bridge to 1984 ${ }^{\text {c }}$ | 5188 | 4477355 | 5500 | 431.2127 | 4622 | 4481990 |
| Bridge to 1986, Ages 9 and 13 ${ }^{\text {b }}$ |  |  |  |  |  |  |
| Booklet 91 | 1274 | 3211.177 | 1405 | 3049468 | -- | -- |
| Booklet 92 | 1240 | 3207450 | 1281 | 3039867 | -- |  |
| Booklet 93 | 1197 | 3210115 | 1256 | 3068702 | -- | -- |
| Bridge to 1986, Age $17{ }^{\circ}$ | -- | -- | -- | -- | 705' | 4487744 |
| Excluded Students |  |  |  |  |  |  |
| Main and bridge combined, grade 4/age 9, grade 8/age 13 | 2253 | 231907 | 3064 | 246018 | -- | -- |
| Main, grade 12/age 17 | -- | -- | -- | -- | 1527 | 134353 |
| Biidge, grade 1l/age 17 | -- | -- | -- | -- | 538 | 171553 |

[^50]Numbers of Students Assessed in Main Assessment, Grade 4/Age 9 (Booklets l-22)


AGE $<9$

| UNWEIGHTED N | 0 | 129 | 0 | 129 |
| :--- | :--- | ---: | ---: | ---: |
| WEIGHTED N | 0 | 23915 | 0 | 23915 |
| STANDARD ERROR | - | 3325 | - | 3325 |
| GOEFF. OF VAR.* | - | 13.90 | - | 13.90 |

AGE - 9

| UNWEIGHTED N | 5804 | 10491 | 71 | 16366 |
| :--- | ---: | ---: | ---: | ---: |
| WEIGHTED N | 1204331 | 2006376 | 13867 | 3224573 |
| STANDARD ERROR | 8252 | 4239 | 2393 | 9133 |
| COEFF. OF VAR.* | 0.69 | 0.21 | 17.26 | 0.28 |

AGE $>9$

| UNWEIGHTED N | 0 | 6517 | 0 | $6=17$ |
| :--- | ---: | ---: | ---: | ---: |
| WEIGHTED N | 0 | 1228720 | 0 | 1228720 |
| STANDARD ERROR | - | 8759 | - | 8759 |
| COEFF. OF VAR.* | - | 0.71 | - | 0.71 |

AGE TOTAL

| UNWETGHTED N | 5804 | 17137 | 71 | 23012 |
| :--- | ---: | ---: | ---: | ---: |
| WEIGHTED N | 1204331 | 3259011 | 13867 | 4477209 |
| STANDARD ERROR | 8252 | 11015 | 2393 | 14194 |
| COEFF. OF VAR.* | 0.69 | 0.34 | $i 7.28$ | 0.32 |

[^51]Table 16-26
Numbsrs of Students Assessed in Main Assessment, Grade 8/Age 13
(Booklets 1-36)

|  |
| :--- | :--- | :--- | :--- | :--- | GRADE $\quad$ Total

AGE < 13
UNWEIGHTED N
WEIGHTED N
$0 \quad 192$
0
192
STANDARD ERROR
$0 \quad 21787$
0
31787
COEFF. OF VAR.*
2368
2368

- $\quad 10.87$
10.87

AGE - 13

| UNWEIGHTED N | 7709 | 14671 | 91 | 22471 |
| :--- | ---: | ---: | ---: | ---: |
| WEIGHTED N | 1032989 | 1601566 | 16935 | 2651490 |
| STANDARD ERROR | 9786 | 4670 | 4550 | 10115 |
| COEFF. OF VAR.* | 0.95 | 0.29 | 26.87 | 0.38 |

AGE = 13

| UNWEIGHTED N | 0 | 8938 | 0 | 8938 |
| :--- | ---: | ---: | ---: | ---: |
| WEIGHTED N | 0 | 1063920 | 0 | 1063920 |
| STANDARD ERROR | - | 7365 | - | 7365 |
| COEFF. OF VAR.* | - | 0.69 | - | 0.69 |

AGE. TOTAL

| UNWEIGHTED N | 7709 | 23801 | 91 | 31601 |
| :--- | ---: | ---: | ---: | ---: |
| WEIGHTED N | 1032989 | 2687273 | 16935 | 37371.97 |
| STANDARD ERROR | 9786 | 8444 | 4550 | 14086 |
| COEFF. OF VAR.* | 0.95 | 0.31 | 26.87 | 0.38 |

[^52]Table 16-27
loumbers of Students Assessed in Main Assessment, Grade 12/Age 17 (Booklets l-37)

|  |
| :--- | :--- | :--- | :--- | GRADE $\quad$ Total

```
AGE < 17
```

| URWEIGHTED N | 0 | 286 | 0 | 286 |
| :--- | ---: | ---: | ---: | ---: |
| WEIGHTED N | 0 | 35112 | 0 | 35112 |
| STANDARD ERROR | - | 2823 | - | 2823 |
| COEFF. OF VAR.* | - | 8.04 | - | 8.04 |

AGE $=17$

| UNWEIGHTED N | $839 / 4$ | 17137 | 0 | 25531 |
| :--- | ---: | ---: | ---: | ---: |
| WEIGHTED N | 1053292 | 2080066 | 0 | 3133358 |
| STANDARD ERROR | 5236 | 14474 | - | 15779 |
| COEFF. OF VAR.* | 0.50 | 0.70 | - | 0.50 |

AGE > 17

| UNWEIGHTED N | 0 | 6893 | 0 | 6893 |
| :--- | :--- | ---: | :--- | ---: |
| WEIGYTED N | 0 | 855789 | 0 | 855789 |
| STANDARD ERROR | - | 28000 | - | 28000 |
| COEFF. OF VAR. $*$ | - | 3.27 | - | 3.27 |

AGE TOTAL

| UNWEIGHTED N | $33>4$ | 24316 | 0 | 32710 |
| :--- | ---: | ---: | ---: | ---: |
| WEIGHTED N | 105.292 | 2970968 | 0 | 4024260 |
| STANDARD ERROR | 5236 | 19439 | - | 20747 |
| COEFF. OF VAR.* | 0.50 | 0.65 | - | 0.52 |

[^53]Table 16-28
Numbers of Students Assessed in Bridge to 1984, Grade 4/Age 9
(Booklets 51-56)


AGE $<9$

| UNWEIGHTED N | 0 | 27 | 0 | 27 |
| :--- | ---: | ---: | ---: | ---: |
| WEIGHTED N | 0 | 25050 | 0 | 25050 |
| STANDARD ERROR | - | 5112 | - | 5112 |
| COEFF. OF VAR.* | - | 20.41 | - | 20.41 |

AGE $=9$

| UNWEIGHTED N | 1189 | 2573 | 20 | 3782 |
| :--- | ---: | ---: | ---: | ---: |
| WEIGHTED N | 1179250 | 2004609 | 17095 | 3200954 |
| STANDARD ERROR | 17494 | 6920 | 5230 | 20730 |
| COEFF. OF VAR.* | 1.48 | 0.35 | 30.59 | 0.65 |

AGE > 9

| UNWEIGHTED N | 0 | 1379 | 0 | 1379 |
| :--- | :--- | ---: | ---: | ---: |
| WEIGHTED N | 0 | 1251351 | 0 | 1251351 |
| STANDARD ERROR | - | 15706 | - | 15706 |
| CJEFF. OF VAR.* | - | 1.26 | - | 1.26 |

AGE TOTAL

| UNWEIGHTED N | 1189 | 3979 | 20 | 5188 |
| :--- | ---: | ---: | ---: | ---: |
| WEIGHTED N | 1179250 | 3281010 | 17095 | 4477355 |
| STANDARD ERROR | 17494 | 17845 | 5230 | 31964 |
| COEFF. OF VAR.* | 1.48 | 0.54 | 30.59 | 0.71 |

[^54]Table 16-29
Numbers of Students Assessed in Bridge to 1984, Grade 8/Age 13 (Booklets 5i-56)

|  |  | $=8$ | > 8 | Total |
| :---: | :---: | :---: | :---: | :---: |
| AGE < 13 |  |  |  |  |
| UNWEIGHTED N | 0 | 31 | 0 | 31 |
| WEIGHTED N | 0 | 29904 | 0 | 29904 |
| CTANDARD ERROR | - | 7127 | - | 7127 |
| COEFF. OF Yar.* | - | 23.83 | - | 23.83 |
| AGE $=13$ |  |  |  |  |
| UNWEIGHTED N | 1352 | 2638 | 15 | 4005 |
| WEIGHTED N | 1176048 | 1836364 | 20738 | 3033150 |
| STANDARD ERROR | 19496 | 7661 | 15482 | 21237 |
| COEFF. OF VAR.* | 1.66 | 0.42 | 74.66 | 0.70 |
| AGE $>13$ |  |  |  |  |
| UNWEIGHTED N | 0 | 1464 | 0 | 1464 |
| WEIGHTED N | 0 | 1249074 | 0 | 1249074 |
| STANDARD ERROR | - | 12959 | - | 12959 |
| COEFF. OF VAR.* | - | 1.04 | - | 1.04 |
| age total |  |  |  |  |
| UNWEIGHTED N | 1352 | 4133 | 15 | 5500 |
| WEIGHTED N | 1176048 | 3115341 | 20738 | 4312127 |
| STANDARD ERROR | 19496 | 17554 | 15482 | 29734 |
| COEFF. OF VAR.* | 1.66 | 0.56 | 74.66 | 0.69 |

[^55]Numbers of Students kssessed in Bridge to 1984, Giade 11/Age 17 (Booklets 5l-56)

|  | $<11$ | = 11 | > 11 | Tocai |
| :---: | :---: | :---: | :---: | :---: |
| AGE < 17 |  |  |  |  |
| UNWEIGHTED N | 0 | 399 | 0 | 399 |
| WEIGHTED N | 0 | 370779 | 0 | 370779 |
| STANDARD ERROR | - | 26139 | - | 26139 |
| COEFF. OF VAR.* | - | 7.05 | - | 7.05 |
| AGE $=17$ |  |  |  |  |
| UNWE_GETED N | 623 | 2694 | 335 | 3652 |
| WFISHTED N | 806680 | 2218862 | 395088 | 3420630 |
| STȦNDARD ERROR | 40941 | 5164 | 44128 | 12266 |
| COEFF. OF VAR.* | 5.08 | 0.23 | 11.17 | 0.36 |
| AGE $>17$ |  |  |  |  |
| UNWEIGHTED N | 0 | 571 | 0 | 571 |
| WEIGHTED N | 0 | 695581 | 0 | 696581 |
| STANDARD ERROR | - | 24053 | - | 24053 |
| COEFF. OF VAR.* | - | 3.45 | - | 3.45 |
| age tutal |  |  |  |  |
| UNWEIGHTED N | 623 | 3664 | 335 | 4622 |
| WEIGHTED N | 806680 | 3286221 | 395088 | 4487990 |
| ${ }^{\text {ctand }}$ (ANARD ERROR | 40941 | 10847 | 44128 | 16310 |
| COEFF. OF VAR.* | 5.08 | 0.33 | 11.17 | 0.36 |

[^56]Table 16-31
Numbers of Students Assessed in Bridge to 1986: Age 9

AGE 9
$<4$ - $4>4$
Total

Booklet 91

| UNWEIGHTED N | 407 | 863 | 4 | 1274 |
| :--- | ---: | ---: | ---: | ---: |
| WEIGHTED N | 1073424 | 2130791 | 6961 | 3211177 |
| STANDARD ERROR | 49361 | 45194 | 4085 | 22224 |
| COEFF. Cr 'riR.* | 4.60 | 2.12 | 58.68 | 0.69 |

Booklet 92

| UNWEIGHTED N | 402 | 833 | 5 | 1240 |
| :--- | ---: | ---: | ---: | ---: |
| WEIGHTED N | 1055792 | 2142834 | 8824 | 3207450 |
| STANDARD ERROR | 64622 | 59518 | 4542 | 20597 |
| COEFF. OF VAR.* | 6.12 | 2.78 | 51.47 | 0.64 |

Booklet 93

| UNWEIGHTED N | 387 | 802 | 8 | 1197 |
| :--- | ---: | ---: | ---: | ---: |
| WEIGHTED N | 1087649 | 2094985 | 27482 | 3210115 |
| STANDARD ERROR | $6 \div 643$ | 61277 | 8101 | 23096 |
| COEFF. OF VAR.* | 5.85 | 2.92 | 29.48 | 0.72 |

[^57]Table 16-32
Numbers of Students Assessed in Bridge to 1986, Age 13
AGE 13
$<8-8>8$
Total

Booklet 91

| UNWEIGHTED N | 486 | 914 | 5 | 1405 |
| :--- | ---: | ---: | ---: | ---: |
| WEIGHTED N | 1050983 | 1986691 | 11795 | 3049468 |
| STANDARD ERKOR | 47648 | 49544 | 6286 | 17394 |
| COEFF. OF VAR.* | 4.53 | 2.49 | 53.29 | 0.57 |

Booklet 92

| UNWEIGHTED N | 464 | 805 | 12 | 1281 |
| :--- | ---: | ---: | ---: | ---: |
| WEIGHTED N | 1160841 | 1841841 | 37185 | 3039867 |
| STANDARD ERROR | 75205 | 81211 | 24652 | 17387 |
| COEFF. OF VAR.* | 6.48 | 4.41 | 66.30 | 0.57 |

## Booklet 93

| UNWEIGHTED N | 421 | 826 | 9 | 1256 |
| :--- | ---: | ---: | ---: | ---: |
| WEIGHTED N | 1069538 | 1972011 | 27153 | 3068702 |
| STANDARD ERROR | 78205 | 80834 | 16131 | 16454 |
| COEFF. OF VAR. $*$ | 7.31 | 4.10 | 59.41 | 0.54 |

[^58]Table 16-33
Numbers of Students Asses.ied in Bridge to 1.986, Grade 11/Age 17 (Booklets 61-67)

< 11 = 11 > 11 Total
AGE $<17$

| UNWEIGHTED N | 0 | 640 | 0 | 640 |
| :--- | ---: | ---: | ---: | ---: |
| WEIGHTED N | 0 | 414914 | 0 | 414914 |
| STANDARD ERROR | - | 30365 | - | 30365 |
| COEFF. OF VAR.* | - | 7.32 | - | 7.32 |

$A G E=17$

| UNWEIGHTED N | 893 | 4167 | 521 | 5581 |
| :--- | ---: | ---: | ---: | ---: |
| WEIGHTED N | 811417 | 2218503 | 385821 | 3415741 |
| STANDARD ERROR | 37457 | 4912 | 39407 | 15624 |
| COEFF. OF VAR.* | 4.62 | 0.22 | 10.21 | 0.46 |

AGE $>17$

| UNWEIGHTED N | 0 | 831 | 0 | 831 |
| :--- | ---: | ---: | ---: | ---: |
| WEIGHTED N | 0 | 657089 | 0 | 657089 |
| STANDARD ERROR | - | 26348 | - | 26348 |
| COEFF. OF VAR.* | - | 4.01 | - | 4.01 |

AGE TOTAL

| UNWEIGHTED N | 893 | 5638 | 521 | 7052 |
| :--- | ---: | ---: | ---: | ---: |
| WEIGHTED N | 811417 | 3290506 | 385821 | 4487744 |
| STANDARD ERROR | 37457 | 10395 | 39407 | 17884 |
| COEFF. OF VAR.* | 4.62 | 0.32 | 10.21 | 0.40 |

[^59]Table 16-34
Numbers of Students Assessed in Civics Bridge to 1976 and 1982, Age 13 and Age 17
(Booklet 90)
-—— GRADE

| AGE 13 | $<8$ | $=8$ | $>8$ | Total |
| :--- | ---: | ---: | ---: | ---: | ---: |
| UNWEIGHTED N | 635 | 1298 | 5 | 1938 |
| WEIGHTED N | 1010355 | 2024944 | 6547 | 3041846 |
| STANDARD ERROR | 53035 | 51919 | 4636 | 16956 |
| GOEFF. OF VAR.* | 5.25 | 2.56 | 70.81 | 0.56 |

$\qquad$

| AGE 17 | $<11$ | $=11$ | $>11$ | Total |
| :--- | ---: | ---: | ---: | ---: |
|  |  |  |  |  |
| UNWEIGHTED N | 300 | 1333 | 153 | 1786 |
| WEIGHTED N | 550974 | 2624633 | 263814 | 3439421 |
| STANDARD ERROR | 40700 | 50701 | 28587 | 9556 |
| COEFF. OF VAR.* | 7.39 | 1.93 | 10.84 | 0.28 |

* Coefficient of variation is defined as (100 times Standard Error divided by Weighted $N$ ).

Weighted Percentage of Students in Main Sample by Type of Eligibility and Subgroup Classification, Grade 4/Age 9

## ELIGIBLE BY

|  | Age | Grade | Age \& Grade | Age or Grarie |
| :---: | :---: | :---: | :---: | :---: |
| SEX |  |  |  |  |
| Male | 50.38 | 50.66 | 47.15 | 52.03 |
| Female | 49.62 | 45.34 | 52.85 | 47.97 |
| RACE/ETHNICITY |  |  |  |  |
| White | 71.08 | 69.83 | 72.91 | $69 . 氵 5$ |
| Black | 14.51 | 15.25 | 13.51 | 15.50 |
| Hispanic | 10.69 | 10.91 | 9.36 | 11.44 |
| Other | 3.72 | 4.01 | 4.21 | 3.71 |
| REGION |  |  |  |  |
| Northeast | 22.50 | 22.58 | 25.20 | 21.35 |
| Southeas' | 24.96 | 25.73 | 23.25 | 26.29 |
| Central | 23.95 | 23.86 | 23.15 | 24.25 |
| West | 28.60 | 27.82 | 28.41 | 28.12 |
| PARENT'S EDUCATION |  |  |  |  |
| Less than High School | 4.36 | 4.82 | 3.65 | 5.02 |
| High School | 14.43 | 14.77 | 13.86 | 14.93 |
| Greater than High School | 6.96 | 7.96 | 8.04 | 7.20 |
| Graduated College | 36.86 | 38.04 | 40.26 | 36.19 |
| Unknown | 37.08 | 34.05 | 33.84 | 36.32 |
| SIZE AND TYPE OF COMMUNITY |  |  |  |  |
| Disadvantaged Urban | 8.27 | 8.57 | 7.82 | 8.69 |
| Advantaged Urban | 14.10 | 14.22 | 15.60 | 13.52 |
| Big City | 8.81 | 9.63 | 9.42 | 9.13 |
| Fringe | 13.40 | 13.02 | 14.34 | 12.70 |
| Medium City | 15.36 | 15.47 | 15.53 | 15.36 |
| Small Places | 28.74 | 28.77 | 27.14 | 29.48 |
| ESTIMATEL SOTAL POPULATION | 32245\%3 | 3259011 | 2006376 | 4477209 |

Table 16-36
Weighted Percentage of Students in Main Sample
by Type of Eligibility and Subgroup Classification, Grade 8/Age 13


Table 16-37
Weighted Percentage of Students in Main Sample by Type of Eligibility and Subgroup Classification, Grade 12/Age 17

|  | Age | Grade | Age \& Grade | Age or Gra |
| :---: | :---: | :---: | :---: | :---: |
| SEX |  |  |  |  |
| Male | 48.32 | 47.65 | 43.76 | 50.18 |
| Female | 51.68 | 52.35 | 56.24 | 49.82 |
| RACE/ETHNICITY |  |  |  |  |
| White | 73.96 | 74.82 | 77.46 | 72.78 |
| Black | 14.52 | 13.41 | 12.14 | 14.93 |
| Hispanic | 8.10 | 7.80 | 6.66 | 8.62 |
| Other | 3.43 | 3.97 | 3.74 | 3.67 |
| REGION |  |  |  |  |
| Northeast | 25.40 | 25.63 | 27.92 | 24.27 |
| Southeast | 24.03 | 23.01 | 22.84 | 23.89 |
| Central | 24.37 | 25.29 | 23.74 | 25.3 |
| West | 26.20 | 26.07 | 25.50 | 26.47 |
| PARENT'S EDUCATION |  |  |  |  |
| Less than High School | 8.18 | 7.61 | 6.28 | 8.74 |
| High School | 25.21 | 24.2? | 23.13 | 25.59 |
| Greater than High School | 24.04 | 24.17 | 25.23 | 23.52 |
| Graduated College | 39.80 | 41.43 | 43.39 | 39.15 |
| Unknown | 2.38 | 2.16 | 1.65 | 2.59 |
| SIZE AND TYPE OF COMMUNITY |  |  |  |  |
| Rural | 4.81 | 4.80 | 4.28 | 5.08 |
| Disadvantaged Urban | 8.71 | 7.41 | 5.67 | 8.81 |
| Advantaged Urban | 16.66 | 18.29 | 19.21 | 16.54 |
| Big City | 12.66 | 12.40 | 12.80 | 12.40 |
| Fringe | 13.65 | 13.40 | 13.53 | 13.53 |
| Medium City | 10.84 | 11.34 | 11.91 | 10.66 |
| Small Places | 32.65 | 32.37 | 31.61 | 32.99 |

Table 16-38
Weighted Percentage of Students in Bridge to 1984 Sample by Type of Eligibility and Subgroup Classification, Grade 4/Age 9

|  | Age | Grade | Age \& Grade | Age or Grade |
| :---: | :---: | :---: | :---: | :---: |
| SEX |  |  |  |  |
| Male | 50.27 | 50.68 | 45.89 | 52.53 |
| Female | 49.73 | 49.32 | 54.11 | 47.47 |
| RACE/ETHNICITY |  |  |  |  |
| White | 71.09 | 69.92 | 72.96 | 69.39 |
| Black | 14.54 | 15.22 | 13.55 | 15.48 |
| Hispanic | 10.72 | 10.78 | 9.31 | 11.39 |
| Other | 3.66 | 4.08 | 4.17 | 3.74 |
| REGION |  |  |  |  |
| Northeast | 22.41 | 23.41 | 25.61 | 21.71 |
| Southeast | 25.32 | 26.05 | 23.59 | 26.63 |
| Central | 23.82 | 23.08 | 22.31 | 2395 |
| West | 28.45 | 27.45 | 28.49 | 27.70 |
| PARENT'S EDUCATION |  |  |  |  |
| Less than High School | 1.56 | 5.18 | 4.28 | 5.14 |
| High School | L5.91 | 17.97 | 15.78 | 17.47 |
| Greater than High School | 4.95 | 4.89 | 5.12 | 4.83 |
| Graduated College | 40.15 | 41.99 | 44.13 | 39.72 |
| Unknown | 34.20 | 29.76 | 30.55 | 32.58 |
| SIZE AND TYPE OF COMMUNT IY |  |  |  |  |
| Rural | 9.74 | 9.69 | 9.24 | 9.92 |
| Disadvantaged Urban | 7.39 | 8.30 | 6.63 | 8.40 |
| Advantaged Urban | 15.71 | 13.69 | 14.98 | 14.56 |
| E'g City | 7.29 | 7.80 | 7.71 | 7.47 |
| Fringe | 11.77 | 11.83 | 13.46 | 11.06 |
| Medium City | 13.91 | 14.17 | 14.31 | 13.92 |
| Small Places | 34.18 | 34.52 | 33.67 | 34.66 |
| estimated total population | 3200954 | 3281010 | 2004609 | 4477355 |

Table 16-39
Weighted Percentag of Students in Bridge to 1984 Sample by Type of Eligibility and Subgroup Classification, Grade 8/Age 13

|  | Age | Grade | Age \& Grade | Age or Grade |
| :---: | :---: | :---: | :---: | :---: |
| SEX |  |  |  |  |
| Male | 49.52 | 49.40 | 43.30 | 52.08 |
| Female | 50.48 | 50.60 | 56.70 | 47.92 |
| RACE/ETHNICITY |  |  |  |  |
| White | 71.18 | 70.61 | 74.67 | 69.28 |
| Black | 14.39 | 14.90 | 12.79 | 15.44 |
| Hispanic | 10.31 | 10.28 | 8.40 | 11.10 |
| Other | 4.12 | 4.20 | 4.14 | 4.17 |
| REGION |  |  |  |  |
| Northeast | 22.75 | 22.76 | 24.79 | 21.89 |
| Southeast | 23.67 | 23.73 | 22.15 | 24.36 |
| Central | 23.64 | 25.90 | 23.88 | 25.73 |
| West | 27.94 | 27.61 | 27.18 | 28.02 |
| PARENT'S EDUCATION |  |  |  |  |
| Less .han High School | 7.92 | 8.45 | 6.35 | 8.97 |
| High School | 30.93 | 31.36 | 30.88 | 31.26 |
| Greater than High School | 9.96 | 10.81 | 11.25 | 10.02 |
| Graduated College | 41.65 | 41.05 | 44.11 | 40.17 |
| Uniknown | 9.24 | 7.99 | 7.19 | 9.21 |
| SIZE AND TYPE OF COMMUNITY |  |  |  |  |
| Rural | 6.07 | 5.88 | 6.47 | 5.76 |
| Disadvantaged Urban | 7.33 | 7.01 | 5.76 | 7.76 |
| Advantaged Urban | 13.30 | 13.87 | 14.27 | 13.29 |
| Big City | 8.69 | 8.67 | 8.40 | 8.80 |
| Fringe | 14.70 | 14.00 | 14.63 | 14.22 |
| Medium City | 11.41 | 11.49 | 13.00 | 10.79 |
| Small Places | 38.51 | 39.08 | 37.45 | 39.38 |
| ESTIMATED TOTAL POPULATION | 3033150 | 3115341 | 1836364 | 4312127 |

Table 16-40
Weighted Percentage of Students in Bridge to 1984 Sample by Type of Eligibility and Subgroup Classification, Grade 1l/Age 17

|  | Age | Grade | Age \& Grade | Age or Grade |
| :---: | :---: | :---: | :---: | :---: |
| SEX |  |  |  |  |
| Male | 47.85 | 46.94 | 45.46 | 48.36 |
| Female | 52.15 | 53.06 | 54.54 | 51.64 |
| RACE/ETHNICITY |  |  |  |  |
| White | 73.04 | 73.65 | 78.17 | 70.96 |
| Black | 15.08 | 14.91 | 12.37 | 16.30 |
| Hispanic | 2.23 | 7.99 | 6.37 | 8.97 |
| Othar | 3.64 | 3.44 | 3.09 | 3.77 |
| REGION |  |  |  |  |
| Northeast | 22.71 | 22.58 | 23.26 | 22.34 |
| Southeast | 22.87 | 22.04 | 2038 | 23.50 |
| Central | 26.31 | 27.12 | 28.06 | 26.04 |
| West | 28.11 | 28.25 | 28.31 | 28.12 |
| PARENT'S EDUCATION |  |  |  |  |
| Less than High School | 8.92 | 8.18 | 6.34 | 9.55 |
| High School | 30.20 | 30.39 | 29.25 | 30.80 |
| Sreater than High School | 17.81 | 17.70 | 19.12 | 17.08 |
| Graduated College | 40.39 | 40.91 | 43.48 | 39.95 |
| Uxiknown | 2.43 | 2.69 | 1.68 | $2 . .99$ |
| SIZE AND TYPE OF COMMUNITY |  |  |  |  |
| Rural | 7.01 | 6.95 | 7.26 | 6.84 |
| Disadvantaged Urbax | 0.83 | 1.13 | 0.67 | 1.13 |
| Advantaged Urban | 16.00 | 17.04 | 17.88 | 15.84 |
| Big City | 16.86 | 17.39 | 15.79 | 17.78 |
| Fringe | 14.14 | 14.04 | 15.10 | 13.59 |
| "edium city | 14.87 | 13.99 | 14.69 | 14.32 |
| Small Places | 30.28 | 29.46 | 28.61 | 30.50 |
| ESTIMATED TOTAL POPULATION | 3420630 | 3286221 | 2218862 | 4487990 |

Table 16-41
Weightad Percentage of Students in Bridge to 1980 Sample by Type of Eligibility and Subgroup Classification, Age 9

ELIGIBLE BY

|  | Age | Grade | Age \& Grade | Age or Grade |
| :---: | :---: | :---: | :---: | :---: |
| SEX |  |  |  |  |
| Male | 49.53 | 47.03 | 47.03 | 49.53 |
| Female | 50.47 | 52.97 | 52.97 | 50.47 |
| RACE/ETHNICITY |  |  |  |  |
| White | 71.17 | 73.29 | 73.29 | 71.17 |
| Black | 14.47 | 13.88 | 13.88 | 14.47 |
| Hispanic | 10.73 | 9.42 | 9.42 | 10.73 |
| Other | 3.63 | 3.42 | 3.42 | 3.63 |
| REGION |  |  |  |  |
| Northeast | 23.82 | 29.49 | 29.49 | 23.82 |
| Southeast | 25.18 | 23.57 | 23.57 | 25.18 |
| Central | 24.00 | 20.60 | 20.60 | 24.00 |
| West | 27.00 | 26.33 | 26.33 | 27.00 |
| PARENT'S EDUCATION |  |  |  |  |
| Less than High School | 3.69 | 3.48 | 3.48 | 3.69 |
| High School | 15.44 | 16.06 | 16.06 | 15.44 |
| Greater than High School | 7.57 | 8.80 | 8.80 | 7.57 |
| Graduated College | 42.51 | 46.28 | 46.28 | 42.51 |
| Unknown | 30.03 | 24.94 | 24.94 | 30.03 |
| SIZE AND TYPE OF COMMUNITY 9.60 |  |  |  |  |
| Rural | 9.60 | 8.54 | 8.54 | 9.60 |
| Disadvantaged Urban | 7.88 | 7.68 | 7.68 | 7.88 |
| Advantaged Urban | 14.71 | 13.50 | 13.50 | 14.71 |
| Big City | 7.01 | 7.53 | 7.53 | 7.01 |
| Fringe | 11.63 | 13.37 | 13.37 | 11.63 |
| Medium City | 15.01 | 14.82 | 14.82 | 15.01 |
| Small Places | 34.16 | 34.57 | 34.57 | 34.16 |
| Estimated total population | 9628742 | 6368610 | 6368610 | 9628742 |

Table 16-42
Weighted Percentage of Students in Bridge to 1986 Sample by Type of Eligibility and Subgroup Classification, Age 13

ELIGIELE BY

|  | Age | Grade | Age \& Grade | Age or Gra |
| :---: | :---: | :---: | :---: | :---: |
| SEX |  |  |  |  |
| Male | 50.49 | 47.27 | 47.27 | 50.49 |
| Female | 49.51 | 52.73 | 52.73 | 49.51 |
| RACE/ETHNICITY |  |  |  |  |
| !hite | 70.90 | 72.59 | 72.59 | 70.90 |
| Black | 14.59 | 14.03 | 14.03 | 14.59 |
| Hispanic | 10.43 | 8.93 | 8.93 | 10.43 |
| Other | 4.08 | 4.45 | 4.45 | 4.08 |
| REGION |  |  |  |  |
| Northeast | 24.11 | 26.61 | 26.61 | 24.11 |
| Southeast | 23.07 | 19.92 | 19.92 | 23.07 |
| Central | 26.07 | 25.52 | 25.52 | 26.07 |
| West | 26.75 | 27.95 | 27.95 | 26.75 |
| PARENT'S EDUCATION 70.54 |  |  |  |  |
| Less than High School | 7.54 | 6.27 | 6.27 | 7.54 |
| High School | 25.37 | 23.60 | 23.60 | 25.37 |
| Greater than High School | 15.24 | 17.37 | 17.37 | 15.24 |
| Graduated College | 43.46 | 46.01 | 46.01 | 43.46 |
| Unknown | 8.18 | 6.59 | 6.59 | 8.18 |
| SIZE AND TYPE OF COMMUNITY |  |  |  |  |
| Rural | 5.01 | 5.07 | 5.07 | 5.01 |
| Disadvantaged Urban | 7.73 | 6.84 | 6.84 | 7.73 |
| Advantaged Urban | 12.64 | 13.65 | 13.65 | 12.64 |
| Big City | 8.80 | 9.39 | 9.39 | 8.80 |
| Fringe | 15.02 | i3. 46 | 15.46 | 15.02 |
| Medium City | 11.84 | 13.67 | 13.67 | 1184 |
| Small Places | 38.96 | 35.93 | 35.93 | 38.96 |
| EStimated total population | 9158037 | 5800543 | 5800543 | 9158037 |

Table 16-43
Weighted Percentage of Students in Bridge to 1986 Sample by Type of Eligibility and Subgroup Classification, Grade 1l/Age 17

|  | Age | Grade | Age \& Grade | Age or Gra |
| :---: | :---: | :---: | :---: | :---: |
| SEX |  |  |  |  |
| Male | 49.03 | 48.65 | 47.01 | 49.75 |
| Female | 50.97 | 51.35 | 52.99 | 50.25 |
| RACE/ETHNICITY |  |  |  |  |
| White | 73.05 | 73.56 | 78.19 | 70.88 |
| Black | 15.11 | 14.90 | 12.35 | 16.31 |
| Hispanic | 8.23 | 8.00 | 6.38 | 8.98 |
| Other | 3.62 | 3.54 | 3.08 | 3.83 |
| REGION |  |  |  |  |
| Northeast | 22.74 | 21.95 | 22.42 | 22.32 |
| Southeast | 23.29 | 21.80 | 20.95 | 23.35 |
| Central | 25.75 | 27.98 | 28.37 | 26.09 |
| West | 28.22 | 28.27 | 28.26 | 28.24 |
| PARENT'S EDUCATION |  |  |  |  |
| Less than High School | 8.83 | 7.60 | 5.53 | 9.56 |
| High School | 25.21 | 25.02 | 23.86 | 25.74 |
| Greater than High School | 23.76 | 24.04 | 25.72 | 23.00 |
| Graduated College | 38.98 | 39.98 | 42.30 | 38.08 |
| Unknown | 2.73 | 3.03 | 2.18 | 3.22 |
| SIZE AND TYPE OF COMMUNITY |  |  |  |  |
| Rural | 5.96 | 6.77 | 6.22 | 6.43 |
| Disadvantaged Urban | 1.00 | 1.20 | 0.96 | 1.17 |
| Advantaged Urban | 15.99 | 16.10 | 17.18 | 15.48 |
| Big City | 17.42 | 16.56 | 15.71 | 17.63 |
| Fringe | 14.55 | 14.10 | 14.24 | 14.37 |
| Medium City | 13.58 | 14.67 | 15.46 | 13.46 |
| Small Places | 31.49 | 30.60 | 30.24 | 31.46 |
| ESTIMATED TOTAL POPULition | 3415741 | 3290506 | 2218503 | 4487744 |

Table: 16-44
Weighted Percentage of Students in Civics Bridge by Type of Eligibility and Subgroup Classification, Age 13

|  | Age | Grade | Age \& Grade | Age or Grade |
| :---: | :---: | :---: | :---: | :---: |
| SEX |  |  |  |  |
| Male | 51.10 | 45.93 | 45.93 | 51.10 |
| Female | 48.90 | 54.07 | 54.07 | 48.90 |
| RACE/ETHNICITY |  |  |  |  |
| White | 71.07 | 73.21 | 73.21 | 71.07 |
| Black | 14.26 | 13.90 | 13.90 | 14.26 |
| Hispanic | 10.54 | 8.75 | 8.75 | 10.54 |
| Other | 4.12 | 4.14 | 4.14 | 4.12 |
| REGION |  |  |  |  |
| Northeast | 24.36 | 26.72 | 26.72 | 24.36 |
| Southeast | 21.57 | 20.33 | 20.33 | 21.57 |
| Central | 27.10 | 25.59 | 25.59 | 27.10 |
| West | 26.98 | 27.35 | 27.35 | 26.98 |
| PARENT'S EDUCATION |  |  |  |  |
| Less than High School | 6.21 | 4.88 | 4.88 | 6.21 |
| High School | 28.65 | 27.40 | 27.40 | 28.65 |
| Greater than High School | 16.80 | 18.23 | 18.23 | 16.80 |
| Graduated College | 40.76 | 43.48 | 43.48 | 40.76 |
| Unknown | 7.22 | 5.69 | 5.69 | 7.22 |
| SIZE AND TYPE OF COMMUNITY |  |  |  |  |
| Rural | 5.23 | 4.85 | 4.85 | 5.23 |
| Disadventaged Urban | 7.18 | 6.37 | 6.37 | 7.18 |
| Advantaged Urban | 15.64 | 16.64 | 16.64 | 15.64 |
| Big City | 9.79 | 9.87 | 9.87 | 9.79 |
| Fringe | 14.20 | 14.26 | 14.26 | 14.20 |
| Medium City | 11.09 | 12.57 | 12.57 | 11.09 |
| Small Places | 36.88 | 35.45 | 35.45 | 36.88 |
| EStimated total population | 3041846 | 2024944 | 2024944 | 3041846 |

Table 16-45
Weighted Percentage of Students in Civics Bridge by Type of Eligibility and Subgroup Classification, Age 17

|  | Age | Grade | Age \& Grade | Age or Grade |
| :---: | :---: | :---: | :---: | :---: |
| SEX |  |  |  |  |
| Male | 45.90 | 44.35 | 44.35 | 45.90 |
| Female | 54.10 | 55.65 | 55.65 | 54.10 |
| RACE/ETHNICITY |  |  |  |  |
| White | 73.03 | 75.73 | 75.73 | 73.03 |
| Black | 15.12 | 13.44 | 13.44 | 15.12 |
| Hispanic | 8.24 | 7.36 | 7.36 | 8.24 |
| Other | 3.61 | 3.48 | 3.48 | 3.61 |
| REGION |  |  |  |  |
| Northeast | 22.41 | 21.61 | 21.61 | 22.41 |
| Southeast | 22.60 | 20.62 | 20.62 | 22.60 |
| Central | 26.85 | 30. 8 | 30.48 | 26.85 |
| West | 28.14 | 27.30 | 27.30 | 28.14 |
| PARENT'S EDUCATION |  |  |  |  |
| Less than High School | 9.00 | 8.03 | 8.03 | 9.09 |
| High School | 24.67 | 23.30 | 23.30 | 24.67 |
| Greater than High School | 25.41 | 26.19 | 26.19 | 25.41 |
| Graduated College | 38.65 | 40.97 | 40.97 | 38.65 |
| Unknown | 1.92 | 1.27 | 1.27 | 1.92 |
| SIZE AND TYPE OF COMMUNITY 6.86 |  |  |  |  |
|  |  |  |  |  |
| Disadvantaged Urban | 0.91 | 0.85 | 0.85 | 0.91 |
| Advantaged Urban | 16.35 | 17.35 | 17.35 | 16.35 |
| Big City | 16.85 | 16.51 | 16.51 | 16.85 |
| Fringe | 1/.11 | 14.19 | 14.19 | 14.11 |
| Medium City | 14.47 | 14.27 | $14.2 \%$ | 14.47 |
| Small Places | 30.46 | 29.55 | 29.55 | 30.46 |
| ESTIMATED TOTAL POPULATION | 3439421 | 2624633 | 2624633 | 3439421 |

Weighted Percentage of Excluded Students, by Type of Eligibility and Subgroup Classification in Grade 4/Age 9 Main and Bridge Samples

|  | Age | Grade | Age \& Grade | Age or Grade |
| :---: | :---: | :---: | :---: | :---: |
| SEX |  |  |  |  |
| Male | 65.65 | 66.67 | 61.88 | 66.83 |
| Female | 34.35 | 33.25 | 38.12 | 33.13 |
| RACE/ETHNICITY 51.38 ( 53.56 ( ${ }^{\text {a }}$ |  |  |  |  |
| White | 53.56 | 51.38 | 45.73 | 53.73 |
| Black | 24.46 | 22.01 | 19.26 | 24.04 |
| Hispanic | 16.98 | 18.73 | 26.25 | 16.34 |
| Other | 5.01 | 7.88 | 8.76 | 5.90 |
| REGION 20.71 |  |  |  |  |
| Northeast | 21.44 | 19.73 | 20.42 | 20.71 |
| Southeast | 26.81 | 26.18 | 15.47 | 28.22 |
| Central | 21.76 | 16.77 | 15.11 | 20.24 |
| West | 30.00 | 37.32 | 47.99 | 30.84 |
| SIZE AND TYPE OF COMMUNITY |  |  |  |  |
| Disadvantaged Urban | 13.82 | 12.88 | 14.01 | 13.29 |
| Advantaged Urban | 8.42 | 8.94 | 10.00 | 8.43 |
| Big City | 14.67 | 16.61 | 19.21 | 14.93 |
| Fringe | 14.63 | 14.89 | 20.53 | 13.77 |
| Medium City | 15.19 | 15.73 | 15.72 | 15.39 |
| Small Places | 26.21 | 23.51 | 16.56 | 26.41 |
| ESTIMATED TOTAL POPULATION | 143361 | 22555 | 39008 | 231907 |

Weighted Percentage of Excluded Students, by Type of Eligibility and Subgroup Classification in Grade 8/Age 13 Main and Bridge Samples

Age Grade Age \& Grade Age or Grade
SEX
Male
Female
RACE/ETHNICITY
White
Black
Hispanic
Other
REGION

| Northeast | 27.07 | 25.78 | 27.14 | 26.33 |
| :--- | :--- | :--- | :--- | :--- |
| Southeast | 22.64 | 21.45 | 14.23 | 23.24 |
| Central | 21.42 | 23.77 | 18.62 | 23.18 |
| West | 28.87 | 28.99 | 40.01 | 27.25 |

SIZE AND TYPE OF COMMUNITY

| Rural | 6.43 | 7.81 | 4.56 | 7.49 |
| :--- | ---: | ---: | ---: | ---: |
| Disadvantaged Urban | 16.82 | 14.08 | 13.31 | 15.80 |
| Advantaged Urban | 6.21 | 6.11 | 8.94 | 5.74 |
| Big City | 16.76 | 12.12 | 7.46 | 15.55 |
| Fringe | 13.10 | 16.67 | 20.46 | 14.01 |
| Medium City | 14.35 | 14.92 | 22.42 | 13.45 |
| Small Places | 26.33 | 28.29 | 22.85 | 27.97 |

ESTIMATED TOTAL POPULATION $144182139191 \quad 37354 \quad 246018$

Table 16-48
Weighted Percentage of Excluded Students, by Type of Eligibility and Subgroup Classification in Grade 12/Age 17 Main Sample

|  | Age | Grade | Age \& Grade | Age or Grade |
| :---: | :---: | :---: | :---: | :---: |
| SEX |  |  |  |  |
| Male | 63.52 | 57.14 | 51.77 | 62.47 |
| Female | 36.38 | 42.80 | 48.23 | 37.50 |
| RACE/ETHNICITY |  |  |  |  |
| White | 54.33 | 60.04 | 61.22 | 55.94 |
| Black | 25.73 | 23.43 | 22.20 | 25.21 |
| Hispanic | 13.74 | 9.59 | 8.63 | 12.59 |
| Other | 6.21 | 6.94 | 7.95 | 6.27 |
| REGION |  |  |  |  |
| Northeast | 25.83 | 24.33 | 32.34 | 24.01 |
| Southeast | 25.64 | 25.63 | 20.88 | 26.44 |
| Central | 22.94 | 20.06 | 22.29 | 21.65 |
| West | 25.59 | 29.98 | 24.49 | 27.90 |
| SIZE AND TYPE OF COMMUNITY |  |  |  |  |
| Rural | 3.02 | 4.92 | 1.75 | 4.16 |
| Disadvantaged Urban | 19.23 | 1'4. 38 | 17.53 | 17.17 |
| Advantaged Urban | 5.18 | '. 18 | 7.01 | 5.35 |
| Big City | 10.21 | 9.77 | 9.13 | 10.18 |
| Fringe | 13.25 | 13.75 | 14.09 | 13.35 |
| Medium City | 9.95 | 8.71 | 9.38 | 9.44 |
| Small Places | 39.16 | 42.29 | 41.10 | 40.35 |
| ESTIMATED TOTAL POPULATION | 91954 | 64970 | 22571 | 134353 |

Table 16-49
Weighted Percentage of Excluded Students, by Type of Eligibility and Sukgroup Classification in Grade 1l/Age 17 Bridge Sample

|  | Age | Grade | Age \& Grade | Age or Grade |
| :---: | :---: | :---: | :---: | :---: |
| SEX |  |  |  |  |
| Male | 69.45 | 67.67 | 65.99 | 69.13 |
| Female | 30.55 | 32.33 | 34.01 | 30.87 |
| RACE/ETHNICITY |  |  |  |  |
| White | 54.83 | 64.36 | 71.56 | 63.32 |
| Black | 16.47 | 17.10 | 13.26 | 17.41 |
| Hispanic | 13.61 | 8.22 | 7.71 | 11.79 |
| Other | 5.10 | 10.32 | 7.47 | 7.49 |
| REGION |  |  |  |  |
| Northeast | 21.99 | 21.88 | 33.17 | 19.84 |
| Southeast | 21.72 | 17.67 | 17.18 | 20.37 |
| Gentral | 28.36 | 32.62 | 26.27 | 31.07 |
| West | 27.92 | 27.83 | 23.38 | 28.72 |
| SIZE AND TYPE OF COITMUNITY |  |  |  |  |
| Rura). | 10.64 | 8.45 | 11.09 | 9.36 |
| Disadvantaged Urban | 1.04 | 2.90 | 1.70 | 1.93 |
| Advantaged Urban | 10.94 | 13.29 | 21.97 | 10.15 |
| Big City | 7.29 | 3.54 | 4.18 | 5.84 |
| Fringe | 16.02 | 9.56 | 10.14 | 13.61 |
| Medium City | 15.53 | 22.95 | 23.60 | 20.62 |
| Small Places | 34.54 | 39.30 | 27.32 | 38.48 |
| ES . IMATED TOTAL POPULATION | 110521 | 93092 | 32060 | 171553 |

Table 16-50
Nusbers of Students in Main Sample with Proficiency Scores by Type of Eligibility, Grade 4/Age 9

| Subject Area/Sample | Age | Grade Age \& Grade Age or Grade |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Reading Focused-BIB | 4423 | 4534 | 2780 | 6177 |
| Reading Intercorrelation | 1882 | 1957 | 1201 | 2638 |
| Writing Focused-BIB and Long Writing | 6331 | 6679 | 4129 | 8881 |
| Civics Focused-BIB | 1858 | 1974 | 1180 | 2652 |
| Civics Intercorrelation | 1882 | 1957 | 1201 | 2638 |
| History Focused-BIB | 1872 | 1993 | 1201 | 2664 |
| History Intercorrelation | 1882 | 1957 | 1201 | 2638 |
| Geography Focused-BIP | 0 | 0 | 0 | 0 |
| Geography Intercorrelacion | 0 | 0 | 0 | 0 |
| TOTAL | 16366 | 17137 | 10491 | 23012 |

Table 16-51
Numbers of Students in Main Sample with Proficiency Scores
by Type of Eligibility, Grade $8 /$ Age 13

| Subject Area/Sample | Age | Grade Age \& Grade Age or Grade |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Reading Focused-BIB | 4250 | 4404 | 2742 | 5912 |
| Reading Intercorrelation | 1819 | 1943 | 1172 | 2590 |
| Writing Focused-BIB and Long Writing | 6059 | 6525 | 3987 | 8597 |
| Civics Focused-BIB | 4249 | 4487 | 2755 | 5981 |
| Civics Intercoirelation | 1819 | 1943 | 1172 | 2590 |
| History Focused-BIB | 4303 | 4519 | 2834 | 5988 |
| History Intercorrelation | 1819 | 1943 | 1172 | 2590 |
| Seography Focused-BIB | 0 | 0 | 0 | 0 |
| Geography Intercorrelation | 0 | 0 | 0 | 0 |
| TOTAL | 20680 | 21878 | 13490 | 29068 |

umbers of Students in Main Sample with Proficiency Scores by Type of Eligibility, Grade 12/Age 17

| Subject Area/Sample | Age | Grade Age \& Grade Age or G |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Reading Focused-BIB | 4509 | 4250 | 2991 | 5768 |
| Reading Intercorrelation | 1879 | 1851 | 1292 | 2438 |
| Uriting Focused-BIB and Long Writing | 6360 | 6069 | 4259 | 8170 |
| Civics Focused-BIB | 4416 | 4275 | 3008 | 5683 |
| Civics Intercorrelation | 1249 | 1233 | 861 | 1621 |
| History Focused-BIB | 4561 | 4268 | 3049 | 5780 |
| History Intercorrelation | 1266 | 1239 | 873 | 1632 |
| Geography Focused-BIB | 1912 | 1800 | 1266 | 2446 |
| Geography Intercorrelation | 1243 | 1230 | 850 | 1623 |
| TCTAL | 23637 | 22513 | 15865 | 30285 |

Numbers of Students in Bridge to 1984 Sample with Proficiency Scores by Type of Eligibility, Grade 4/Age 9

| Subject Area | Age | Grade Age \& Grade Age or Grade |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Reading | 3782 | 3979 | 2573 | 5188 |
| Wricing | 2154 | 3327 | 2154 | 3327 |
| TOTAL | 3782 | 3979 | 2573 | 5188 |

Tabie 16-54
Numbers of Students in Bridge to 1984 Sample with Proficiency Scores by Type of Eligibility, Grade 8/Age 13

| Subject Area | Age | Grade Age \& Grade Age or Grade |  |  |
| :--- | :--- | :---: | :---: | :---: |
| Reading | 4005 | 4133 | 26,38 | 5500 |
| Wrıting | 2638 | 4133 | 2638 | 4133 |
| TOTAL | 4005 | 4133 | 2638 | 5500 |

Table 16-55
Numbers of Students in Bridge to 1984 Sample with Proficiency Scores by Type of Eligibility, Grade 1l/Age 17


Table 16-56
Numbers of Students in Bridge to 1986 Sample with Proficiency Scores by Type of Eligibility, Age 9

| Subject Area | Age | Grade | Gra | or C |
| :---: | :---: | :---: | :---: | :---: |
| Reading | 3711 | 2498 | 2498 | 3711 |
| Mathematics | 3711 | 2498 | 2498 | 3711 |
| Science | 3711 | 2498 | 2498 | 3711 |
| TOTAL | 3711 | 2498 | 2498 | 3711 |

Numbers of St dents in Bridge to 1986 Sample with Proficiency Scores by Type of Eligibility, hge 13

|  | ELIGIBLE BY |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Age | Grade Age \& Grade Age or Grade |  |  |
| Subject Area | 3942 | 2545 | 2545 | 3942 |
| Reading | 3942 | 2545 | 2545 | 3942 |
| Mathematics | 3942 | 2545 | 2545 | 3942 |
| Science | 3942 | 2545 | 2545 | 3942 |

Table 16-58
Numbers of Students in Bridge to 1986 Sample with Proficiency Scores by Type of Eligibjlity, Grade 11/Age 17

|  |  |  |  |  |  |
| :--- | ---: | :---: | :---: | :---: | :---: |
| Subject_Area | Age | Grade Age \& Grade Age or Grade |  |  |  |
| Seading | 0 | 0 | 0 | 0 |  |
| History | 0 | 0 | 0 | 0 |  |
| Mathematics | 1852 | 1360 | 1360 | $185 ?$ |  |
| Science | 1862 | 1389 | 1389 | 1862 |  |
| TOTAL | 3105 | 2304 | 2304 | 3105 |  |

Table 16-59
Numbers of Students in Civics Bridge with Droficiency Scores by Type of Eligibility, Age 13

| Subject Area | Age | E'IGIBLE BY <br> Grade Age \& Grade Age or Grade |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Civics | 1938 | 1298 | 1298 | 1938 |
| TOTAL | 1938 | 1298 | 1298 | 1938 |

Table 16-60
Numbers of Students in Civics Bridge with Proficiency Scores by Type of Eligibility, Age 17

| Subject Area | Age |  | Grade Age \& Grade Age or Grade |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Civics | 1786 | 1333 | 1333 | 1786 |
| TOTAI. | 1786 | 1333 | 1333 | 1786 |

Table 16-61
Weighted Ircficiency Means, Standard Deviations, and Percentiles with Standard Errors
for Main Focused-BIR Reading Samples, by Grade and Subgroup

|  | Grade 4 | Grade 8 | Grade 12 |
| :---: | :---: | :---: | :---: |
| TOTAL SAMPLE |  |  |  |
| Mean | 230.4 ( 1.1) | 262.8 ( 1.0) | 287.1 ( 0.8) |
| Standard Deviation | 41.4 ( 0.7) | 37.3 ( 0.6) | 34.8 (0.6) |
| Yercentiles |  |  |  |
| 5 | 156.4 ( 1.3) | 195.0 ( 2.6) | 224.9 ( 2.4) |
| 10 | 174.2 ( 2.3) | 211.6 ( 1.4) | 241.1 ( 1.4) |
| 25 | 204.3 ( 2.0) | 239.8 ( 1.6) | 265.9 ( 1.3) |
| 50 | 233.6 ( 1.2) | 266.0 ( 1.1) | 290.0 ( 1.0) |
| 75 | 259.0 ( 1.1) | 288.6 ( 1.7) | 310.8 ( 1.0) |
| 90 | 280.3 ( 0.9) | 308.2 ( 1.0) | 329.1 ( 1.3) |
| 95 | 293.2 (1.2) | 320.1 ( 1.8) | 340.0 ( 1.8) |
| MALE STUDENTS |  |  |  |
| Mean | 226.6 ( 1.5) | 256.4 ( 1.3) | 282.9 ( 1.1) |
| Standard Deviation | 43.6 ( 1.0) | 39.4 ( 0.8) | 36.8 ( 0.8) |
| Percentiles |  |  |  |
| 5 | 148.7 ( 2.5) | 186.0 ( 3.7) | 214.6 ( 2.3) |
| 10 | 166.5 ( 4.4) | 201.0 ( 1.9) | 232.8 ( 1.9) |
| 25 | 198.7 ( 2.7) | 230.7 ( 1.9) | 259.7 ( 2.5) |
| 50 | 229.5 ( 1.4) | 259.9 ( 2.i) | 286.2 ( 1.5) |
| 75 | 257.1 ( 2.2) | 284.2 ( 1.7) | 307.9 ( 1.4) |
| 90 | 279.3 ( 1.9) | 304.7 ( 1.9) | 327.3 ( 0.9) |
| 95 | 293.2 ( 2.3) | 317.3 ( 1.8 ) | 338.1 ( 2.2) |
| FEMALE STUDENTS |  |  |  |
| Mean | 234.4 ( 1.2) | 269.6 ( 1.1) | 291.0 ( 1.1) |
| Standard Deviation | 38.5 ( 0.6) | 33.8 ( 0.7) | 32.4 ( 0.8) |
| Percentiles |  |  |  |
| 5 | 167.2 ( 2.0) | 211.3 ( 1.6) | 235.6 ( 4.2) |
| 10 | 182.8 ( 1.5) | 225.0 ( 1.6) | 249.3 ( 1.5) |
| 25 | 210.1 ( 1.0) | 248.5 ( 1.2) | 270.6 ( 1.4) |
| 50 | 237.6 ( 1.1) | 271.6 ( 1.2) | 292.8 ( 1.3) |
| 75 | 260.6 ( 1.1) | 292.2 ( 1.0) | 313.2 ( 1.2) |
| 90 | 281.3 ( 1.7) | 310.6 ( 1.2) | 330.5 ( 1.7) |
| 95 | 292.9 ( 1.6) | 322.4 ( 2.2) | 341.3 ( 3.2) |

## Table 16-61 (continued)

Weighted Proficiency Means, Standard Deviations, and Percentiles with Standard E:rors
for Main Focused-BIB Reading Samples, by Grade and Subgroup

Grade 4

| 238.1 | $(1.2)$ |
| ---: | :--- |
| 39.3 | $(0.8)$ |
| 167.1 | $(2.9)$ |
| 186.0 | $(3.6$ |
| 213.9 | $(1.3)$ |
| 240.8 | $(1.7)$ |
| 264.4 | $(1.1)$ |
| $285.2(1.6)$ |  |
| 297.8 | $(2.7)$ |

210.6 ( 1.9 ) 39.1 ( 1.0 )
$143.0(4.2)$
$158.4(4.7)$
$184.7(3.4)$
$212.0(2.5)$
$238.8(2.0)$
$258.0(1.9)$
$270.5(3.4)$
209. 9 ( 2.4 )
243.6 ( 2.1 )
37.6 (1.3)
177.6 ( 4.3)
190.9 ( 4.3 )
217.6 ( 4.3)
246.9 ( 3.4 )
271.5 ( 2.5 )
288.2 ( 2.5)
300.6 ( 3.1 )
41.5 ( 1.3 )
134.8 ( 7.6 )
153.2 (10.4)
182.5 ( 4.0 )
213.4 ( 1.9 )
240.3 ( 2.9 )
260.1 ( 6.4)
272.0 (4.1)

Grade 12
292.6 ( 1.0 )
33.4 ( 0.6 )
233.3 (3.6)
249.2 (1.9) 272.6 ( 1.2 ) 295.1 ( 1.0 ) 315.3 ( 1.3 ) 332.5 ( 0.7 ) 343.6 ( 2.2)

BLACK STUDENTS
Mea:
Scandard Deviation
Percentiles
5
10
25
50
75
90
95

HISPANIC STUDENTS

Mean
Standard Deviation Percentiles
245.7 ( 2.0 )
32.8 ( 1.2 )
187.4 ( 4.0 )
201.2 ( 3.7)
225.5 ( 2.3 )
248.2 ( 2.0 )
267.0 (2.8)
284.9 ( 2.6 )
297.2 (3.8)
270.3(1.6)
31.1 (1.2)
213.9 ( 3.5 )
228.8 (3.2)
250.3 ( 3.5 )
272.9 ( 1.4 )
292.0 (1.7)
307.1 (2.5)
317.5 (4.4)
267.1 (2.4)
35.7 ( 1.5 )
200.8 ( 7 0)
218.1 (3.3)
244.3 (4.3)
269.9 ( 2.3 )
292.7 ( 1.9 ) 310.8 ( 6.5 ) 321.0 (2.4)

Weighted Proficiency means, Standard Deviations, and Percentiles with Standard Errors
for Bridge to 1984 Reading Samples, by Age and Subgroup

|  | Age 9 |  | Age 13 |  | Age 17 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TOTAL SAMPLE |  |  |  |  |  |  |
| Mean | 211.8 | (1.2) | 257.5 | (0.9) | 290.1 | (1.1) |
| Standard Deviation | 41.2 | (1.0) | 34.7 | (0.4) | 37.1 | (0.7) |
| Percentiles |  |  |  |  |  |  |
| 5 | 142.0 | (3.6) | 199.7 | (1.6) | 226.2 | (1.3) |
| 10 | 156.8 | (2.0) | 213.0 | (1.2) | 241.5 | (2.4) |
| 25 | 184.3 | (1.7) | 234.3 | (1.2) | 265.8 | (1.8) |
| 50 | 213.7 | (1.4) | 257.9 | (1.0) | 291.1 | (1.8) |
| 75 | 240.1 | (1.3) | 281.4 | (1.4) | 316.0 | (1.4) |
| 90 | 263.0 | (1.7) | 301.6 | (1.0) | 336.9 | (2.1) |
| 95 | 277.5 | (1.9) | 313.7 | (1.3) | 348.7 | (1.7) |
| Male students |  |  |  |  |  |  |
| Mean | 207.5 | (1.5) | 251.8 | (1.2) | 286.0 | (1.5) |
| Standard Deviation | 42.7 | (1.1) | 35.3 | (0.6) | 37.5 | (1.1) |
| Percentiles |  |  |  |  |  |  |
| 5 | 136.6 | (2.9) | 192.7 | (2.7) | 222.0 | (2.6) |
| 10 | 151.1 | (2.3) | 206.8 | (1.6) | 236.3 | (3.6) |
| 25 | 178.4 | (1.7) | 227.8 | (2.0) | 261.6 | (1.7) |
| 50 | 209.8 | (1.8) | 252.2 | (2.1) | 287.0 | (2.2) |
| 75 | 237.1 | (1.7) | 276.5 | (2.0) | 312.0 | (3.4) |
| 90 | 260.4 | (2.0) | 297.2 | (1.5) | 333.4 | (2.0) |
| 95 | 275.1 | (2.3) | 309.4 | (2.8) | 345.6 | (4.1) |
| FEMALE STUDENTS |  |  |  |  |  |  |
| Mean | 216.3 | (1.4) | 263.0 | (1.0) | 293.8 | (1.6) |
| Standard Deviation Percentiles | 39.2 | (1.1) | 33.1 | (0.5) | 36.3 | (0.9) |
| 5 | 149.4 | (5.2) | 207.4 | (3.8) | 231.8 | (3.3) |
| 10 | 164.4 | (4.8) | 221.1 | (1.4) | 246.6 | (4.9) |
| 25 | 190.6 | (2.4) | 240.1 | (1.6) | 270.2 | (2.0) |
| 50 | 217.3 | (1.9) | 263.0 | (1.3) | 294.6 | (2.2) |
| 75 | 242.6 | (1.0) | 285.8 | (1.0) | 319.4 | (1.5) |
| 90 | 265.3 | (2.1) | 305.2 | (1.1) | 339.8 | (1.7) |
| 95 | 279.2 | (3.3) | 317.7 | (3.2) | 351.7 | (2.7) |

Table 16-62 (continued)

Weighted Proficiency Means, Standard Deviations, and Percentiles with Standard Errors
for Bridge co 1984 Reading Samples, by Age and Subgroup

|  | Age 9 | Ag: 13 | Age 17 |
| :---: | :---: | :---: | :---: |
| WHITE STUDENTS |  |  |  |
| Mean | 217.7 ( 1.5) | 261.3 ( 1.0) | 294.7 ( 1.3) |
| Standard Deviation | 39.3 ( 1.0 ) | 33.9 ( 0.5) | 36.0 ( 0.7) |
| Percentiles |  |  |  |
| 5 | 150.4 ( 3.4) | 204.2 ( 1.4) | 232.7 ( 1.0) |
| 10 | 165.1 ( 3.9) | 217.2 ( 1.9) | 247.4 ( 3.8) |
| 25 | 191.8 ( 2.4) | 238.4 ( 1.0) | 271.4 ( 1.7) |
| 50 | 219.1 ( 1.2) | 262.2 ( 1.1) | 295.4 ( 1.6) |
| 75 | 244.3 ( 1.8) | 285.1 ( 0.9) | 319.9 ( 1.9) |
| 90 | 266.8 ( 2.2) | 304.2 ( 1.4) | 339.8 ( 1.5) |
| 95 | 280.6 ( 2.5) | 315.8 ( 1.1) | 351.6 ( 2.9) |
| BLACK STUDENTS |  |  |  |
| Mean | 188.5 ( 2.6) | 242.9 ( 2.3) | 274.4 ( 2.6) |
| Standard Deviation | 39.4 ( 1.5) | 32.1 ( 1.3) | 35.9 ( 1.3) |
| Percentiles |  |  |  |
| 5 | 124.7 ( 6.3) | 190.6 (3.1) | 214.5 ( 9.5) |
| 10 | 138.3 ( 3.3) | 202.2 ( 3.1) | 227.8 ( 4.2) |
| 25 | 161.8 ( 2.3) | 222.0 ( 2.4) | 250.5 ( 2.3) |
| 50 | 188.3 ( 3.9 ) | 242.4 ( 2.7) | 274.3 ( 3.5) |
| 75 | 216.5 ( 2.8 ) | 263 ( 4.4) | 299.' ( 3.0) |
| 90 | 238.2 ( 3.7) | 283.6 ( 4.7) | 321.0 ( 3.8) |
| 95 | 252.2 ( 4.3) | 298.9 ( 2.1) | 333.1 ( 4.8) |
| HISPANIC STUDENTS |  |  |  |
| Mean | 193.7 ( 3.9) | 240.1 ( 3.5) | 270.8 ( 4.0 ) |
| Standard Deviation | 41.5 ( 2.6) | 34.6 ( 2.2) | 37.7 ( 2.0) |
| Percentiles |  |  |  |
| 5 | 121.9 (10.8) | 181.7 ( 8.7) | 204.2 (11.5) |
| 10 | 140.3 ( 7.3) | 194.6 ( 3.7) | 218.0 ( 6.9) |
| 25 | 164.9 ( 5.0) | 213.9 ( 6.0) | 246.4 ( 5.5) |
| 50 | 196.0(3.3) | 240.3 ( 3.9) | 273.6 ( 5.0 ) |
| 75 | 222.0 ( 6.0) | 262.0 ( 5.2) | 297.9 ( 7.0) |
| 90 | 246.7 ( 7.9) | 284.0 ( 8.4) | 315.9 (28.0) |
| 95 | 258.6(11.3) | 297.3 ( 9.9) | 328.0 ( 8.6) |

Table 16-63
Weighted Proficiency Means, Standard Deviations, and Percentiles with Standard Errors
for Main Writing Samples, by Erade and Subgroup

## Grade 4 <br> Grade 8 <br> Grade 12

TOTAL SAMPLE
Mean
Standard Deviation
Percentiles
5
10
25
50
75
90
95
MALE STUDENTS
Mean
Standard Deviation Percentiles

5
10
25
50
75
90
95
FEMALE STUDENTS
Mean
Standard Deviation Percentiles

10
25
50
75
90
95

| $190.9(1.0)$ | $209.5(0.9)$ | $224.2(1.3)$ |
| ---: | ---: | ---: | ---: |
| $42.3(0.7)$ | $43.8(0.6)$ | $49.2(0.8)$ |
| $119.3(1.2)$ | $137.1(2.7)$ | $142.3(2.0)$ |
| $136.3(1.3)$ | $153.7(1.2)$ | $161.1(2.0)$ |
| $163.5(1.0)$ | $180.3(1.1)$ | $191.9(1.5)$ |
| $192.0(1.3)$ | $209.9(1.3)$ | $224.9(1.3)$ |
| $219.7(1.2)$ | $238.9(1.5)$ | $257.4(1.9)$ |
| $243.9(1.4)$ | $264.9(1.3)$ | $286.4(2.6)$ |
| $258.4(1.5)$ | $280.4(2.0)$ | $303.7(2.7)$ |


| $184.4(1.3)$ | $200.9(1.4)$ | $212.5(1.4)$ |
| ---: | ---: | ---: | ---: |
| $41.4(0.9)$ | $43.4(0.9)$ | $48.6(1.1)$ |
| $113.5(2.7)$ | $129.3(4.2)$ | $131.7(2.3)$ |
| $130.2(2.0)$ | $145.6(2.6)$ | $151.0(1.6)$ |
| $157.5(1.6)$ | $172.1(1.5)$ | $180.6(1.9)$ |
| $186.1(1.1)$ | $201.5(1.3)$ | $213.7(1.5)$ |
| $212.9(1.7)$ | $230.4(1.4)$ | $245.5(1.7)$ |
| $236.5(1.8)$ | $255.8(2.3)$ | $273.2(2.3)$ |
| $249.8(2.8)$ | $271.1(2.5)$ | $290.4(3.7)$ |


| $197.5(1.3)$ | $218.5(1.2)$ | $234.8(1.8)$ |
| ---: | ---: | ---: |
| $422(0.7)$ | $42.4(0.8)$ | $47.3(1.1)$ |
| $127.2(2.6)$ | $148.8(2.2)$ | $156.0(3.3)$ |
| $143.0(1.6)$ | $164.5(1.5)$ | $174.7(2.5)$ |
| $169.9(1.5)$ | $190.2(1.3)$ | $203.4(1.1)$ |
| $198.1(1.5)$ | $219.0(1.8)$ | $235.6(2.8)$ |
| $226.3(1.7)$ | $247.2(1.6)$ | $267.1(1.9)$ |
| $251.0(1.6)$ | $272.1(2.3)$ | $295.2(4.0)$ |
| $265.4(4.7)$ | $287.7(4.4)$ | $311.5(5.2)$ |

Table 16-63 (continued)
Weighted Proficiency Means, Standard Leviations, and Percentiles with Standard Errors
for Main Writing Samples, by Grade and Subgroup

|  | Grade 4 | Grade 8 | Grade 12 |
| :---: | :---: | :---: | :---: |
| WHITE STUDENTS |  |  |  |
| Mean | 197.6 ( 1.3 ) | 216.0 ( 1.0 ) | 230.5 ( 1.5) |
| Standard Deviation | 40.2 ( 0.7) | 42.2 ( 0.7) | 47.9 ( 1.1) |
| Percentiles |  |  |  |
| 5 | 130.5 ( 2.1) | 145.9 ( 3.2) | 150.8 ( 2.8) |
| 10 | 146.0 ( 1.4) | 162.0 ( 1.7) | 169.5 ( 3.2) |
| 25 | 171.7 ( 1.2) | 188.1 ( 1.3) | 199.5 ( 1.7) |
| 50 | 198.1 ( 1.6) | 216.4 ( 1.4) | 231.4 ( 1.2) |
| 75 | 224.8 ( 2.0) | 2448 ( 1.1) | 262.9 ( 1.7) |
| 90 | 248.4 ( 2.7) | 269.4 ( 1.8) | 290.5 ( 3.0 ) |
| 95 | 261.8 ( 1.9) | 284.2 ( 2.8) | 307.4 ( 2.1) |
| BLACK STUDENTS |  |  |  |
| Mean | $168 . \varepsilon$ ( 1.9) | 187.5 ( 2.2) | 200.7 ( 2.3) |
| Standard Deviation | $\therefore$ ( 1.1) | 41.3 ( 1.3) | 45.7 ( 1.8) |
| Percentiles |  |  |  |
| 5 | - 3 ( 3.2) | 119.3 ( 4.1) | 125.3 (6.2) |
| 10 | 1.0 ( 3.2) | 136.4 ( 3.5) | 142.1 ( 3.0) |
| 25 | 141.5 ( 2.3) | 159.8 ( 2.8) | 169.9 ( 3.8) |
| 50 | 169.6 ( 2.1) | 186.8 ( 3.6) | 200.4 ( 3.9) |
| 75 | 196.8 ( 2.4) | 215.8 ( 3.7) | 231.9 ( 3.1) |
| 90 | 221.5 ( 3.4) | 239.8 ( 3.1) | 258.1 ( 3.6) |
| 95 | 237.0 ( 3.5) | 255.6 ( 4.8) | 275.1 (9.2) |
| HISPANIC STUDENI. |  |  |  |
| Mean | 178.2 ( 2.0) | 192.4 ( 2.1) | 204.9 ( 3.5) |
| Standard Deviation | 42.3 ( 1.3) | 44.1 ( 1.4) | 50.2 ( 2.8) |
| Percentiles |  |  |  |
| 5 | 106.0 ( 4.5 ) | 118.4 ( 4.9) | 121.5 ( 5.8 ) |
| 10 | 123.1 ( 3.6) | 135.5 ( 3.5) | 142.0 ( 5.7) |
| 25 | 150.6 ( 2.4) | 163.3 ( 2.5) | 172.9 ( 4.9) |
| 50 | 179.6 ( 1.9) | 192.9 ( 2.3) | 204.8 ( 3.9) |
| 75 | 206.9 ( 3.2) | 223.2 ( 3.3) | 237.5 ( 6.9) |
| 90 | 231.0 ( 3.8) | 248.5 ( 5.3) | 269.6 ( 8.3) |
| 95 | 244.6 ( 4.1) | 263.5 ( 4.0) | 290.4 (11.8) |

Table 16-64
Weighted Proficiency Means, Standard Deviations, and Percentiles with Standard Errors
for Bridge to 1984 Writing Samples, by Grade and Subgroup

|  | Grade 4 | Grade 8 | Grade 11 |
| :---: | :---: | :---: | :---: |
| TOTAL SAMPLE |  |  |  |
| Mean | 173.3 ( 1.3) | 208.2 ( 0.8) | 220.7 ( 1.2) |
| Standard Deviation | 43.4 ( 1.1) | 40.1 ( 0.9) | 39.1 ( 1.2) |
| Percentiles |  |  |  |
| 5 | 101.4 ( 2.5) | 140.9 ( 1.5) | 154.6 ( 2.7) |
| 10 | 116.9 ( 2.0) | 156.6 ( 2.8) | 170.7 ( 2.1) |
| 25 | 143.6 ( 1.6) | 181.5 ( 1.2) | 195.8 ( 1.8) |
| 50 | 174.4 ( 2.2) | 208.9 ( 1.1) | 221.6 ( 1.4) |
| 75 | 203.5 ( 2.0) | 235.6 ( 1.1) | 247.3 ( 2.1) |
| 90 | 228.5 ( 2.5) | 258.7 ( 1.7) | 269.6 ( 2.1) |
| 95 | 243.3 ( 3.2) | 273.3 ( 1.9) | 283.2 ( 2.6) |
| MALE STUDENTS |  |  |  |
| Mean | 164.3 ( 1.9 ) | 197.9 ( 1.4) | 211.1 ( 1.6) |
| Standard Deviation | 42.5 ( 1.2) | 39.5 ( 1.2) | 39.1 ( 1.5) |
| Percentiles |  |  |  |
| 5 | 93.7 ( 2.5) | 131.5 ( 3.5) | 145.0 ( 3.4) |
| 10 | 109.7 ( 2.5) | 146.3 ( 1.8) | 161.3 ( 4.2) |
| 25 | 135.0 ( 1.7) | 171.7 ( 2.0) | 186.5 ( 1.9 ) |
| 50 | 165.6 ( 2.4) | 198.3 ( 1.7) | 2' 1 ( 1.5) |
| 75 | 194.4 ( 2.6) | 225.1 ( 2.4) | 2.7 ( 2.2) |
| 90 | 218.7 ( 3.5) | 248.3 ( 2.0) | 260.4 ( 4.0) |
| 95 | 232.7 ( 4.9) | 261.2 ( 2.5) | 274.0 ( 5.3) |
| female students |  |  |  |
| Mean | 182.4 ( 1.6) | 218.2 ( 1.1) | 229.2 ( 1.4) |
| Stendard Deviation | 42.5 ( 1.4) | 38.2 ( 1.3) | 37.1 ( 1.2) |
| Percentiles |  |  |  |
| 5 | 110.6 ( 4.0 ) | 154.4 ( 4.4) | 167.8 ( 3.8) |
| 10 | 127.3 ( 2.4) | 169.5 ( 3.4) | 182.9 ( 2.8) |
| 25 | 154.1 ( 2.1) | 192.8 ( 2.6) | 205.2 ( 2.1) |
| 50 | 183.0 ( 1.8 ) | 218.6 ( 2.3) | 229.9 ( 0.9) |
| 75 | 211.7 ( 2.0) | 244.0 ( 1.5) | 254.5 ( 2.9) |
| 90 | 236.6 ( 2.3) | 267.1 ( 2.5) | 275.6 ( 2.9) |
| 95 | 251.9 ( 5.6 ) | 280.0 ( 3.9) | 288.3 ( 3.6) |

Table 16-64 (continued)
Weighted Proficiency Means, Standard Deviations, and Percentiles with Standard Errors
fnr Bridge to 1984 Writing Samples, by Grade and Subgroup

Grade 4
180.0 (1.6)
41.8 ( 1.1 )
110.2 ( 2.7 )
126.0 ( 2.1)
151.6 ( 1.7 )
181.0 ( 2.5)
208.7 ( 2.0 )
2.2.6 ( 3.4 )
247.6 ( 4.5 )
150.7 (3.1) 42.4 ( 1.6 )
81.1 ( 8.4)
96.0 ( 5.8 )
121.8 ( 5.1 )

15v. 5 ( 2.8 )
179.2 ( 2.8 )
206.2 (4.4)
220.4 (4.9)
162.2 ( 3.6 ) 43.1 ( 1.4 )
93.5 ( 5.4 )
106.9 ( 3.9 )
131.2 ( 4.6 )
161.7 ( 5.9 )
191.5 ( 7.4 )
217.9 (5.5)
234.5 ( 6.1 )

Grade 8
213.1 ( 1.0 )
39.5 : 0.9 )
225.1 ( 1.3 )
37.9 ( 1.4 )
146.4 ( 1.7 ) 161.5 ( 5.0 )
162.3 ( 2.8 )
187.6 ( 1.7 )
213.7 ( 1.3)
240.1 ( 1.6 )
262.2 ( 2.4 )
277.2 ( 2.5)
176.8 (2.1)
200.8 ( 1.9 )
226.2 ( 1.2)
250.7 ( 2.1 )
273.0 ( 2.8 )
286.0 ( 2.3)
190.1 (2.3) $206.9(2.6)$
37.7 ( 1.8 ) $38.0(1.7)$
127.2 ( 3.8 ) $143.2(6.5)$
141.4 ( 5.8 ) 158.0 ( 3.2)
165.2 ( 2.4 ) 182.6 ( 4.1 )
189.9 ( 2.4 206.7, 2.5)
215.6 ( 2.8 232.1 (4.1)

238 ( 3.7)
257.1 (4.5)
267.7 ( 8.6)

| $197.2(3.2)$ | $202.0(3.2)$ |
| ---: | ---: |
| $38.7(1.9)$ | $41.1(3.3)$ |
| $130.6(8.2)$ | $132.7(8.1)$ |
| $147.2(4.4)$ | $148.4(13.8)$ |
| $172.9(49)$ | $176.6(3.3)$ |
| $197.9(5)$ | $201.8(3.2)$ |
| $223.4(6.6)$ | $229.4(4.5)$ |
| $244.4(3.9)$ | $253.4(5.2)$ |
| $258.8(5.1)$ | $268.1(5.2)$ |

## Weighted Proficiency Means, Standard Deviations, and Percentiles with Standard Errors <br> for Main Focused-bIb Civics Samples, by Grade and Subgroup

Grade 4
Grade 8
Grade 12
TOTAL SAMPLE
Mean
Standard Deviation
Percentiles
5
10
25
50
75
90
95

MALE STUDENTS
Mean
Standard Deviation
Percentiles
5
10
25
50
75
90
95
FEMALE STUDENTS
Mean
Standard Deviation Percentiles
214.0 (0.9)
259.7 (0.9)
35.7 (0.6)
198.1 (2.2)
212.8 (1.5)
237.1 (1.3)
261.2 (1.6)
284.2 (1.3)
304.1 (1.3)
315.3 (1.1)
258.7 (1.1)
38.7 (1.0)
190.0 (3.3)
207.6 (2.0)
233.9 (1.6)
260.7 (1.7)
286.1 (1.3)
307.0 (2.4)
$318.0(2.6)$
$? 60.6$ (0.9)
32.6 (0.6)
234.1 (1.1)
213.3 (1.1)
28.1 (0.8)
163.4 (2.1)
175.6 (2.4)
195.6 (1.9)
215.4 (2.1)
232.8 (1.4)
247.7 (1.8)
255.6 (2.3)
205.2 (3.5)
218.3 (1.2)
239.4 (0.8)
261.6 (0.8)
282.7 (1.4)
301.2 (1.8)
312.6 (3.1)
296.3 (1.1)
37.8 (0.6)
228.4 (2.4)
247.0 (1.6)
273.0 (1.3)
299.0 (1.0)
322.1 (1.4)
342.0 (1.2)
353.6 (1.2)
298.6 (1.6)
41.1 (1.0)
221.8 (4.7)
244.0 (3.0)
273.8 (2.4)
302.5 (1.5)
326.8 (2.4)
347.7 (2.7)
360.1 (3.2)
34.3 (0.8)
234.1 (2.4)
249.1 (1.7)
272.3 (1.6)
296.0 (1.5)
317.9 (0.9)
336.4 (1.9)
346.5 (2.3)

Table 16-65 (continued)
Weighted Proficiency Means, Standard Deviations, and Percentiles with Standard Errors
for Main Focused-BIB Civics Samples, by Grade and Subgroup

|  | Grade 4 | Grade 8 | Grade 12 |
| :---: | :---: | :---: | :---: |
| WHITE STUDENTS |  |  |  |
| Mean | 220.0 (1.0) | 266.3 (1.2) | 301.9 (1.2) |
| Standard Deviation | 26.5 (0.8) | 34.2 (0.8) | 35.7 (0.7) |
| Percentiles |  |  |  |
| 5 | 173. '.9) | 206.4 (2.2) | 240.8 (1.5) |
| 10 | 185. 1.4) | 222.0 (1.8) | 2557 (2.2) |
| 25 | 203.9 (1.0) | 245.1 (2.3) | 279.9 (1.4) |
| 50 | 221.3 (2.1) | 268.4 (1.4) | 304.3 (1.1) |
| 75 | 237.8 (1.7) | 289.7 (1.1) | 326.1 (2.2) |
| 90 | 252.5 (1.9) | 308.6 (1.4) | 344.8 (2.2) |
| 95 | 261.4 (3.0) | 319.7 (2.8) | 356.1 (1.8) |
| BLACK STUDENTS |  |  |  |
| Mean | 198.1 (2.2) | 243.6 (1.9) | 273.8 (1.9) |
| Standard Deviation | 27.0 (1.4) | 33.4 (1.0) | 36.3 (1.1) |
| Percentiles |  |  |  |
| 5 | 151.2 (4.8) | 188.0 (3.9) | 209.4 (3.5) |
| 10 | 163.2 (2.9) | 202.1 (4.0) | 225.1 (2.7) |
| 25 | 180.5 (4.2) | 221.3 (3.8) | 250.4 (3.2) |
| 50 | 200.0 (1.9) | 244.2 (2.7) | 276.2 (2.1) |
| 75 | 216.8 (3.6) | 267.0 (2.3) | 298.9 (2.4) |
| 90 | 231.1 (1.7) | 285.6 (1.8) | 318.3 (3.1) |
| 95 | 239.2 (5.4) | 297.4 (9.7) | 330.0 (3.6) |
| HISPANIC STUDENTS |  |  |  |
| Mean | 199.5 (1.9) | 240.6 (1.7) | 279.2 (2.3) |
| Standard Deviation | 28.8 (1.3) | 33.8 (1.4) | 37.6 (1.8) |
| Percentiles (1.8) |  |  |  |
| 5 | 150.5 (5.4) | 180.9 (7.3) | 209.4 (6.9) |
| 10 | 164.0 (2.9) | 196.6 (4.0) | 226.9 (5.9) |
| 25 | 180.4 (2.2) | 219.3 (2.1) | 256.4 (4.6) |
| 50 | 201.0 (1.9) | 243.0 (1.4) | 282.8 (2.6) |
| 75 | 217.6 (2.0) | 263.1 (1.6) | 305.8 (2.9) |
| 90 | 235.3 (6.1) | 282.0 (2.2) | 323.5 (3.2) |
| 95 | 246.4 (6.3) | 293.0 (3.4) | 336.3 (2.9) |

Table 16-66
Weighted Proficiency Means, Standard Deviations, and Percentiles with Standard Errors
for Civics Bridge Samples, by Age and Subgroup

|  | Age 13 | Age 17 |
| :---: | :---: | :---: |
| TOTAL SAMPLE |  |  |
| Mean | 50.0 (0.4) | 59.6 (0.5) |
| Standard Deviation | 10.0 (0.2) | 12.3 (0.4) |
| Percentiles |  |  |
| 5 | 34.0 (0.7) | 39.1 (1.6) |
| 10 | 37.5 (0.7) | 44.3 (0.6) |
| 25 | 43.3 (0.4) | 52.0 (0.6) |
| 50 | 49.7 (0.5) | 59.8 (0.7) |
| 75 | 56.4 (0.7) | 68.1 (0.8) |
| 90 | 62.9 (0.?) | 74.8 (0.6) |
| 95 | 67.2 (1.5) | 79.1 (0.9) |
| male students |  |  |
| Mean | 50.5 (0.6) | 61.2 (0.7) |
| Standard Deviation | -0.4 (0.3) | 13.0 (0.5) |
| Percentiles |  |  |
| 5 | 33.6 (0.9) | 39.2 (2.7) |
| 10 | 37.5 (0.9) | 44.9 (1.0) |
| 25 | 43.5 (0.6) | 52.8 (0.8) |
| 50 | 50.1 (0.7) | 61.7 (1.4) |
| 75 | 57.3 (0.5) | 70.4 (0.8) |
| 90 | 64.2 (0.9) | 77.3 (1.3) |
| 95 | 68.2 (1.0) | 81.0 (1.4) |
| Ferale studeitts |  |  |
| Mean | 49.5 (0.4) | 58.2 (0.6) |
| Standard Deviation | 9.6 (0.3) | 11.5 (0.5) |
| Percentiles |  |  |
| 5 | 34.2 (0.9) | 39.1 (2.1) |
| 10 | 37.5 (1.1) | 43.7 (0 7) |
| 25 | 43.1 (0.4) | 51.4 (0.8) |
| 50 | 43.3 (0 4) | 58.7 (0.4) |
| 75 | 55.6 (0.5) | 65.8 (1.0) |
| 90 | 61.8 (1.0) | 71.9 (0.8) |
| 95 | 65.4 (1.9) | 75.9 (1.2) |

Table 166 (continued)
Weighted Proficiency Means, Standard Deviations, and Percentiles with Standard Errors
for Civics Bridge Samples, by Age and Subgroup

|  | Age 13 | Age 17 |
| :---: | :---: | :---: |
| WHITE STUDENTS |  |  |
| Mean | 51.2 (0.5) | 61.4 (0.6) |
| Standard Deviation | 9.8 (0.3) | 11.7 (0.4) |
| Percentiles |  |  |
| 5 | 35.5 (1.0) | 42.2 (1.2) |
| 10 | د9.0 (0.6) | 47.7 (1.5) |
| 25 | 44.6 (0.5) | 54.1 (0.8) |
| 50 | 50.8 (0.5) | 61.6 (1.0) |
| 75 | 57.4 (0.6) | 69.2 (0.6) |
| 90 | 64.1 (0.9) | 76.1 (0.7) |
| 95 | 68.2 (0.8) | 80.0 (1.0) |
| BLACK STUDENTS |  |  |
| Mean | 45.7 (0.6) | 53.1 (1.0) |
| Standard Deviation | 8.6 (0.4) | 12.4 (0.6) |
| Percentiles |  |  |
| 5 | 31.7 (1.0) | 32.2 (4.6) |
| 10 | 34.7 (1.4) | 38.5 (1.5) |
| 25 | 39.7 (0.8) | 45.2 (0.7) |
| 50 | 45.3 (0.7) | 52.4 (1.0) |
| 75 | 51.9 (0.8) | 61.5 (1.4) |
| 90 | 57.2 (1.0) | 69.6 (1.3) |
| 95 | 60.4 (1.1) | 73.6 (1.3) |
| HISPANIC STUDENTS |  |  |
| Mean | 45.5 (1.8) | 53.8 (1.7) |
| Standard Deviation | 10.5 (0.9) | 11.5 (1.0) |
| Percentiles |  |  |
| 5 | 28.8 (1.7) | 35.0 (5.5) |
| 10 | 32.0 (2.5) | 39.3 (6.4) |
| 25 | 38.7 (2.0) | 46.1 (3.2) |
| 50 | 45.3 (2.3) | 53.8 (3.5) |
| 75 | 51.7 (2.2) | 62.1 (1.3) |
| 90 | 60.2 (3.5) | 68.2 (2.2) |
| 95 | 63.4 (3.4) | 71.4 (5.3) |

Table 16-67
Weighted Proficiency Means, Standard Deviations, and Percentiles with Standard Errors
for Main U.S. History Samples, by Grade and Subgroup


Table 16-67 (continued)
Weighced Proficiency Means, Standard Deviations, and Percentiles with Standard Errors
for Main U.S. History Samples, by Grade and Subgroup

## Grade 4

Grade 8
Grade 12

| WHITE STUDENTS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mean | 227.5 | (1.0) | 270.4 | (0.8) | 301.1 | (1.2) |
| Standard Deviation | 27.0 | (0.6) | 32.2 | (0.6) | 34.1 | (0.6) |
| Percentiles |  |  |  |  |  |  |
| 5 | 181.8 | (2.3) | 212.9 | (1.5) | 240.5 | (4.7) |
| 10 | 192.5 | (1.9) | 229.5 | (1.4) | 255.8 | (1.7) |
| 25 | 209.5 | (1.1) | 251.4 | (2.0) | 281.5 | (2.0) |
| 50 | 229.2 | (1.0) | 270.8 | (1.2) | 304.0 | (1.6) |
| 75 | 244.4 | (1.0) | 291.8 | (0.6) | 322.3 | (1.4) |
| 90 | 262.6 | (1.7) | 311.2 | (1.0) | 343.5 | (1.i) |
| 95 | 271.8 | (1.8) | 319.3 | (0.9) | 350.9 | (1.4) |
| BLACK STUDENTS |  |  |  |  |  |  |
| Mean | 199.5 | (1.9) | 246.0 | (1.5) | 274.4 | (1.7) |
| Standard Deviation | 27.7 | (1.1) | 30.4 | (1.0) | 33.7 | (0.9) |
| Percentiles |  |  |  |  |  |  |
| 5 | 154.5 | (5.1) | 195.2 | (3.9) | 218.0 | (4.5) |
| 10 | 163.4 | (4.7) | 207.5 | (3.0) | 230.9 | (2.7) |
| 25 | 180.5 | (1.3) | 227.5 | (2.1) | 252.1 | (2.2) |
| 50 | 199.5 | (3.0) | 245.1 | (1.6) | 273.6 | (3.4) |
| 75 | 217.5 | (1.2) | 265.3 | (1.9) | 296.3 | (2.5) |
| 90 | 236.9 | (3.2) | 286.7 | (1.6) | 317.6 | (0.9) |
| 95 | 244.9 | (2.8) | 295.0 | (2.4) | 327.8 | (4.6) |
| HISPANIC STUDENTS |  |  |  |  |  |  |
| Mean | 202.7 | (1.7) | 244.3 | (1.9) | 273.9 | (1.8) |
| Standard Deviation | 28.7 | (0.9) | 33.7 | (0.9) | 34.6 | (1.2) |
| Percentiles |  |  |  |  |  |  |
| 5 | 153.4 | (5.9) | 187.7 | (5.9) | 217.1 | (4.4) |
| 10 | 165.7 | (2.8) | 202.1 | (3.2) | 229.7 | (2.9) |
| 25 | 182.7 | (1.3) | 221.8 | (2.2) | 252.3 | (3.0) |
| 50 | 204.1 | (2.5) | 244.4 | (2.5) | 272.7 | (3.2) |
| 75 | 222.5 | (1.6) | 266.7 | (1.3) | 295.8 | (2.9) |
| 90 | 239.5 | (0.9) | 288.5 | (2.0) | 318.6 | (1.0) |
| 95 | 247.3 | (4.0) | 296.7 | (1.9) | 329.1 | (7.9) |

## Table 16-68

Weighted Proficiency Means, Standard Deviations, and Percentiles with Standard Errors
for Main Geography Sample, by Grade and Subgroup

## Grade 12

total sample
Mean
Standard Deviation
Percentiles
5
10
25
50
75
90
95
MALE STUDENTS
FEMALE STUDENTS

Mean
Standard Deviation
285.7 (1.2)
34.2 (0.9)

Percentiles
5
10
25 50 75 90 95
224.3 (2.5)
238.9 (2.2)
263.7 (1.3)
289.2 (1.2)
310.0 (1.2)
327.6 (2.2)
337.9 (3.6)
293.1 (1.0)
37.0 (0.8)
227.5 (2.7)
242.2 (1.6)
268.7 (2.0)
295.5 (1.5)
319.1 (0.9)
338.6 (1.3)
349.1 (3.3)
293.1 (1.0)
37.0 (0.8)
227.5 (2.7)
242.2 (1.6)
268.7 (2.0)
295.5 (1.5)
319.1 (0.9)
338.6 (1.3)
349.1 (3.3)
MALE STUDENTS
Mean
301.2 (1.6)
Standard Deviation
38.3 (1.0)
Percentiles
5
10
25
50
75
90
95
231.6 (2.2)
247.1 (2.8)
275.6 (2.8)
305.6 (2.0)
328.4 (1.6)
346.6 (2.3)
358.3 (4.8)

Mean
301.2 (1.6)
38.3 (1.0)

Percentiles
5
10
25
50
75
90
95
FEMALE STUDENTS

Table 16-68 (continued)
Weighted Proficiency Means, Standard Deviations, and Percentiles with Standard Frrors
for Main Geograph; Samples, by Grade and Subgroup

## Grade 12

| WHITE STUDENTS |  |
| :---: | :---: |
| Mean | 3r1.1 (1.1) |
| Standard Deviation | 33.7 (0.9) |
| Percentiles |  |
| 5 | 242.3 (2.8) |
| 10 | 256.4 (2.9) |
| 25 | 279.7 (1.4) |
| 50 | 302.7 (1.4) |
| 75 | 32.3 .7 (1.4) |
| 90 | 341.9 (2.1) |
| 95 | 352.9 (2.1) |
| BLACK STUDENTS |  |
| Mean | 258.4 (2.0) |
| Standard Deviation | 32.0 (1.2) |
| Percentiles |  |
| 5 | 207.3 (3.7) |
| 10 | 216.8 (3.5) |
| 25 | 234.7 (2.9) |
| 50 | 259.4 (3.5) |
| 75 | 292.2 (3.8) |
| 90 | 298.8 (2.5) |
| 95 | 310.5 (7.8) |
| HISPANIC STUDENTS |  |
| Mean | 271.8 (3.9) |
| Standard Deviation | 35.0 (1.6) |
| Percentiles |  |
| 5 | 214.4 (8.6) |
| 10 | 225.0 (7.4) |
| 25 | 245.8 (3.4) |
| 50 | 273.1 (5.6) |
| 75 | 296.9 (2.8) |
| 90 | 317.8 (8.7) |
| 95 | 331.1 (3.0) |

Weighted Proficiency Means, Standard Deviations, and Percentiles with Standard Errors
for Bridge to 1986 Mathematics Samples, by Age and . abgroup

|  | Age 9 | Age 13 | A.ge 17 |
| :---: | :---: | :---: | :---: |
| TOTAL SAMPLE |  |  |  |
| Mean | 229.0 ( 1.1) | 273.3 ( 0.8) | 305.4 ( 1.2) |
| Standard Deviation | 33.1 ( 0.7) | 31.7 ( 0.4) | 29.7 ( 0.7) |
| Percentiles |  |  |  |
| 5 | 171.8 ( 1.4) | 221.2 ( 1.6) | 255.5 ( 1.8 ) |
| 10 | 185.3 ( 2.0) | 233.0 ( 1.4) | 266.1 ( ? 3 3) |
| 25 | 207.0 ( 1.6) | 252.1 ( 0.9) | 284.5 ( 1.6) |
| 50 | 230.6 ( 1.0) | 273.4 ( 1.0) | 306.0 ( 1.4) |
| 75 | 252.0 ( 1.6) | 294.6 ( 1.4) | 326.1 ( 1.9) |
| 90 | 270.1 ( 1.1) | 314.5 ( 2.5) | 344.4 ( 1.1) |
| 95 | 280.5 ( 1.4) | 325.4 ( 1.8) | 353.7 ( 3.4) |
| MALE STUDENTS |  |  |  |
| Mean | 229.1 ( 1.6) | 275.3 ( 1.1) | 306.7 ( 1.8) |
| Standard Deviation | 33.8 ( 1.0) | 31.8 ( 0.6) | 30.2 ( 1.1) |
| Percentiles |  |  |  |
| 5 | 171.7 ( 2.3) | 223.6 ( 2.3) | 256.7 ( 3.7) |
| 10 | 184.3 ( 2.4) | 235.4 ( 1.3) | 266.8 ( 0.8) |
| 25 | 206.3 ( 3.2) | 253.8 ( 1.0) | 284.9 ( 2.1) |
| 50 | 230.5 ( 1.8 ) | 275.3 ( 1.1) | 306.9 ( 1.9) |
| 75 | 252.3 ( 2.2) | 296.6 ( 1.4) | 327.6 ( 3.3) |
| 90 | 271.4 ( 2.1) | 316.9 ( 1.9) | 346.7 ( 3.8) |
| 95 | 282.8 ( 2.3) | 328.1 ( 2.3) | 355.9 ( 4.2) |
| FEMALE STUDENTS |  |  |  |
| Mean | 229.0 ( 1.1) | 271.2 ( 1.0) | 304.2 ( 1.4) |
| Standard Deviation | 32.4 ( 0.8) | 31.5 ( 0.8) | 29.2 ( 0.6) |
| Perceltiles |  |  |  |
| 5 | 172.2 ( 3.4) | 219.3 ( 2.5) | 253.9 ( 3.0) |
| 10 | 186.2 ( 2.8) | 230.5 ( 2.2) | 264.9 ( 3.7) |
| 25 | 207.4 ( 1.4) | 250.0 ( 1.2) | 284.0 ( 2.8) |
| 50 | 230.7 ( 1.1) | 271.6 ( 1.4) | 305.2 ( 1.9) |
| 75 | 251.8 ( 1.8) | 292.3 ( 1.2) | 324.5 ( 2.2) |
| 90 | 269.1 ( 1.5) | 311.5 ( 1.4) | 341.9 ( 1.8 ) |
| 95 | 278.4 ( 2.4) | 322.8 ( 1.8) | 350.8 ( 3.1) |

Table 16-69 (continued)
Weighted Proficiency Means, Standaré Deviations, and Percentiles wich Standard Errors
for Bridge to 1986 Mathematics Samples, by Age and Subgroup

Age $9 \quad$ Age $13 \quad$ Age 17

| WHITE STUDENTS |  |  |  |
| :---: | :---: | :---: | :---: |
| Mean | 234.5 ( 1.2) | 279.1 ( 0.9) | 309.5 ( 1.4) |
| Standard Deviation | 30.4 ( 0.7) | 29.4 ( 0.4) | 28.9 ( 0.8) |
| Percentiles |  |  |  |
| 5 | 182.4 ( 3.3) | 231.6 ( 1.5) | 259.3 ( 1.7) |
| 10 | 194.4 ( 1.8) | 241.9 ( 1.4) | 271.0 ( 1.2) |
| 25 | 214.4 ( 2.0) | 259.1 ( 1.3) | 290.2 ( 2.7) |
| 50 | 235.9 ( 1.3) | 279.0 ( 1.4) | 310.1 ( 1.3) |
| 75 | 255.6 ( 1.7) | 299.1 ( 1.5) | 329.5 ( 2.7) |
| 90 | 272.6 ( 1.4) | 317.3 ( 1.3) | 346.6 ( 2 0) |
| 95 | 282.4 ( 1.3) | 327.8 ( 1.4) | 356.1 ( 2.9) |
| BLACK STUDENTS |  |  |  |
| Mean | 206.3 ( 2.6) | 250.3 ( 1.2) | 289.2 ( 2.1) |
| Standard Deviation | 32.7 ( 1.3 ) | 27.9 ( 1.0 ) | 27.1 ( 1.3 ) |
| Perc_atiles |  |  |  |
| 5 | 152.6 ( 2.2) | 203.7 ( 1.7) | 243.9 ( 5.9) |
| 10 | 164.3 ( 4.0) | 214.5 ( 1.8) | 254.5 ( 3.4) |
| 25 | 183.8 ( 4.8 ) | 231.9 ( 2.5) | 270.3 ( 1.6) |
| 50 | 206.6 ( 3.6) | 250.9 ( 2.3) | 288.6 ( 1.3) |
| 75 | 223.2 ( 2.1) | 2.69 .5 ( 1.4 ) | 307.4 ( 3.4) |
| 90 | 247.7 ( 2.2) | 284.8 ( 2.0) | 325.1 ( 3.6) |
| 95 | 258.2 ( 2.0) | 294.1 ( 2.1) | 334.1 ( 6.4) |
| HISPANIC STUDENTS |  |  |  |
| Mean | 215.9 ( 3.4) | 254.7 ( 3.9) | 294.3 ( 3.5) |
| Standard Daviation | 33.1 ( 1.7) | 30.3 ( 2.2) | 27.6 ( 2.6) |
| Percentiles |  |  |  |
| 5 | 162.1 ( 6.8) | 201.1 ( 7.6) | 249.1 ( 9.7) |
| 10 | 173.7 ( 7.0) | 214.9 ( 4.3) | 259.3 (11.4) |
| 25 | 193.3 ( 4.0) | 234.4 ( 5.4) | 274.9 ( 6.9) |
| 50 | 216.3 ( 5.4 ) | 257.2 ( 4.6) | 292.8 ( 4.8) |
| 75 | 239.1 ( 5.4 ) | 274.2 ( 3.0) | 31.3 .9 ( 2.9) |
| 90 | 259.8 (4.7) | 289.1 ( 5.0) | 330.1 ( 2.9) |
| 95 | 269.2 (9.7) | 299.4 ( 3.4 ) | 341.9 ( 9.3) |

Table 16-70
Weighted Proficiency Means, Standard Deviations, and Percentiles with Standard Errors
for Bridge to 1986 Science Samples, by Age and Subgroup

|  | Age 9 | Age 13 | Age 17 |
| :---: | :---: | :---: | :---: |
| TOTAL SAMPLE |  |  |  |
| Mean | 228.9 ( 1.3) | 257.3 ( 0.9) | 294.2 ( 1.5) |
| Standard Deviation | 41.0 ( 0.7) | 37.2 ( 0.j) | 41.4 ( 1.2) |
| Percentiles |  |  |  |
| 5 | 160.5 ( 1.9) | 194.4 ( 2.4) | 225.1 ( 4.1) |
| 10 | 175.8 ( 1.5) | 208.8 ( 1.1) | 240.9 ( 1.7) |
| 25 | 201.3 ( 1.3) | 232.1 ( 1.3) | 266.5 ( 1.7) |
| 5 J | 230.0 ( 1.6) | 258.1 ( 1.0) | 294.5 ( 3.0) |
| 75 | 257.0 ( 0.9) | 282.9 ( 1.3) | 322.2 ( 2.1) |
| 90 | 280.7 ( 2.2) | 304.3 ( 1.4) | 347.7 ( 3.3) |
| 95 | 293.9 ( 2.0) | 317.7 ( 2.4) | 362.7 ( 3.9) |
| Male students |  |  |  |
| Mean | 232.1 ( 1.6) | 262.2 ( 1.2) | 302.5 ( 2.3) |
| Standard Deviation | 41.2 ( 1.0) | 37.5 ( 0.8) | 41.6 ( 1.7) |
| Percentiles |  |  |  |
| 5 | 163.5 ( 2.8) | 198.6 ( 2.2) | 232.2 ( 4.0 ) |
| 10 | 178.7 ( 2.0) | 213.1 ( 1.9) | 249.7 ( 3.3) |
| 25 | 204.6 ( 1.8) | 237.0 ( 1.6) | 275.4 ( 2.8) |
| 50 | 233.3 ( 1.9) | 262.9 ( 1.2) | 302.7 ( 3.7) |
| 75 | 259.8 ( 2.5) | 287.7 ( 1.7) | 331.1 ( 3.3) |
| 90 | 284.0 ( 2.6) | 309.8 ( 2.3) | 357.3 ( 4.3) |
| 95 | 298.3 ( 4.5) | 322.9 ( 3.0) | 370.5 ( 5.4) |
| Female students |  |  |  |
| Mean | 225.7 ( 1.6) | 252.4 ( 1.0) | 285.6 ( 1.9) |
| Standard Deviation | 40.5 ( 0.8) | 36.3 ( 0.9) | 39.4 ( 1.5) |
| Percentiles |  |  |  |
| 5 | 157.5 ( 1.9) | 190.8 ( 2.9) | 220.0 ( 6.1) |
| 10 | 173.2 ( 3.1) | 205.2 ( 2.6) | 235.1 ( 3.5) |
| 25 | 198.7 ( 1.5) | 228.3 ( 2.1) | 258.9 ( 3.3) |
| 50 | 227.0 ( 2.7) | 253.5 ( 0.8) | 287.0 ( 5.0 ) |
| 75 | 253.9 ( 1.9) | 277.4 ( 1.3) | 312.7 ( 2.6) |
| 90 | 276.3 ( 2.1) | 297.7 ( 2.1) | 335.3 ( 3.3) |
| 95 | 289.4 ( 2.6) | 310.2 ( 2.8) | 349.1 ( 2.5) |

Table 16-70 (continued)
Weighted Proficiency Means, Standard Deviations, and Percentiles with Standard Errors
for Bridge to 1986 Science Samples, by Age and Subgroup

|  | Age 9 | Age ij | Age 17 |
| :---: | :---: | :---: | :---: |
| WHITE STUDENTS |  |  |  |
| Eiean | 237.4 ( 1.3) | 265.2 ( 0.9) | 301.9 ( 1.7) |
| Standard Deviation | 37.4 ( 0.7) | 34 ) (0.7) | 38.0 ( 1.5) |
| Percentiles |  |  |  |
| 5 | 176.0 ( 1.5) | 209.1 ( 1.1) | 239.1 ( 4.5) |
| 10 | 189.1 ( 1 1) | 221.9 ( 1.8) | 254.3 ( 5.0) |
| 25 | 211.8 ( i.4) | 242.3 ( 1.1) | 276.4 ( 3.0) |
| 50 | 238.3 ( 1.6) | 265.3 ( 0.9) | 301.9 ( 2.0) |
| 75 | 262.7 ( 1.3) | 287.9 ( 1.5) | 327.5 ( 2.4) |
| 90 | 285.2 ( 1.8) | 308.6 ( 2.0) | 351.3 ( 3.1) |
| 95 | 298.3 ( 4.2) | 320.9 ( 1.9) | 364.5 ( 2.6) |
| BLACK STUDENTS |  |  |  |
| Mean | 200.1 ( 2.5) | 229.4 ( 1.2) | 260.0 ( 3.4) |
| Standard Deviation | 38.7 ( 1.5) | 33.5 ( 1.2) | 38.6 ( 2.7) |
| Percentiles |  |  |  |
| 5 | 135.7 ( 3.0) | 175.0 ( 3.3) | 200.2 (11.1) |
| 10 | 149.3 ( 5.4 ) | 186.7 ( 4.1) | 212.3 ( 8.2) |
| 25 | 173.5 ( 3.8) | 206.8 ( 1.9) | 236.0 ( 3.2) |
| 50 | 200.2 ( 2.6) | 228.6 ( 3.0) | 259.0 ( 2.8) |
| 75 | 226.3 ( 2.9) | 252.7 ( 2.6) | 283.9 ( 5.4) |
| 90 | 251.3 ( 4.5) | 272.7 ( 2.5) | 309.2 ( 4.4) |
| 95 | 263.8 ( 4.1) | 283.6 ( 4.2) | 323.6 ( 9.6) |
| HISPANIC STUDENTS |  |  |  |
| Mean | 201.0 ( 6.1) | 229.3 ( 4.2) | 281.8 ( 5.2) |
| Standard Deviation | 42.0 ( 2.8) | 35.5 ( 2.1) | 37.3 ( 2.8) |
| Percentiles |  |  |  |
| 5 | 132.3 ( 6.4) | 172.1 ( 8.9) | 225.8 ( 6.8) |
| 10 | 146.8 ( 9.1) | 181.9 ( 5.9) | 236.6 ( 4.9) |
| 25 | 172.0 ( 8.6) | 202.0 ( 6 8) | 254.7 ( 6.7) |
| 50 | 201.0 ( 8.6) | 229.8 ( 4.0 ) | 282.6 (11.6) |
| 75 | 228.7 ( 6.5) | 254.7 ( 5.5) | 303.2 ( 9.3) |
| 90 | 255.6 ( 5.4) | 276.9 ( 45 ) | 334.1 (13.8) |
| 95 | 270.2 ( 4.8) | 289.2 ( 8.4) | 350.6 ( 7.5) |

## Table 16-71

## Weighted Response Yercentages and Reading Proficiency Means with Standard Errors Grade 4, by Gender, for Main Focused-BIB Reading Samples

GERDER OF SUBJECT (NAEP ID: SEX)

|  | $N$ | heigbied a (CV)* | Mate | female | MISSIMG |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -- TOTAL -- | 4531 | 860.553( : $x$ ) | $\begin{array}{r} 51.7(1.1) \\ 226.6(1.5) \end{array}$ | $\begin{array}{r} 48.3(1.1) \\ 234.4(1.2) \end{array}$ | 0.0 |
| gender |  |  |  |  |  |
| Male | 2345 | 445,048( 37) | $\begin{aligned} & 100.0(0.0) \\ & 226.6(1.5) \end{aligned}$ | 0.0(0.0) | 0.1 |
| FEMale | 2186 | 415.505( 3x) | 0.0( 0.0) | $\begin{aligned} & 100.0(0.0) \\ & 234.4(1.2) \end{aligned}$ | 0.0 |
| RACE/ETANICITY |  |  |  |  |  |
|  | 2557 | 599,759( 2\%) | $\begin{array}{r} 51.5(1.6) \\ 234.8(1.8) \end{array}$ | $\begin{array}{r} 48 . \pm(1.6) \\ 241.6(1.4) \end{array}$ | 0.0 |
| BLACK | 854 | :37.164 ( 3 x ) | $50.7(1.8)$ | 49.3 ( 1.8) | 0.1 |
| HISPARIC | 868 | 88,350( 3x) | $206.6(2.8)$ $53.5(2.0)$ | $214.6(2.4)$ $46.5(2.0)$ | 0.0 |
|  |  |  | 202.7( 3.4) | $218.2(2.1)$ |  |
| Panental education |  |  |  |  |  |
| LESS THAN H.S. | 228 | 38,671(10x) | $57.2(3.2)$ | 42.8(3.2) | 0.0 |
| GRADUATED H.S. | $67^{\circ}$ | 132,632( $5 x$ ) | $196.9(4.8)$ $50.3(2.7)$ | $214.4(3.8)$ $49.7(2.7)$ | 0.0 |
|  |  |  | $222.8(2.7)$ | 228.8( 2.6 ) |  |
| SOME EDUC AFter h.s. | 358 | 67.315 ( 6x) | 49.4 ( 3.6) | 5 C 6( 3.6) | 0.0 |
|  |  |  | $232.3(3.0)$ $53.4(1.4)$ | 249 (3.1) $46.6(1.4)$ | 0.0 |
| graduated college | 1623 | 327.691( 4\%) | $238.5(2.1)$ | $2437(1.6)$ |  |
| UNKHOWN | 1628 | 292.006( 3X) | 50.1 ( 1.5) | 49.9 ( 1.5) | 0.1 |
|  |  |  | 217.7( 1.7) | 226.2( 1.6) |  |

* CV is the coofficient of variation for the sum of the weights.

Table 16-72

## Weighted Response Percentages and Reading Proficiency Means with Standard Errors Grade 4, by Derived Race/ethnicity, for Main Focused-BIB Reading Samples

DERIVED RACE/ETHNICITY (NAEP ID: DRACE)

|  | 8 | WEIGETED N | (CV)* | KHITE | BLACK | EISPANIC | ASIAN | AMER IND | UTCLLASSIFIED | MISSIKG |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -- total -- | 4534 | 860,914 | 12) | $\begin{array}{r} 69.7(0.6) \\ 238.1(1.2) \end{array}$ | $\begin{array}{r} 15.9(0.5) \\ 210.6(1.9) \end{array}$ | $\begin{array}{r} 10.3(0.3) \\ 209.9(2.4) \end{array}$ | $\begin{array}{r} 2.3(0.2) \\ 234.5(5.9) \end{array}$ | $\begin{array}{r} 1.7(c .2) \\ 218.6(5.1) \end{array}$ | $\begin{array}{r} 0.0(0.0) \\ 213.0(17.0) \end{array}$ | 0.0 |
| GENDER |  |  |  |  |  |  |  |  |  |  |
| MALE | 2347 | 445,278( | 3x) | 69.4( 1.1) | 15.6( 0.7) | 10.6( 0.6) | 2.5( 0.3 ) | 1.8( 0.3 ) | $0.1(0.0)$ | 0.0 |
|  |  |  |  | 234.8( 1.8) | 206.6( 2.8) | 202.7(3.4) | 232.0( 7.9 ) | 219.5( 6.7) | 193.0(37.5) |  |
| FEMALE | 2187 | 415,536( | 3x) | 70.0( 1.2) | 16.3( 0.9 ) | 9.9( 0.5 ) | 2.1( 0.3 ) | $1.7(0.3)$ | $0.0(0.0)$ | 0.0 |
|  |  |  |  | 24:.6(1.4) | 214.6( 2.4) | 218.2(2.1) | 237.7( 6.3) | 217.6( 6.9) | $251.1(9.5)$ |  |
| RACE/ETHNICITV |  |  |  |  |  |  |  |  |  |  |
| WHITE | 2558 | 599,890 | 2X) | 100.0( 0.0 ) | $0.0(0.0)$ | 0.0( 0.0$)$ | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | 0.0 |
|  |  |  |  | 238.1( 1.2) |  |  |  |  |  |  |
| BLACK | 855 | 137,296( | 3\%) | $0.0(0.0)$ | $\left.\begin{array}{ll} 100.0( & 0.0 \\ 210.6( & 1.9 \end{array}\right)$ | 0.0( 0.0 ) | 0.0( 0.0$)$ | 0.0( 0.0 ) | 0.0( 0.0) | 0.0 |
| HISPANIC | 869 | 88,350 ( | 37) | 0.0( 0.0) | 0.0( 0.0) | 100.0( 0.0 ) | 0.0( 0.0 ) | 0.0( 0.0 ) | 0.0( 0.0) | 0.0 |
|  |  |  |  |  |  | 209.9( 2.4 ) |  |  |  |  |
| OTHER | 252 | 35,378( | 72) | 0.0( 0.0$)$ | $0.0(0.0)$ | $0.0(0.0)$ | 56.8( 4.1) | 42.1 ( 4.2) | 1.1( 0.7 ) | 0.0 |
|  |  |  |  |  |  |  | 234.5(5.9) | 218.6( 5.1) | 213.0(17.0) |  |
| Parental education |  |  |  |  |  |  |  |  |  |  |
| LESS TRAN $\mathrm{H} . \mathrm{S}$. | 228 | 38,6711 |  | 65.8( 3.9) | 15.1( 2.5) | 16.7( 2.9) | $0.4(0.4)$ | 2.0( 0.7 ) | 0.0(0.0) | 0.0 |
|  |  |  |  | 210.0( 4.3) | 187.2( 7.4 ) | 197.6( 6.2) | 204.5(****) | 204.5( 7.6 ) |  |  |
| GRADUATED E.S. | 675 | :32,632( | 5x) | 73.7 ( 1.7) | 14.6( 1.5) | 9.7( 0.9 ) | 1.0' 0.3$)$ | 0.9( 0.3 ) | 0.0( 0.0 ) | 0.0 |
|  |  |  |  | 231.0( 2.6) | 211.3( 3.5) | 210.6( 5.1) | 239.6(18.2) | 194.7(16.2) |  |  |
| SONE EDUC AFTER H.S. | 358 | 67,315( | 6x) | 74.0 ( 2.1) | 13.7( 1.9) | 9.0( 1.2$)$ | $1.9(0.7)$ | 1.4(0.6) | $0.0(0.0)$ | 0.0 |
|  |  |  |  | 248.0 ( 2.3) | $219.9(6.0)$ | $223.5(5.7)$ | 216.6(20.4) | 209.5(26.6) |  |  |
| GRaduated college | 1624 | 327,824( | 47) | 72.0 ( 1.3) | 16.0( 1.0 ) | $7.5(0.6)$ | 2.4( 0.4 ) | 2.0( 0.3) | $0.1(0.1)$ | 0.0 |
|  |  |  |  | $248.3(1.7)$ | $217.9(3.1)$ | 220.0( 3.8) | 247.8( 4.9 ) | 230.8( 6.6$)$ | $213.0(17.0)$ |  |
| UNXHOWN | 1630 | <92,234 | 3X) | 65.3( 1.4$)$ | 16.6( 1.1) | 13.0( 0.7 ) | 3.2( 0.5 ) | 1.9(0.4) | 0.0( 0.0 ) | 0.0 |
|  |  |  |  | 230.3( 1.5) | 203.9(3.0) | 203.4(2.9) | 225.6(8.7) | 213.2(7.7) |  |  |

* CV is the coefficient of variation for the sum of the weights.
(****) Standard error is greator than 99.9.

Table 16-73
Weighted Response Percentages and Reading Proficiency Means with Standard Errors Grade 4, by Parental Education, for Main Focused-BIB Reading Samples
paremts' education (naep id: pared)

|  | N | WEIGETED K (CV)* | Not HS | GRAD HS | POST HS | GRAD COL | UNKNOWN | MISSING |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -- total -- | 4515 | 858,677( 1\%) | $4.5(0.4)$ | 154 (0.8) | 7.8 ( 0.5) | 38.2 (1.5) | 34.0( 1.1) | 0.3 |
|  |  |  | 204.4(3.2) | 225.9(2.1) | 240.8(2.1) | 240.9( 1.3 ) | 221.9(1.4) |  |
| GEMDER |  |  |  |  |  |  |  |  |
| MALE | -333 | 443,602( 3K) | $5.0(0.6)$ | 15.0 ( 1.0) | 7.5( 0.7 ) | 39.5( 1.6) | 33.0 ( 1.3) | 04 |
|  |  |  | $196.9(4.8)$ | 222.9 ( 2.7) | $232.3(3.0)$ | 238.4( 2.1) | $217.7(1.7)$ |  |
| female | 2182 | 415,075 ( 3\%) | 4.0 ( 0.5) | 15.9( 1.1) | $8.2(0.7)$ | 36.8 ( 1.8) | $35.1(1.4)$ |  |
|  |  |  | 214.4(3.8) | 228.9( 2.6) | $249.2(3.1)$ | 243.7( 1.6) | $226.2(1.6)$ |  |
| RACE/ETHNICITY |  |  |  |  |  |  |  |  |
| WHITE | 2557 | 599,750( 2\%) | $4.2(0.6)$ | 16.3 ( 1.0 ) | 8.3 ( 0.6) | 39.3 ( 1.9) | 31.8( 1.4) | 0.0 |
|  |  |  | $210.0(4.3)$ | $231.0(2.6)$ | $248.0(2.3)$ | 248.3(1.7) | 230.3( 1.5 ) |  |
| BLACK | 842 | 135,579( 3\%) | $4.3(0.8)$ | 14.3( 1.6) | $6.8(1.0)$ | 38.8 ( 1.9) | 35.8(1.9) | 1.3 |
| 日ISPANIC |  |  | $137.2(7.4)$ | $211.3(3.5)$ | 219.9 ( 6.0$)$ | 217.9 ( 3.1) | $203.9(3.0)$ |  |
|  | 864 | 87,970 ( 3\%) | $7.3(1.2)$ | 14.7(1.2) | 6.9( 1.0 ) | 27.8 ( 2.2) | 43.3( 2.1) | 0.4 |
|  |  |  | 197.6( 6.2 ) | 210.6 ( 5.1) | $223.5(5.7)$ | 220.0 ( 3.8) | 203.4 ( 2.9) |  |
| OTHER | 252 | 35,378( 7 X ) | $2.6(0.8)$ | $7.2(1.6)$ | 6.3( 1.6 ) | $41.7(4.4)$ | $42.2(4.0)$ | 0.0 |
|  |  |  | 204.5( 9.3) | 218.1(12.0) | 213.7(14.9) | 239.5 (3.9) | 221.0( 5.9) |  |
| Parental : DuCATION |  |  |  |  |  |  |  |  |
| LESS THAN E.S. | 228 | 38,671(10\%) | 100.0(00) | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | 0.0 |
|  |  |  | 204.4(3.2) |  |  |  |  |  |
| graduated n.s. | 675 | 132,632( 5\%) | $0.0(0.0)$ | $100.0(0.0)$$2259(2.1)$$0.0(0.0)$ | 0.0( 0.0) | $0.0(0.0)$ | $0.0(0.0)$ | 0.0 |
|  |  |  |  |  |  |  |  |  |
| SOME ETUC AFTER H.S. | 358 | 67,315 ( 6\%) | 0.0) 0.0) |  | $\begin{aligned} & 100.0(0.0) \\ & 240.8(2.1) \end{aligned}$ | $0.0(0.0)$ | 0.0( 0.0) | 0.0 |
| GRaduated college | 1624 | 327.824( 4\%) | 0.0( 0.0) | $0.0(0.0)$ | 0.0( 0.0) | $100.0(0.0)$ | 0.0( 0.0) | 0.0 |
|  |  |  |  |  |  | $240.9(1.3)$$0.0(0.0)$ |  |  |
| UNKI:OWN | 1630 | 292,234 ( 3\%) | 0.0( 0.0) | 0.0(0.0) | 0.0( 0.0) |  | $\begin{aligned} & 100.0(0.0) \\ & 221.9(1.4) \end{aligned}$ | 0.0 |

* CV is the coefficient of variation for the sum of the woights.

Weighted Response Percentages and Reading Proficiency Means with Standard Errozs Grade 8, by Gender, for Main Focused-BIB Ryading Samples

GENDER OF SUBJECT (NAEP ID: SEX)

|  | 11 | WEIgated N (CV)* | Male | Female | MISSING |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -- TOTAL -- | 4404 | 491,575( 12 ) | 51.5(1.1) |  | 0.0 |
|  |  |  | 256.4(1.3) | 269.6 (1.1) |  |
| GENDER |  |  |  |  |  |
| MA.E | 2242 | 253,319( 3X) | 100.0( 0.0 ) | $0.0(0.0)$ | 0.0 |
|  |  |  | 256.4( 1.3) |  |  |
| female | 2162 | 238,257( 2 X ) | $0.0(0.0)$ | $100.0(0.0)$ | 0.0 |
|  |  |  |  | 269.6( 1.1) |  |
| Race/EThnicity |  |  |  |  |  |
| hatte | 2694 | 343,252( 2 X ) | $51.5(1.2)$ | 48.5( 1.2) | 0.0 |
|  |  |  | 262.8( 1.8 ) | $276.1(1.4)$ |  |
| BLACK | 772 | 74.650 ( 5 x ) | 49.3( 3.3) | 50.7 ( 3.3) | 0.0 |
| hispanic |  |  | $238.9(2.5)$ | 252.4( 2.2) |  |
|  | 711 | 52,413( 4x) | 54.8 ( 2.3) | 45.2 ( 2.3) | 0.0 |
|  |  |  | 237.7 ( 2.3) | $250.7(2.7)$ |  |
| OTHER | 227 | 21,260( 8 x ) | 51.8(3.2) | $48.2(3.2)$ | 0.0 |
|  |  |  | 260.7 ( 4.4) | 271.9(3.3) |  |
| farental education |  |  |  |  |  |
| LESS Than $\mathrm{H} . \mathrm{S}$. | 375 | 36,427( 8 x ) | 40.4(2.9) | 59.6( 2.9) | 0.0 |
|  |  |  | 236.8 ( 3.9 ) | $250.2(2.2)$ |  |
| GRaduated a.s. | 1193 | 136,783( 3\%) | 51.7 ( 1.6) | 48.3( 1.6 ) | 0.0 |
|  |  |  | 249.9 ( 2.0) | $263.2(1.7)$ |  |
| SCME EDUC AFTER H.S. | 731 | 89,177(4x) | $\begin{array}{r} 47.3(1.6) \\ 261.2(2.1) \end{array}$ | $\begin{array}{r} 52.7(1.6) \\ 475.3(1.8) \end{array}$ | 0.0 |
| graduated college | 139 | 189,833 ( $4 \%$ ) | 53.8 ( 1.6) | 46.2( 1.6 ) | 0.0 |
| UNKNOWN | 403 | 38,033 ( 7\%) | $266.4(1.8)$ $59.6(2.8)$ | $280.2(1.5)$ $40.4(2.8)$ | 0.0 |
|  |  |  | 237.6( 2.7 ) | 248.6( 2.3 ) |  |

* CV is the coefficient of variation zor the sun of the weights.


## Table 16-75

## Weighted Response Percentages and Reading Proficiency Means with Standard Errors

 Grade 8, by Derived Race/ethnicity, for Main Focused-BIB Reading SamplesDERIVED RACE/ETENICITY (NAEP ID: DRACE)

|  | $N$ | HEIGHTED N (CV)* | WHITE | BLACK | hispanic | ASIAN | AMER IND | UNCLASSIFIED | MISSING |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -- total -- | 4404 | 491,575 ( 1x) | $69.8(0.7)$ | 15.2( 0.7 ) | 10.7(0.4) | $3.0(0.3)$ | $1.3(0.2)$ | $0.1(0.0)$ | 0.0 |
|  |  |  | $269.2(1.3)$ | $245.7(2.0)$ | 243.6(2.1) | 274.7( 2.7) | 248.1( 5.5 ) | 206.1(26.7) |  |
| GENDER |  |  |  |  |  |  |  |  |  |
| M MLE | 2242 | 253,318( 3x) | 69.8( 1.0 ) | 14.5(0.8) | 11.3( 0.6 ) | $3.0(0.4)$ | $1.3(0.3)$ | $0.1(0.1)$ | 0.0 |
|  |  |  | 262.b( 1.8 ) | 238.9 ( 2.5) | $237.7(2.3)$ | 273.0( 3.1) | $236.7(7.8)$ | 206.1(26.7) |  |
| FEMALE | 2162 | 238,257(2X) | 69.9( 1.3 ) | 15.9( 1.3 ) | 10.0( 0.7 ) | $3.0(0.4)$ | $1.3(0.3)$ | $0.0(0.0)$ | 0.0 |
|  |  |  | 276.1( 1.4 ) | 25z.4( 2.2) | 250.7( 2.7) | 277.0( 4.5) | 260.2( 5.3 ) |  |  |
| race/Ethnicity |  |  |  |  |  |  |  |  |  |
|  | 2694 | 343.252( 2 K ) | 100.0( 0.0$)$ | 0.0( 0.0 ) | 0.0( 0.0) | 0.0( 0.0) | 0.7( 0.0) | $0.0(0.0)$ | 0.0 |
|  |  |  | $269.2(1.3)$ |  |  |  |  |  |  |
| BLACK | 772 | 74,650( 5\%) | 0.0( 0.0) | $\begin{aligned} & 100.0(0.0) \\ & 245.7(2.0) \end{aligned}$ | 0.0( 0.0$)$ | 0.0( 0.0) | $0.0(0.0)$ | $0.0(0.0)$ | 0.0 |
| hispanic | 711 | 52,413(4\%) | $0.0(0.0)$ | $0.0(0.0)$ | 100.0( 0.0) | $0.0(0.0)$ | $0.0(0.0)$ | 0.0(0.0) | 0.0 |
|  |  | 21,260( 8\%) |  |  | $243.6(2.1)$ $0.0(0.0)$ |  |  |  | 0.0 |
| OTHER | 227 |  | $0.0(0.0)$ | 0.0. 0.0$)$ | 0.0 ( 0.0$)$ | 274.9( 2.7 ) | 24.8.1( 5.5 ) | 206.1(26.7) |  |
| paremtal education 375 |  |  |  |  |  |  |  |  |  |
| Less than h.S. | 375 | 36,427(83) | 51.9(3.5) | 16.8 ( 2.9 ) | $27.2(2.1)$ | $2.5(1.1)$ | 1.4(0.7) | $0.2(0.2)$ | 0.0 |
|  |  |  | 246.9( 3.2, | 241.8 ( 5.2 ) | $241.2(3.1)$ | $262.6(12.7)$ | $240.4(14.1)$ | 238.3 (****) |  |
| GRaduated h.s. | 1193 | 136,783( 3x) | 71.9( 1.7) | 15.7( 1.2) | 9.8( 0.8 ) | 1.5( 0.3 ) | $1.0(0.3)$ | 0.0( 0.0) | 0.0 |
|  |  |  | $260.7(1.7)$ | 242.4 ( 3.0) | 244.6( 2.8 ) | 271.3( 7.9 ) | $251.1(9.6)$ |  |  |
| SOME EDUC AFTER H.S. | 781 | 89,177(4x) | 73.9( 1.8) | 14.9( 1.7) | $8.7(0.8)$ | $1.3(0.3)$ | $1.2(0.3)$ | $0.0(0.0)$ | 0.0 |
|  |  |  | 272.4 ( 1.8) | $257.5(2.7)$ | $251.4(3.8)$ | 287.0 ( 8.0 ) | 276.9(10.0) |  |  |
| graduated college | 1638 | 189,833( 4X) | 75.8 ( 1.4) | 13.0 ( 121$)$ | $5.8(0.6)$ $248.2(4.5)$ | $4.2(0.8)$ $282.6(3.3)$ | $1.1(0.3)$ $251.3(7.2)$ | $0 \sim(0.0)$ | 0.0 |
| UnKNOWH | 403 | 38,033( $7 x$ ) | $278.6(1.3)$ $41.7(2.6)$ | $248.5(2.7)$ 21.68 23 | $248.2(4.5)$ $26.8(1.8)$ | $282.6(3.3)$ $6.8(1.7)$ | $251.3(1.2)$ $2.9(1.0)$ | $0.3(0.3)$ | 0.0 |
|  |  |  | 251.3( 4.0 ) | 234.2(3.3) | 233.5(3.3) | 253.2( 5.3) | 221.4(11.7) | 216.1(****) |  |

[^60](****) Standard error is greater than 98.8.

Weighted Response Percentages and Reading Proficiency Means with Standard Errors Grade 8, by Parental Elucation, for Majn Focused-BIB Reading Samples

PARENTS' EDUCATION (NAEP ID: PARED)

|  | $N$ | WEIGHTED N (CV)* | NOT HS | GRAD \#S | POST HS | GKAD COL | UNKNOWN | MISSING |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -- TOTAL -- | 4391 | 490,253( i\%) | 7.4( 0.5) | $27.9(0.9)$ | 18.2( 0.8) | 38.7( 1.3) | 7.8( 0.5) |  |
|  |  |  | 244.8( 2.2) | 256.3( 1.5) | 268.6( 1.4) | 272.7( 1.2) | $242.0(2.0)$ |  |
| GENDER |  |  |  |  |  |  |  |  |
| MALE | 2234 | 252,546(3ヶ) | 5.8( 0.6 ) | 28.0( 1.0) | 16.7( 0.8 ) | 40.5( 1.3) | 9.0( 0.7 ) | 0.3 |
|  |  |  | 236.8 ( 3.9 ) | $248.9(2.0)$ | 261.2( 2.1 ) | 266 1.8) | 237.6( 2.7) | 0.3 |
| FEMALE | 7157 | 237,707( 2\%) | $9.1(0.9)$ | 27.8( 1.3) | $4.8(1.1)$ | 36 ;7) | 6.5( 0.5) | 0.2 |
|  |  |  | $250.2(2.2 j$ | $263.2(1.7)$ | 275.3(1.8; | 280 , | 248.6( 2.3) | 0.2 |
| RACE/ETHNICI CY |  |  |  |  |  |  |  |  |
| WHITE | 2691 | 342,965 ( 27 ) | 5.9 ( 0.6) | 28.7( 1.3) | 19.2( 0.9 ) | $42.0(1.6)$ | 4.6( 0.4) | 0.1 |
| BLACK | 765 |  | $246.9(3.2)$ | $260.7(1.7)$ | 272.4(1.8) | 278.6(1.3) | $251.3(4.0)$ | 1.0 |
|  |  | 73,869( | 8.3( 1.4$)$ | $29.1(2.0)$ | 18.0( 2.1 ) | 33.5( 2.1) | 11.1( 1.6) |  |
| HISPANIC | 709 | 52,347( 4\%) | $241.8(5.2)$ $18.9(2.2)$ | $242.4(3.0)$ $346(1.5)$ | $257.5(2.7)$ $14.8(1.3)$ | 248.5 ( 2.7 ) | $234.2(3.3)$ | 0.1 |
| OTHER |  |  | $18.9(2.2)$ $241.2(3.1)$ | $346(1.5)$ $\times 44.6(2.9)$ | $14.8(1.3)$ $251.4(3.9)$ | $21.2(1.9)$ $248.2(4.5)$ | $18.5(1.4)$ $233.5(3.3)$ |  |
|  | 225 | 21,073 ( 8\%) | 7.0( 2.2 ) | 16.6( 3.2 ) | $251.4(3.9)$ $10.4(2.1)$ | $248.2(4.5)$ $47.9(6.6)$ | $233.5(3.3)$ $18.0(3.1)$ | 0.9 |
|  |  |  | 253.9( 9.2) | 263.2( 6.7) | 282.2( 6.6) | 275.9(2.6) | $243.0(6.7)$ |  |
| PARENTAL EDUCATION |  |  |  |  |  |  |  |  |
| LESS THAN H.S. | 375 | 36,42: 8\%) | 100.0( 0.0 ) | 0.0( 0.0) | 0.0( 0.0) | 0.0( 0.0) | 0.0( 0.0 ) | 0.0 |
|  |  |  | 244.8 ( 2.2) |  |  | 0.0( 0.0$)$ | $0.0(0.0)$ | 0.0 |
| GRADUATSD H.S. | 1193 | 136,783( 3 K ) | $0.0(0.0)$ | 100.0( 0.7 ) | $0.0(0.0)$ | 0.0( 0.0$)$ | $0.0(0.0)$ | 00 |
| SOME EDUC AFTER H.S. | 781 | 89,177( 4\%) | 0.0( 0.0) | $256.3(1.5)$ $0.0(0.0)$ |  |  |  |  |
|  |  | 8,177( 4x) | $0.0(0.0)$ | $0.0(0.0)$ | $\begin{aligned} & 100.0(0.0) \\ & 268.6(1.4) \end{aligned}$ | 0.0( 0.0) | 0.0( 0.0 ) | 0.0 |
| GRaduated college | 1639 | 189,833(4\%) | $0.0(0.0)$ | 0.0( 0.0 ) | $0.0(0.0)$ | 100.0( 0.0) | 0.0( 0.0 ) | 0.0 |
| UNKNOWN | 403 |  |  |  |  | $272.7(1.2)$ |  |  |
| UNNOW | 403 | 38,033 (72) | $0.0(00)$ | 0.0( 0.0 ) | ${ }^{\circ} 0(0.0)$ | 0.0( 0 0) | $\begin{aligned} & 100.0\left(\begin{array}{ll} 0 & 0 \end{array}\right) \\ & 242.0\left(\begin{array}{ll} 2 & 0 \end{array}\right) \end{aligned}$ | 0.0 |

[^61]Table 16-77
Weighted Response Percentages and Reading Proficiency Means with Standard Errors Grade 12, by Gender, for Main Focused-BIB Reading Samples

| GENDER OF SUBJECT (HAEP ID: SEX) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | H | WEIGHIED N (CV)* | MALE | Ferale | MISSING |
| -- total -- | 4250 | 521,501( 2\%) | $\begin{array}{r} 47.5(1.1) \\ 282.9(1.1) \end{array}$ | $\begin{array}{r} 52.5(1.1) \\ 291.0(1.1) \end{array}$ | 0.0 |
| GENDER |  |  |  |  |  |
| MALE | 2002 | 247.866( 32) | 100.0( 0.0) | $0.0(0.0)$ | 0.0 |
|  |  |  | 282.9(1.2) |  |  |
| female | 2248 | 273,635(32) | $0.0(0.0)$ | $200.0(0.0)$ | 0.0 |
|  |  |  |  | $291.0(1.1)$ |  |
| RACE/ETHAICITY |  |  |  |  |  |
| WHITE | 2887 | 385,848( 2\%) | 47.1 ( 1.4) | 52.9(1.4) | 0.0 |
|  |  |  | 288.5( 1.1) | 296.2( 1.2) |  |
| BLACK | 748 | 72,396( 6\%) | 45.4( 2.4) | 54.6( 2.4) | 0.0 |
|  |  |  | 264.4( 2.5) | 275.2( 2.6) |  |
| HISPANIC | 473 | 41,853( 8x) | 46.7( 2.3) | 53.3( 2.3) | 0.0 |
|  |  |  | 257.6( 3.1) | 275.3( 3.2) |  |
| OTAER | 142 | 21,404(10x) | 63.5( 4.8) | 36.5( 4.9) | 0.0 |
|  |  |  | 287.8( 4.5) | 279.9( 5.4) |  |
| barental education |  |  |  |  |  |
| LESS THAN 日.S. | 385 | 39,295( 8\%) | 40.0( 3.0) | 60.0( 3.0) | 0.0 |
|  |  |  | $263.9(4.0)$ | 276.4( 2.1) |  |
| GRADUATED R.S. | 1060 | 128,097(5\%) | $45.7(2.0)$ | 54.3( 2.0) | 0.0 |
|  |  |  | 273.0( 1.8) | 282.5 ( 1.7) |  |
| SOME EDUC AFTER H.S. | 1057 | 127,961( 4x) | $45.0(1.8)$ | $55.0(1.8)$ | 0.0 |
|  |  |  | 285.2( 1.7) | 291.3(1.5) |  |
| GRaduATED COLLEGE | 1643 | 214,061( 3\%) | $51.2(1.6)$ | 48.8( 1.6) | 0.0 |
|  |  |  | 291.0( 1.5) | $301.0(1.7)$ |  |
| UNKXOWN | 97 | 10.952(10\%) | 51.3( 6.8) | 48.7( 6.8) | 0.0 |
|  |  |  | 253.8( 5.1) | 265.4( 9.0) |  |

* CV is the corfficient of variation for the sum of the woights.

Weighted Response Percentages and Reading Proficiency Means with Standard Eraors Grade 12, by Derived Race/ethnicity, for Main Focused-bIB Reading Samples

DERIVED RACE/ETBNCITY (NAEP ID: DRACE)

|  | $N$ | HE.SGHTED N (CV)* | HHITE | BLACK | HISPANIC | ASIAN | AMER IND | UNCLASSIFIED | MISSING |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -- TOTAL -- | 4250 | 521.501( 2x) | $\begin{gathered} 74.0(1.0) \\ 292.6(1.0) \end{gathered}$ | $\begin{array}{r} 13.9(0.7) \\ 270.3(1.6) \end{array}$ | $\begin{array}{r} 8.0(0.5) \\ 267.1(2.4) \end{array}$ | $\begin{array}{r} 2.2(0.3) \\ 290.3(3.7) \end{array}$ | $\begin{array}{r} 0.8(0.3) \\ 267.9(7.4) \end{array}$ | $\begin{array}{r} 0.1(0.1) \\ 246.0(28.5) \end{array}$ | 0.0 |
| GENDER |  |  |  |  |  |  |  |  |  |
| MaLE | 2002 | 247.866( 3x) | 73.4( 1.2) | 13.3( 0.9 ) | $7.8(0.6)$ | $4.5(0.5)$ | 0.9(0.3) | 0.1( 0.1) | 0.0 |
|  |  |  | 288.5(1.1) | 264.4( 2.5) | 257.6( 3.1) | 292.4( 5.3) | 271.2(10.0) | 235.5(****) |  |
| FEMALE | 2248 | 273.635( $3 x$ ) | 74.6( 1.5 ) | 14.4(1.0) | 8.2( 0.8 ) | 2.0( 0.4) | $0.8(0.4)$ |  | 0.0 |
|  |  |  | 296.2( 1.2) | 275.2(2.6) | 275.3(3.2) | $286.2(5.3)$ | $264.5(8.9)$ | $268.2(6.8)$ |  |
| RACE/ETHNICITY |  |  |  |  |  |  |  |  |  |
| WHITE | 2887 | 385,848( $2 x$ ) | $\begin{aligned} & 100.0(0.0) \\ & 282.6(1.0) \end{aligned}$ | 0.0( 0.0) | 0.0: 0.0 ) | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | 0.0 |
| BLACM | 748 | 72,396( 6x) | 0.0( 0.0 ) | $\begin{aligned} & 100.0(0.0) \\ & 270.3(2.6) \end{aligned}$ | 0.0( 0.0 ) | 0.0( 0.0 ) | 0.0( 0.0$)$ | 0.0( 0.0) | 0.0 |
| HISPANIC | 473 | 41,853( 8x) | 0.0( 0.0$)$ | $0.0(0.0)$ | $\begin{aligned} & 100.0(0.0) \\ & 267.1(2.4) \end{aligned}$ | $0.0(0.0)$ | 0.0( 0.0) | 0.0( 0.0) | 0.0 |
| UTHER | 142 | 21,404(10\%) | 0.0(0.0) | $0.0(0.0)$ | $0.0(0.0)$ | $\begin{array}{r} 77.6(5.8) \\ 290.3(3.7) \end{array}$ | $\begin{array}{r} 20.6(5.8) \\ 267.8(7.4) \end{array}$ | $\begin{array}{r} 1.8(1.3) \\ 246.0(28.5) \end{array}$ | 0.0 |
| PARENTAL EDUCATION |  |  |  |  |  |  |  |  |  |
| LESS THAN H.S. | 385 | 39,295 ( 8x) | $48.6(4.2)$ | 16.7( 2 9) | $28.8(3.2)$ | 2.0( 0.9 ) | 1.9( 1.7 ) | $0.0(0.0)$ | 0.0 |
| GRADUATED H.S. |  |  | 276.8( 3.1) | $265.7(3.2)$ | $266.1(3.9)$ | 261.1( 4.2$)$ | 279.8(29.5) |  |  |
|  | 1060 | 128,097( 5\%) | $73.1(1.8)$ $283.0(1.4)$ | $17.0(1.6)$ $265.3(2)$ | $7.3(0.7)$ $260.7(3.7)$ | 2.0( 0.5 ) | $0.6(0.3)$ $270.5(5.6)$ | 0.0( 0.0) | 0.0 |
| SOME EDUC AFTER H.S. | 1057 |  | $283.0(1.4)$ $74.3(1.7)$ | $265.3(2) ~ 5)$ $15.9(1.3)$ | $260.7(3.7)$ $6.3(0.7)$ | $275.3(14.0)$ $2.7(0.6)$ | $270.5(5.6)$ $0.7(0.3)$ | 0.1( 0.1) | 0.0 |
|  |  | 127.961( 4x) | 293.1(1.4) | 275.9 ${ }^{\text {( } 2.8)}$ | $273.2(4.5)$ | 279.2( 6.4) | 288.2( 9.9 ) | $268.2(6.8)$ |  |
| GRaduated college | $\pm 543$ | 214.061( 3x) | 81.0( 1.1 ; | 9 - 0.7 ) | $4.8(0.5)$ | 4.J( 0.6 ) | $0.6(0.3)$ | $0.1(0.1)$ | 0.0 |
|  |  |  | 299.9( 1.3$)$ | $274.1(2.8)$ | 271.21 3.8) | 302.9( 5.0 ) | 257.0(12.5) | 235.3(****) |  |
| UNKNOWN | 97 | 10,952(10x) | $39.2(7.0)$ | $22.6(4.0)$ | 24.0( 5.3) | $6.2(3.2)$ | 5.9( 3.0 ) | 0.0( 0.0) | 0.0 |
|  |  |  | 262.3(12.7) | 255.4(7.6) | 254.4(4.6) | 282.0( 7.9$)$ | 245.2(2C.0) |  |  |

*CV is the coefficient of variation for the sum of the weights.
(****) Standard erro: is greater than 99.9.

Table 16-79
Weighted Response Percentages and Reading Proficiency Means with Siandard Errors Grade 12, by Parental Education, for Main Focused-BIB Reading Samples
parents' education (maep id: pared;

|  | N | SEIGHTED N (CV)* | NOT ES | GRAD ES | POSI ES | GRAD COL | UNKNCFA | MISSIMG |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -- total | 4242 | 520,364( 2 X ) | 7.6 ( 0.6) | $\begin{array}{r} 24.6(1.0) \\ 278.2(1.1) \end{array}$ | $\begin{aligned} 24.6(0.9) \\ 288.6(1.2) \end{aligned}$ | $\begin{array}{rr} 41.1( & 1.5) \\ 295.9(1.2) \end{array}$ | $\begin{array}{r} 2.1(0.2) \\ 259.5(6.0) \end{array}$ | 0.2 |
|  |  |  | 271.4( 2.1 ) |  |  |  |  |  |
| GEMDER |  |  |  |  |  |  |  |  |
| MALE | 1997 | 247,126( 3x) | 6.4(0.7) | 23.7(1.3) | $2^{-3(1.1)}$ | 44.4, 1.9) | 2.3( 0.4 ) | 0.3 |
| female |  |  | 263.9(40) | 273.0( 1.8 ) | 285.2( 1.7) | 291.0( 1.5) | 253.8( 5.1) |  |
|  | 2245 | 273,238( 3\%) | 8.6( 0.8 ) | 25.4(1.2) | 25.0( 1.1) | 38.2( 1.6$)$ | 2.0( 0.3 ) | 0.1 |
|  |  |  | 275.4(2.1) | 232.5( 1.7) | 291.3( 1.5) | 301.0( 1.7) | 265.4( 9.0) |  |
| RACE/ETSNICITY |  |  |  |  |  |  |  |  |
| WHITE | 2884 | 385,571( 2\%) | 5.0( 0.6) | 2. 3 ( 1.2) | 24.7( 1.0) | 45.0( 1.7) | 1.1( 0.2) | 0.1 |
| BLACK |  |  | 276.8( 3.1 ) | $283.0(1.4)$ | 293.1( 1.4) | 299.9( 1.3) | 262.3(12.7) |  |
|  | 746 | 72,150( 6\%) | 10.2( 2.5 ) | 30.1( 2.0) | $28.2(1.7)$ | 28.1( 2.6 ) | 3.4(0.7) | 0.3 |
| GISPANIC |  |  | 265.7( 3.2$)$ $27.3(2.2)$ | 265.3( 2.9 ) | 275.3( 2.8 ) | 274.1( 2.8 ) | 255.4 ( 7.6$)$ |  |
|  | 471 | 41,512( 8\%) | 27.3( 2.2) | 22.4( 1.8) | 19.3 ( 1.5) | 24.7( 2.3) | 6.3 ( 1.3) | 0.8 |
| OTHER | 141 | 21.131(10x) | 266.1) 3.9 3.3) | $260.7(3.7)$ $16.1(2.9)$ | $273.2(4.5)$ $21.4(3.9)$ | $271.1(3.8)$ $47.9(6.4)$ | $254.4(4.6)$ $7.3(2.3)$ | 1.3 |
|  |  |  | 270.2( 5.7 ) | 274.1(10.9) | $280.7(5.1)$ | 285.2( 5.5 ) | 266.6(11.8) |  |
| PARENTAL EDUCATION |  |  |  |  |  |  |  |  |
| LESS THAN H.S. | 385 | 39,295 ( 8x) | 100.0( 0.0) | 0. , 0.0) | 0.0( 0.0) | $0.0(00)$ | 0.0( 0.0) | 0.0 |
|  |  |  | 271.4(2.1) |  |  | 0.0( 00 ) | $0.0(0.0)$ | 0.0 |
| GRADUATED R.S. | 1069 | 128,087 ( $5 x$ ) | $0.0(0.0)$ | 100.0( 0.0 ) | $0.0(0.0)$ | 0.0( 0.0) | 0.0( 0.0$)$ | 0.0 |
| SOME EDUC GFTER H.S. | 1057 | 127,961(4X) | 0.0( 0.0) | $278.2(1.1$ $0.0(0.0)$ |  |  |  |  |
|  |  | 127,961 4x) |  | $0.0(0.0)$ | $100.0(0.0)$ $288.6(1.2)$ | $0.0(0.0)$ | $0 . \% 0.0)$ | 0.0 |
| GR DDUATED COLLEGE | 1643 | 218,061( 3x) | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | 100.0( 0.0) | 0.0( 0.0$)$ | 0.0 |
| UNXNOM: | 97 | 10,952(10\%) | 0.0( 0.0) |  |  | $295.9(1.2)$ $0.0(0.0)$ |  |  |
| UNOM: | 97 | 10,952(10x) | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | 0.0( 0.0 ) | $\begin{aligned} & 100.0(0.0) \\ & 259.5(6.0) \end{aligned}$ | 0.0 |

* CV is the coefficient of variation for the sum of the weights.

Weighted Response Percentages and Writing Proficiency* Means with Standard Errors Grade 4, by Gender, for Main Writing Samples

GENDER OF SUBJECT (NAEP ID: SEX)

|  | $N$ | HEIGETED N | (CV)** | * MALE | FENALE | MISSTMG |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| --TOTAL-- | 6677 | 1,270,697 | 1\%) | $\begin{array}{r} 50.4(0.9) \\ 184.4(1.3) \end{array}$ | $\begin{array}{r} 49.6(0.9) \\ 197.5(1.3) \end{array}$ | 0.0 |
| GEMDER |  |  |  |  |  |  |
| MALE | 3356 | 640,162( | 2\%) | 100.0( f. d) | 0.0( 0.0$)$ | 0.0 |
|  |  |  |  | 184.4( . .3) |  |  |
| FEMALE | 3321 | 630,535 | 2\%) | $0.0(0.0)$ | $100.0(0.0)$ | 0.0 |
|  |  |  |  |  | 197.5( 1.3) |  |
| RACE/ETENICITY |  |  |  |  |  |  |
| WHITE | 3707 | 881,758( | 12) | 50.4( 1.1) | 49.6( 1.1) | 0.0 |
|  |  |  |  | 191.1( 1.6) | 2(4.3( 1.7 ) |  |
| BLACX | 1206 | 192,142( | 22) | 45.3( 1.7) | 54.7( 1.7) | 0.0 |
|  |  |  |  | 161.9(3.3) | 174.5( 1.8 ) |  |
| HISPANIC | 1405 | 144,5782 | 2\%) | 56.9( 1.3) | 43.1( 1.3) | 0.0 |
|  |  |  |  | 172.1( 2.0) | 186.2' 2.8 ) |  |
| OTHER | 359 | 52,218( | 5x) | $50.2(2.6)$ | 49.8( 2.6 ) | 0.0 |
|  |  |  |  | 183.9(4.9) | 204.2(4.4) |  |
| Parental education |  |  |  |  |  |  |
| LESS TEAN HS | 358 | 62,539( | 72) | 46.3( 2.9) | 53.7( 2.9) | 0.0 |
|  |  |  |  | $172.9(4.4)$ | 181.9( 3.7 ) |  |
| GRADUATED HS | 978 | 294,058( | 42) | $49.5(1.8)$ | 50.5(1.8) | 0.0 |
|  |  |  |  | 178.1(2.2) | 194.3( 2.5) |  |
| SOME EDUL AFTER HS | 508 | 99,842( | 5x) | 49.1( 2.1) | $50.9(2$. | 0.0 |
|  |  |  |  | 235.7(3.3) | $208.2(3.3)$ |  |
| graduated college | 2403 | 479,780 | (2) | 52 2( 1.2) | 47.8( 1.2) | 0.0 |
|  |  |  |  | 194.0( 1.5) | 208.0( 18 ) |  |
| URENOMS | 2385 | 428,174 | 4X) | $49.5(1.2)$ | S0.5( 1.2) | 0 C |
|  |  |  |  | 475.4(19) | 188.0( 2.0) |  |

* Average response method proficiency scor.
** CV is the coefficient of variation for the sum of the weights.

Table 16－81
Weighted Response Percentages and Writing Proficiency＊Means with Standard Errors Grade 4，by Derived Race／ethnicity，for Main Writing Samples

DERIVED RACE／ETBNICITY（NAEP ID：DRACE）

|  | N | WEIGE：ED ： | （CV）＊＊ | WBITE | BLACX | EISPANIC | ASIA | AMER IND | UNCLASSIFIED | MISSING |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| －－TOTAL－－ | 6679 | 1，270．904 | 12） | $\begin{gathered} 89.4(0.4) \\ 197.6(1.3) \end{gathered}$ | $\begin{array}{r} 15.1(0.3) \\ 168.8(1.9) \end{array}$ | $\begin{array}{r} 11.4(0.3) \\ 178.2(2.0) \end{array}$ | $\begin{array}{r} 1.9(0.2) \\ 208.0(6.9) \end{array}$ | $\begin{array}{r} 3.1(0.2) \\ 181.0(4.5) \end{array}$ | $\begin{array}{r} 0.1(0.0) \\ 188.3(13.3) \end{array}$ | 0.0 |
| GENDER |  |  |  |  |  |  |  |  |  |  |
| Male | 3357 | 640，295 | 25） | 68．4（0．7） | 13．6（ 0．5） | $129(0.4)$ | 1．7（0．2） | 2．3（ 0.2 ） | 0．0（ 0.0 ） | 0.0 |
|  |  |  |  | 191．1（ 1.6$)$ | 161．9（ 3．2） | 172．1（ 2.0 ） | 197．7（ 6．7） | 173．4（7．2） | 187．2（34．3） |  |
| FEMALE | 3322 | 630，610（ | 2\％） | 69．3（ 0.7 ） | 26．7（ 0.6 ） | $9.9(0.4)$ | 2．0（ 0.3 ） | 2.0 （ 0.2 ） | $0.2(0.1)$ | 0.0 |
|  |  |  |  | 204.36 ： 5 \％ | ミアi．j（ i．8） | 186．2（ 2.8$)$ | 218．7（9．2） | 190．1（ 5．0） | 189．6（17．2） |  |
| RhCr／ETHNICITY |  |  |  |  |  |  |  |  |  |  |
| WHITE | 3707 | 881，758（ | 12） | $\begin{aligned} & 100.0(0.0) \\ & 197.6(1.3) \end{aligned}$ | 0.0 （ 0.0$)$ | 0．0（ 0．0） | 0．0： 0.0$)$ | $0.0(0.0)$ | 0．0（ 0.0$)$ | 0.0 |
| BLACK | 1207 | 192．275 | 2\％） | $0.0(0.0)$ | $\begin{aligned} & 100.0(00 \\ & 168.8: 1.9) \end{aligned}$ | 0．0（ 0．0） | $0.0(0.0)$ | $0.0(0.0)$ | 0．0（ 0.0$)$ | 0.0 |
| hispanic | 1406 | 144．65： | 2K） | 0.0 （0．0） | $0.0(0.0)$ | $\begin{aligned} & 100.0(0.6) \\ & 178.7(2.0) \end{aligned}$ | $0.0(0.0)$ | $0.6(0.0)$ | 0．0（ 0.0$)$ | 0.0 |
| OTHER | 359 | 52，218： | 5\％） | $0.0(0.0)$ | $0.0(0.0)$ | $0 . \therefore(0.3)$ | $\begin{gathered} 4 E .1(4.1) \\ 209.0(6.8) \end{gathered}$ | $\begin{array}{r} 52.2(4.0) \\ 181.0(4.5) \end{array}$ | $\begin{array}{r} 1.8(1.0) \\ 188.3(13.3) \end{array}$ | 0.0 |
|  |  |  |  |  |  |  |  |  |  |  |
| LESS TEAK ES | 358 | 62.5391 | 74） | 60．3（ 2．5） | 19．6（ 2．5） | 16．9（ 2.1 ） | 1．6（ 1．1） | $1.6(0.6)$ | 0.0 （ 0.0$)$ | 0.0 |
|  |  |  |  | 183．3（ 4.2$)$ | 165．5（ 6．5） | 174.6 （ 6．9） | $173.8(61.6)$ | 152．4（12．1） |  |  |
| GRadUATED HS | 978 | 194．058（ | 4x） | 71．1（ 1.3$)$ | 17．8（ 1．3） | 8．1（ 0.8$)$ | 0．8（ 0．3） | 2．2（ 0.3$)$ | 0．0（ 0．6） | 0.0 |
|  | 509 | 99，917 | 5X） | $191.8(2.1)$ $75.1(2.0)$ | $166.9(3.7)$ $10.8(1.6)$ | $17 \% .9(4.1)$ $10.3(1.1)$ | $229.0(24.8)$ $1.4(0.5)$ | $183.6(10.0)$ $2.2(0.6)$ | 0．3（ 0．3） | 0.0 |
| SOME EDUC AFTER HS |  |  |  | 206．6（ 3．1） | 176．2（ 7.8 ） | 192．4（ 5.2 ） | 231．5（18．$)$ | 205．2（13．6） | 178．8（ 3.7 ） |  |
| GRADUATED COLLEGE | 2404 | 479．913 | 4\％） | 73．3（ 1．2） | 14．0（ 0.4 ） | 9．0（ 0.6 ） | 1．8i（0．3） | 1．8（ 0.3 ） | $0.1(0.0$ ， | 0.0 |
|  |  |  |  | $207.2(1.5)$ | 174．5（ 2） | $1869(3.2)$ | $219.1(62)$ | 187．6（ 8．2） | 189．2（18．4） |  |
| UNKKNOTM | 3335 | 428，174（ | 4\％） | 64．5（ 1．0） | 15．2（ 0．8） | 15．0（ 0.7 ） | 2．7（ 0．4） | 2.6 （ 0．3） | $0.1(0.0)$ | 00 |
|  |  |  |  | 198．2（ 1.8$)$ | 163．4（2．3） | 171．0（ 2．6） | 199．0（7．こ） | $172.9(6.0)$ | 195．9（37．1） |  |

＊Avorage response mothod proficiency score
＊＊CV ls the coefficient of varintion for the sum of the weights．

Weighted Response Percentages and Writing Proficiency* Means with Standard Errors Grade 4, by Parental Education, for Main Writing Samples

PARENTS' EDUCATION (NAEP ID: PARED)

|  | N | WEIGHTED N | (CV)** | * NOT HS | W HS | POST HS | GRAD | COL | UNKSOWN | MISSING |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| --TOTAL-- | 6679 | 1,264,600 | 12) | 4.9( 0.4) | 15.3(0.6) | 7.9( 0.4) | 37.9 ( | 1.4) | 33.9( 1.1) | 0.5 |
|  |  |  |  | 177.7( 2.9) | 186.3 ( 1.9) | 202.1( 2.5) | 200.7 ( | 1.3) | 181.7( 1.1) |  |
| GENDER |  |  |  |  |  |  |  |  |  |  |
| MALE | 3357 | 636,711( | 2\%) | 4.5( 0.5) | 15.1( 0.7) | 7.7( 0.6 ) | 39.4( | 1.5) | 33.3( 1.1) | 0.6 |
|  |  |  |  | 172.9( 4.4) | 178.1( 2.2) | 195.7( 3.3 ) | 194.0( | 1.4) | 175.4( 1.9) |  |
| FEMALE | 3322 | 627,890( | 2\%) | 5.3( 0.4) | 15.6( 0.7 ) | 8.1( 0.5 ) | 36.5 ( | 1.6) | 34.5( 2.4 ) | $\therefore .4$ |
|  |  |  |  | $181.9(3.7)$ | 194.3( 2.5) | 208.2( 3.3) | 208.0 | 1.8) | 188.0( 2.0 ) |  |
| RACE/ETHNICITY |  |  |  |  |  |  |  |  |  |  |
| WHITE | 3707 | 878,914 | 12) | 4.3( 0.4 ) | 15.7( 0.7) | 8.5( 0.5 ) | 40.01 | 1.7) | 31.4( 1.3) | 0.3 |
|  |  |  |  | 183.3( 4.2 ) | 191.8( 2.1) | 206.6( 3.1) | $207.2($ | 1.5) | 188.2(1.8) |  |
| BL_ACK | 1207 | 189,810 ( | 2z) | $6.5(1.0)$ | 18.2( 1.2$)$ | 5.7(0.8) | 35.4 ( | 1.9) | 34.2( 2.2) | 1.3 |
|  |  |  |  | 165.5 ( 6.5) | 166.9( 3.7 ) | 176.2( 7.8 ) | 174.5( | 4.2.) | 163.4( 2.3 ) |  |
| HISPANIC | 1406 | 143,751( | 32) | 7.3( 0.8) | $11.0(1.2)$ | 7.2( 0.7) | 29.9 ( | 1.7; | 44.6( 1.4) | 0.6 |
|  |  |  |  | 174.6( 6.9) | 177.9( 4.1 ) | 192.4( 5.2 ) | 186.9 ( | 3.2) | 171.0( 2.6 ) |  |
| OTHER | 359 | 52,126( | 5z) | $\begin{array}{r} 3.8(1.3) \\ 163.0(16.6) \end{array}$ | $\begin{array}{r} 11.1(2.2) \\ 195.5(11.2) \end{array}$ | $\begin{array}{r} 7.3(1.6) \\ 212.9(9.8) \end{array}$ | $\begin{array}{r} 33.9( \\ 203.21 \end{array}$ | $\begin{aligned} & 2.8) \\ & 4.9) \end{aligned}$ | $\begin{gathered} 43.9(3.1) \\ 186.1(4.5) \end{gathered}$ | 0.2 |
| PARENTAL EDUCATION |  |  |  |  |  |  |  |  |  |  |
| LESS THAN HS | 358 | 62,539 | 72) | $100.0(0.0)$ | 0.0( 0.0$)$ | 0.0( 0.0 ) | 0.01 | 0.0) | 0.0( 0.0) | 0.0 |
|  |  |  |  | 177.7( 2.9 ) |  |  |  |  |  |  |
| GRaduated hS | 978 | 194.058 | 4x) | 0.0( 0.0 ) | 100.0( 0.0 ) | $0.0(0.0)$ | 0.01 | 0.0) | $00(0.0)$ | 0.0 |
| SOXE EDUC AFTER HS | 509 | 99,917( | 5K) |  | $186.3(1.9)$ $0.0(0.0)$ |  |  |  |  |  |
|  | 2404 | 99,917 | 5x) | 0.0( 0.0 ) | $0.0(0.0)$ | $\begin{aligned} & 100.0(0.0) \\ & 202.1(2.5) \end{aligned}$ | 0.01 | 0 0) | 0.0( 0.0) | 0.0 |
| GRADJATED COLLEGE | 2404 | 479,913 | 4z) | 0.0( 0.0$)$ | 0.0( 0.0$)$ | $0.0(0.0)$ | 100.01 | 0.0) | 0.0( 0.0) | 0.0 |
| UNKNOWN | 2385 | 428,./4 | 4x) | 0.0( 0.0) | 0.0( 0.0) | 0.0( 0.0$)$ | 200.7! | 1.3) |  |  |
|  |  |  |  |  | $0.0(0.0)$ | 0.0( 0.0$)$ |  | 0.0) | $181.7(1.1)$ | 0.0 |

* Average response method proficiency score
** CV is the coefficient of variation for the sum of the weights.

Table 16-83

## Waighted Response Percentages and Writing Proficiency* Means with Standard Errors Grade 8, by Gender, for Main Writing Sampies

GENDER OF SUBJECT (NAEP ID: SEX)

|  | N | WEIGHTED \% | (CV)** | MALE | ferale | MISSING |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| --TOTAL-- | 6525 | 743,791( | 12) | 51.1( 0.8 ) | $48.9(0.8)$ | 0.0 |
|  |  |  |  | 200.9(1.4) | 218.5( 1.2) |  |
| GENDER |  |  |  |  |  |  |
| MALE | 3294 | 379,715( | 2x) | 100.0( 0.0) | $0.0(0.0)$ | 0.0 |
|  |  |  |  | 200.9( 1.4) |  |  |
| FEMALE | 3231 | 364,076( | 2x) | 0.0( 0.0 ) | 100.0( 0.0) | 0.0 |
|  |  |  |  |  | 218.5( 1.2) |  |
| RACE/ETHNICITY |  |  |  |  |  |  |
| WHITE | 4143 | 537,337( | 2x) | 50.9( 0.9 ) | 49.2( 0.9 ) | 0.0 |
|  |  |  |  | 207.2( 1.6) | $225.0(1.1)$ |  |
| BLACK | 1119 | 108,142( | 3\%) | 49.9( 2.0 ) | 50.1( 2.0) | 0.0 |
|  |  |  |  | 179.4( 2.5) | 195.7( 2.6) |  |
| hispanic | 966 | 69,963 ( | 3x) | 53.6( 2.1) | 46.4( 2 1) | 0.0 |
|  |  |  |  | 184.5( 2.6) | 201.5( 3.4) |  |
| OTAER | 297 | 28,349 ( | 47) | 53.4(2.3) | 46.6( 2.3) | 0.0 |
|  |  |  |  | 205.0( 4.2) | 221.7( 5.7) |  |
| PARENTAL EDUCATION |  |  |  |  |  |  |
| LESS THAN HS | 603 | 59,584( | 6\%) | 39.8( 2.3) | 60.2( 2.3) | 0.0 |
|  |  |  |  | 185.2( 4.1) | 204.1( 2.4) |  |
| GRADUATED HS | 1706 | 198,188( | 3\%) | 52.0( 1.4) | 48.0( 1.4) | 0.0 |
|  |  |  |  | 196.3( 1.9) | 214.6( 2.4 ) |  |
| SOXE EDUC AFTER mS | 1178 | 135,639 ( | 4\%) | 47.9( 1.8) | 52.1( 1.8) | 0.0 |
|  |  |  |  | 207.3( 2.6) | 224.2( 2.0 ) |  |
| GRADUATED COLLEGE | 2444 | 292,035 | 3\%) | 52.9( 1.1) | 47.1( 1.1) | 0.0 |
|  |  |  |  | 208.3( 2.1) | 225.8( 1.9) |  |
| UNKNOW | 573 | 56,300 | 6\%) | 57.8( 2.3) | 42.2( 2.3) | 0.0 |
|  |  |  |  | 179.3( 3.0) | 196.7( 3.6) |  |

* Averase response method proficiency score
* Averase response method proficiency score
** CV is the coefficient of variation $10 r$ the sum of the weights.

Weighted Response Percentages and Writing Proficiency* Means with Standard Errors Grade 8, by Derived Race/ethnicity, for Main Writing Samples

DERIVED RACE/ETHNICITY (NAEP ID: DRACE)

|  | N | WEIGHTED N (CV)** | * NHITE | BLACK | HISPANIC | ASIAN | AMER YND | UNCLASSIFIED | MISSIMG |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| --TOTAL-- | 6525 | 743,791( 1X) | $\begin{array}{r} 72.2(0.5) \\ >16.0(1.0) \end{array}$ | $\begin{array}{r} 14.5(0.4) \\ 187.5(2.2) \end{array}$ | $\begin{array}{r} 9.4(0.2) \\ 192.4(2.1) \end{array}$ | $\begin{array}{r} 2.5(0.2) \\ 22.5(5.0) \end{array}$ | $\begin{array}{r} 1.2(0.2) \\ 194.1(5.1) \end{array}$ | $\begin{array}{r} 0.1(0.0) \\ 193.8(17.5) \end{array}$ | 0.0 |
| GENDER |  |  |  |  |  |  |  |  |  |
| MALE | 3294 | 379,715( 2x) | 71.9( 0.9 ) | 14.2(0.7) | 9.9( 0.5 ) | 2.5( 0.2 ) | 1.4(0.2) | $0.1(0.0)$ | 0.0 |
|  |  |  | $207.2(1.6)$ | 179.4( 2.5) | 184.5( 2.6 ) | 216.3( 5.7 ) | 186.1( 0.6 ) | 191.2(24.7) |  |
| Female | 3231 | 364,076( $2 x$ ) | 72.6( 0.8 ) | $14.9(0.6)$ | $8.9(0.4)$ | 2.5( 0.2 ) | 1.0( 0.2) | 0.1( 0.1 ) | 0.0 |
|  |  |  | 225.0( 1.1) | 195.7( 2.6) | 201.5(3.4) | 228.9(7.4) | 206.3( 85) | 195.6(19.3) |  |
| RACE/ETANICITY |  |  |  |  |  |  |  |  |  |
| WHITE | 4143 | 537,337( 2X) | 100.0( 0.0) | 0.0( 0.0$)$ | 0.0( 0.0 ) | 0.0( 0.0, | $0.0(0.0)$ | 0.0( 0.0$)$ | 0.0 |
|  |  |  | 216.0( 1.0 ) |  |  |  |  |  |  |
| BLACK | 1119 | 108,142( 玉.) | $0.0(0.0)$ | $100.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | 0.0( 0.0) | 0.0 |
|  |  |  |  | 187.5( 2.2) |  |  |  |  |  |
| HISPANIC | 966 | 69,963( $3 x$ ) | $0.0(0.0)$ | $0.0(0.0)$ | 100.0( 0.0$)$ | 0.0( 0.0) | 0.0( 0.0$)$ | 0.0( 0.0) | 0.0 |
|  |  |  |  |  | 192.4( 2.1) |  |  |  |  |
| Otiter | 297 | 28,349(4x) | $0.0(0.0)$ | 0.0( 0.0) | $0.0(0.0)$ | 65.8( 4.4) | $31.9(4.2)$ | $2.3(1.2)$ | 0.0 |
|  |  |  |  |  |  | 222.5( 5.0 ) | 194.1( 5.1) | $193.8(17.5)$ |  |
| PARENTAL EDUCATION |  |  |  |  |  |  |  |  |  |
| LESS THAN HS | 603 | 59,584( 6x) | 59.6( 2.5) | 15.2( 1.7) | 23.2( 1.8 ) | 1.2(0.5) | 3.8( 0.5) | 0.0( 0.0 ) | 0.0 |
|  |  |  | 203.3( 2.8) | 183.5 ( 6.1) | 187.8( 4.8 ) | 204.5(13.2) | 182.0(16.4) |  |  |
| GRaduated hs | 1706 | 198,188( 3 X ) | $72.1(1.3)$ | 16.7( 1.1) | 8.6( 0.6 ) | $1.2(0.3)$ | 1.4( 0.3 ) | 0.1( 0.1) | 0.0 |
|  |  |  | 211.9( 2.2) | 182.7( 4.9 ) | 192.2( 3.7) | 214.9(10.9) | 194.7(11.5) | 209.8(22.9) |  |
| SOME EDUC AFTER HS | 1178 | 135,639(4x) | $75.7(1.0)$ | $14.0(0.8)$ | 6.9( 0.6 ) | 1.6( 0.4 ) | $1.8(0.4)$ | 0.0( 0.0$)$ | 0.0 |
|  |  |  | 220.7(1.8) | 200.4 ( 4.0 ) | 199.5( 6.2) | 222.6(10.6) | $237.1(7.3)$ | 183.5(22.6) |  |
| GRaduated college | 2444 | 292,035 ( 3x) | 78.5( 1.0 ) | 11.7( 0.8 ) | $5.4(0.4)$ | 3.6( 0.4 ) | 0.6( 0.2 ) | 0.0( 0.0 ) | 0.0 |
|  |  |  | 220.7( 1.5) | 190.7( 2.6) | 204.0(3.9) | 230.8( 7.5 ) | 203.5(14.3) | 240.8(11.0) |  |
| UNKNOWN | 573 | 56,300( 6\%) | 46.1( 3.2) | 22.1( 1.8 ) | 24.0( 2.1) | 5.1( 0.8$)$ | 2.6( 0.8 ) | 0.1( 0.1 ) | 0.0 |
|  |  |  | 195.5(3.4) | 175.5 ( 4.7 ) | 178.8( 3.9) | 202.7( 7.1) | 164.9(13.0) | 164.4(16.5) |  |

[^62]48.4

Table 16-85

Weighted Response Persentages and Writing Proficiency* Mtans with Standard Errors Grade 8, by Parental Education for Main Writing Samples

PARENTS' EDUCATION (HAEP ID: PARED)


* Aversee responso method proficiency score
** CV is the coofficient of varlation for the sum of the weights.

Weighted Response Percentages and Uriting Proficiency* Means with Standard Errors Grade 12, by Gender, for Main Writing Samples

GEMDER OF SUBJECT (RAEP ID: JÏ:
i heigeted $N$ (CV)** male fehale missing

| --TOTAL-- | 6069 | $729.819(2 X)$ | $47.7(1.2)$ <br> $212.5(1.4)$ | $52.3(1.2)$ <br> $234.8(1.8)$ | 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| GESDER |  |  |  |  |  |


| Race/ETHNTCITY |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| hHITE | 4178 | 548.476( 2x) | 47.5( 1.4) | 52.5(1.4) | 0.0 |
|  |  |  | 218.0( 1.7 ) | 241.8( 1.8$)$ |  |
| BLACK | 1095 | 103.870( 4x) | 46.8( 2.1) | $53.2(2.1)$ | 0.0 |
|  |  |  | 191.9( 2.6) | 208.5 ( 3.4) |  |
| hispanic | 612 | 52,802( 5x) | 48.5 ( 3.0) | 51.5(3.0) | 0.0 |
|  |  |  | 193.2 ( 4.3 ) | 216.0( 4.5 ) |  |
| OTHER | 184 | 24.671( 87) | 23.3( 4.8 ) | 46.7 ( 4.8 ) | 0.0 |
|  |  |  | 218.1( 6.6) | 228.1( 6.9) |  |
| parental educatios |  |  |  |  |  |
| LESS THAN -* | 541 | 54.507(7x) | $41.9(2.2)$ | 58.1( 2.2) | 0.5 |
|  |  |  | 196.1( 3.6) | 216.6( 4.5 ) |  |
| graduated hs | 1524 | 179,919(4\%) | 49.3( 1.6) | 50.7( 1.6) | 0.0 |
|  |  |  | $208.5(2.5)$ | 229.0( 2.7) |  |
| SCNE EDUC AFTER HS | 1475 | 175,858( 3\%) | 44.1( 1.6) | $55.9(1.6)$ | 0.0 |
|  |  |  | $215.6(2.6)$ | $235.7(2.3)$ |  |
| graduated coljege | 2356 | 301.753( 32) | 49.1( 1.6) | 50.9( 1.8 ) | 0.0 |
|  |  |  | $218.1(1.8)$ | 243.4( 2.6 ) | 0.0 |
| UnKxOWN | 144 | 14.413(12X) | 178.8( 7.7 ) | 188.5 9.3 ) | 0.0 |

* Average response method proficiency score
** CV is the coofficiont of variation for the sum of the weights.

Table 16-37
Weighted Response Percentages and Writing Proficiency* Means with Standard Errors Grade 12, by Derived Race/ethnicity, for Main Writing Samples

DERIVED RACE/ETENICITY (NAE? ID: DRACE)

|  | N | WEIGETED N (CV)** | WHITE | BLACK | EISPANIC | ASIAN | AMER IND | UHCLASSIFIED | MISSING |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| --TOTAL-- | 6069 | 729,819(2\%) | $\begin{array}{r} 75.2(0.7) \\ 230.5(1.5) \end{array}$ | $\begin{aligned} & 14.2(0.6) \\ & 200.7(2.6) \end{aligned}$ | $\begin{array}{r} 7.2(0.3) \\ 204.9(3.5) \end{array}$ | $\begin{array}{r} 2.8(0.3) \\ 225.1(5.4) \end{array}$ | $\begin{array}{r} 0.5(0.1) \\ 212.1(17.0) \end{array}$ | $\begin{array}{r} 0.1(0.0) \\ 214.8(34.1) \end{array}$ | 0.0 |
| GENDER |  |  |  |  |  |  |  |  |  |
| MALE | 2934 | 347,787( 3x) | $74.9(1.0)$ | 14.0( 1.0 ) | 7.4( 0.5) | 3.v̀( 0.4 ) | $0.7(0.2)$ | 0.1 ( 0.: ) | 0.0 |
|  |  |  | 218.3( | 191.9( 2.6) | $193.2(4.3)$ | 220.7 ( 5.8) | 209.2(18.5) | 203.6(50.3) |  |
| Female | : 135 | 382,032 ( 3x) | 75.4( 0.9 ) | 14.5( 0.6 ) | 7.1( 0.6 ) | 2.6 ( 0.4) | 0.4( 0.2 ) | $0.0(0.0)$ | 0.0 |
|  |  |  | 241.8(1.8) | 208.5( 3.4) | 216.0( 4.5 ) | 229.8( 8.2) | 216.7(23.6) | ***** (****) |  |
| RACE/ETHNICITY |  |  |  |  |  |  |  |  |  |
| WHITE | 4178 | 548,476( 27 ) | 100.0( 0.0 ) | 0.0( 0.0$)$ | 0.0( 0.0$)$ | $0.0(0.0)$ | 0.0( 0.0$)$ | $0.0(0.0)$ | 0.0 |
|  |  |  | 230.5( 1.5) |  |  |  |  |  |  |
| BLACK | 1095 | 103,870( 4x) | 0.0( 0.0 ) | 100.0( 0.0 ) | 0.0( 0.0 ) | $0.0(0.0)$ | $0.0(0.0)$ | 0.0( 0.0$)$ | 0.0 |
|  |  |  |  | 200.7( 2.3) |  |  |  |  |  |
| HISPANIC | 612 | 52,802( $5 \%$ ) | $0.0(0.0)$ | $0.0(0.0)$ | $100.0(0.0)$ | 0.0( 0.0 ) | 0.0( 0.0) | 0.0( 0.0 ) | 0.0 |
|  |  |  |  |  | 204.9(3.5) |  |  |  |  |
| OTHER | 184 | 24,671( 8\%) | 0.0 ( 0.0) | $0.0(0.0)$ | 0.0( 0.0) | $81.8(4.2)$ | $16.2(3.9)$ | $2.0(1.1)$ | 0.0 |
|  |  |  |  |  |  | 225.1( 5.4) | $212.1(17.0)$ | 214.8(34.1) |  |
| PARENTAL EDUCATION 0 |  |  |  |  |  |  |  |  |  |
| LESS THAN HS | 541 | 54,507( 7\%) | $55.1(3.1)$ | 18.7( 2.8) | 22.2( 2.0) | 2.9( 0.9 ) | 0.9( 0.5) | $0.2(0.2)$ | 0.0 |
|  |  |  | 220.2( 4.3) | 189.4( 5.4) | 197.0( 4.7) | 212.7(21.3) | 196.7(34.0) | *****(****) |  |
| GRADUATED HS | 1524 | 179,919( 4x) | 74.1( 1.6) | 16.7 ( 1.3 ) | 6.6( 0.7 ) | 1.9( 0.5) | $0.7(0.3)$ | $0.0(0.0)$ | 0.0 |
|  |  |  | 225.2( 2.2) | 196.2( 4.7 ) | 207.8( 5.5) | 220.2(10.3) | 198.1(33.1) |  |  |
| SONE EDUC AFTER HS | 1475 | 175,858( 3\%) | $77.2(1.3)$ | 14.6 ( 1.0 ) | 6.4( 0.8 ) | 1.3( 0.4 ) | 0.4( 0.2 ) | 0.1( 0.1$)$ | 0.0 |
|  |  |  | 231.3( 1.9) | 206.9( 4.4 ) | 216.8( 5.8 ) | 222.3(10.7) | 256.6(24.8) | *****(****) |  |
| GRADUATED COLLEGE | 2356 | 301, ${ }^{\text {c }} 3$ ( $3 x$ ) | 80.1( 1.2) | 11.3( 0.9 ) | 4.0( 0.5 ) | 4.1( 0.5 ) | 0.4( 0.2 ) | 0.0( 0.0) | 0.0 |
|  |  |  | 235.5( 2.1) | 207.3( 3.3) | 208.2( 6.3) | 230.6(8.4) | 220.3(22.4) |  |  |
| UNKHOWN | 144 | 14,413(12x) | 37.5( 4.6) | 22.6( 4.2 ) | 35.3( 4.0 ) | 2.6( 1.3 ) | 2.0 ( 1.5) | $0.0(0.0)$ | 0.0 |
|  |  |  | 193.6(12.2) | 166.1(14.5) | 182.1( 6.0) | 180.9(28.6) | 166.0(40.0) |  |  |

* Average response method proficiency score
* CV is the coofficient of variation for the sum of the weights.
** CV is the coefficient of variation for the sum of the weights.

Weighted Respon:e Percentages and Writing Proficiency* Means with Standard Errors Grade 12, by Parental Education, for Main Writing Samples
parents' education (naep id: pared)

|  | $N$ | WEIGBTED N (CV)** | 1:OT 日S | GRAD ES | POST HS | GRAD COL | UNKNOWN | MISSING |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| --TOTAL-- | 6069 | 726,451( 2\%) | $\begin{array}{r} 7.5(0.5) \\ 208.9(3.0) \end{array}$ | $\begin{array}{r} 24.8 i \\ 218.9(1.8) \end{array}$ | $\begin{array}{r} 24.2(0.7) \\ 226.3(1.7) \end{array}$ | $\begin{array}{r} 41.5(1.1) \\ 231.0(1.8) \end{array}$ | $\begin{array}{r} 2.0(0.2) \\ 182.4(6.0) \end{array}$ | 0.5 |
| GENDER |  |  |  |  |  |  |  |  |
| MALE | 2934 | 346,235( 3\%) | 6.6( 0.5 ) | 25.6( 1.1) | 22.4( 0.9 ) | 42.8 ( 1.4) | $2.6(0.3)$ | 0.4 |
|  |  |  | 198.1( 3.6) | 208.5( 2.5) | 215.6( 2.6 ) | 218.1( 1.8 ) | 178.8( 7.7 ) |  |
| FEMALE | 3135 | 380,216( 3\%) | $8.3(0.6)$ | 24.0( 0.9 ) | 25.9( 1.0) | 40.4( 1.5 ) | 1.4(0.3) | 0.5 |
|  |  |  | $216.6(4.5)$ | 229.0(2.7) | 235.7(2.3) | 243.4(2.6) | 188.5( 9.3) |  |
| RACE/ETHNICITY |  |  |  |  |  |  |  |  |
| WHITE | 4178 | 546,337( 2\%) | 5.5( 0.5 ) | 24.4(1.1) | 24.9(0.8) | 44.2 ( 1.2) | 1.0( 0.2 ) | 0.4 |
|  |  |  | $220.2(4.3)$ | 225.2( 2.2) | 231.3( 1.9) | 235.5( 2.1) | 193.6(12.2) |  |
| BLACK | 1095 | 103,257( 4\%) | 9.9( 1.6) | 29.0( 1.6) | 24.9( 1.7) | $33.1(2.5)$ | $3.1(0.8)$ | 0.6 |
|  |  |  | 189.4( 5.4 ) | 196.2( 4.7 ) | 206.9( 4.4) | 207.3( 3.3) | 166.1(14.5) |  |
| HISPiNIC | 612 | 52,577( 5\%) | 23.0( 2.1) | $22.6(-.9)$ | 21.6( 2.6) | $23.1(3.0)$ | $9.7(1.0)$ | 0.4 |
|  |  |  | 197.0( 4.7) | 20\%.8( 5.5) | 216.8( 5.8 ) | 208.2( 6.3) | 182.1( 6.0 ) |  |
| OTHER | 184 | 24,280( $8 \%$ ) | 8.8( 2.3) | 19.4(3.5) | 12.5 ( 2.9 ) | 56.6( 5.1) | $2.7(1.2)$ | 1.6 |
|  |  |  | 209.3(17.7) | 213.9( 9.9) | 230.1( 9.5) | 229.6( 7.6 ) | $174.5(23.1)$ |  |
| PARENTAL EDUCATION |  |  |  |  |  |  |  |  |
| LESS THAN HS | 541 | 54,507( 7x) | $\text { 100.0( } 0.0 \text { ) }$ | 0.0( 0.0) | 0.0( 0.0 ) | 0.0( 0.0 ) | 0.0( 0.0$)$ | 0.0 |
| GRadUATED HS | 1524 | 179,919( 4\%) | $208.9(3.0)$ $0.0(0.0)$ | 10C.0( 0.0) | 0.0( 0.0) | 0.0( 0.0 ) | 0.0( 0.0 ) | 0.0 |
|  |  |  |  | $218.9(1.9)$ |  |  |  |  |
| SOME EDUC AFTER HS | 1475 | 175,858( 3\%) | $0.0(0.0)$ | 0.0( 0.0 ) | 100.0( 0.0 ) | $0.0(0.0)$ | $0.0(0.0)$ | 0.0 |
|  |  |  |  |  | $226.8(1.7)$ |  |  |  |
| GRaduated college | 2356 | 301,753( 3\%) | 0.0( 0.0 ) | 0.0( 0.0) | 0.0( 0.0) | 100.0( 0.0) | 0.0( 0.0$)$ | 0.0 |
|  |  |  |  |  |  | 231.0( 1.8$)$ |  |  |
| UNKNOWN | 144 | 14,413(12x) | 0.0( 0.0$)$ | 0.0( 0.0) | 0.0( 0.0 ) | $0.0(0.0)$ | 100.0( 0.0$)$ | 0.0 |
|  |  |  |  |  |  |  | 182.4( 6.0) |  |

[^63]** CV is the coefficient of variation for the sum of the weights.

## Weighted Response Percentages and Civics Proficiency Means with Standard Errors

 Grade 4, by Gender, for Main Focused-BIB Civics SamplesGENDER OF SUBJECT (NAEP ID: SEX)

|  | * | heigeted n (CV)* | Male | famale | MISSING |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -- total -- | 1974 | 375,529(1z) | 49.1 ( 1.3) | $50.9(1.3)$ | 0.0 |
|  |  |  | 214.8( 1.3) | 213.3( 1.1) |  |
| GENDER |  |  |  |  |  |
| male | 978 | 184.226( $2 x$ ) | 100.0( 0.0) | $0.0(0.0)$ | 0.0 |
|  |  |  | 214.8( 1.3 ) | $0.0(0.0)$ |  |
| FEMALE | 996 | 181,303( 3x) | $0.0(0.0)$ | $100.0(0.0)$ | C 0 |
|  |  |  |  | 213.3( 1.1) |  |
| RACE/ETHNICITY |  |  |  |  |  |
|  | 1122 | 262,686( 27 ) | 47.8( 1.5) | 52.2( 1.5) | 0.0 |
|  |  |  | 220.6 (1.5) | 219.5 ( 1.2) |  |
| BLACK | 360 | 58,616( 54 ) | 48.0 ( 3.6) | 52.0( 3.6 ) | 0.0 |
| HISPANIC | 390 |  | $199.7(2.8)$ 56.4 | 196.7 ( 2.9) |  |
|  | 390 | 40,037( 52 ) | $56.4(2.4)$ $202.1(2.4)$ | $43.6(2.4)$ $196.1(2.3)$ | 0.0 |
| OTHER | 102 | 14,190(8\%) | 56.5 ( 4.8 ) | 43.5( 4.9 ) | 0.0 |
|  |  |  | 213.6( 4.9) | 205.4(7.6) |  |
| parental education |  |  |  |  |  |
| LESS THAN H.S. | 116 | 17,487(11\%) | 39.7( 4.9) | 60.3( 4.9) | 0.0 |
|  |  |  | 202.9( 4.5 ) | $210.6(4.7)$ |  |
| GRaduated h.S. | 269 | 50,576( 7 X ) | $56.2(3.1)$ | 43.2 ( 3.1) | 0.0 |
| SOME EDUC AFTER R.S. | 152 | 31,922(10\%) | 209.2( 2.5 ) | $213.8(2.6)$ $54.7(4.6)$ | 0.0 |
|  |  |  | $221.9(4.2)$ | $221.0(3.2)$ |  |
| GRADUATED COLLEGE | 712 | 146,718( 5 z ) | 51.4( 2.1) | 48.6( 2.1) | 0.0 |
| UMKNOWN |  |  | 222.8 ( 1.8) | 222.3 ( 1.7) |  |
| UNKNOWN | 716 | 127,468(4x) | $45.4(2.3)$ $207.7(1.7)$ | 54.6( 2.3) | 0.0 |

[^64]
## Weighted Response Percentages and Civics Proficiency Means 1th Standard Errors Grade 4, by Derived Race/ethnicity, for Main Focused-BIB Civics Samples

DERIVED RACE/ETHNICITY (NAEP ID: DRACE)

|  | N | WEIGETED H (CV)* | WHITE | BLACK | HISPARIC | ASIAR | AMER IND | UNCLASSIFIED | MISSING |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -- TOTAL -- | 1874 | 375,529( 17 ) | $\begin{array}{r} 70.0(0.9) \\ 220.0(1.0) \end{array}$ | $\begin{array}{r} 15.6(0.8) \\ 198.1(2.2) \end{array}$ | $\begin{array}{r} 10.7(0.6) \\ 199.5(1.8) \end{array}$ | $\begin{array}{r} 2.0(0.3) \\ 210.3(8.3) \end{array}$ | $\begin{array}{r} 1.7(0.3) \\ 209.6(4.5) \end{array}$ | $\begin{array}{r} 0.1(0.1) \\ 211.7(21.0) \end{array}$ | 0.0 |
| GENDER |  |  |  |  |  |  |  |  |  |
| MALE | 078 | 184,226(3\%) | 68.1 ( 1.31 | 15.3 ( 1.0) | 22.3( 1.0) | 2.h(0.5) | 2.0( 0.4) | 0.0( 0.0) | 0.0 |
|  |  |  | 220.6( 1.5) | 199.7( 2,8 ) | 202.1( 2.4) | 215.7( 7.0 ) | 211.0( 6.9) |  |  |
| female | 996 | 191,303( 3\%) | $71.7(1.5)$ | $15.9(1.5)$ | $3.1(0.7)$ | $1.6(0.4)$ | $1.5(0.4)$ | $0.1(0.1)$ | 0.0 |
|  |  |  | $219.5(1.2)$ | $196.7(2.9)$ | $186.1(2.3)$ | $202.2(14.5)$ | $207.9(6.9)$ | $211.7(21.0)$ |  |
| RACE/ETENICITY |  |  |  |  |  |  |  |  |  |
| WHITE | 1122 | 262,686( $2 \%$ ) | 100.0( 0.0) | $0.0(0.0)$ | 0.0( 0.0$)$ | $0.0(0.0)$ | $0.0(0.0)$ | 0.0( 0.0$)$ | 0.0 |
|  |  |  | $220.0\left(1.0^{\circ}\right.$ |  |  |  |  |  |  |
| BLACK | 360 | 58.616( 5\%) | $0.0(0.0)$ | $100.0(0.0)$ | 0.0( 0.0$)$ | 0.0( 0.0) | $\cdots$. $0(0.0)$ | 0.0( 0.0) | 0.0 |
|  |  |  |  | 198.1( 2.2$)$ |  |  |  |  |  |
| HISPANIC | 390 | \{u,037( 5\%) | $0.0(0.0)$ | $0.0(0.0)$ | $\begin{aligned} & 100.0(0.0) \\ & 189.5(1.9) \end{aligned}$ | 0.0( 0.0) | 0.0( 0.0) | 0.0( 0.0) | 0.0 |
| OTHER | 102 | 14,190( 8x) | $0.0(0.0)$ | $0.0(0.0)$ | 0.0( 0.0$)$ | $\begin{array}{r} 51.8(6.4) \\ 210.3(8.3) \end{array}$ | $\begin{array}{r} 46.3(6.5) \\ 209.6(4.5) \end{array}$ | $\begin{array}{r} 1.9(1.4) \\ 211.7(21.0) \end{array}$ | 0.0 |
| PARENTAL EDUCATION |  |  |  |  |  |  |  |  |  |
| LESS THAN H.S. | 116 | 17,487(11\%) | $59.8(6.0)$ | 16.7(3.7) | 17.8( 3.6) | 2.5( 2.5 ) | 2.2( 1.3) | $1.0(1.0)$ | 0.0 |
|  |  |  | 214.2( 4.1) | 197.1 ( 8.8) | 202.2( 4.5) | 179.4(****) | 184.3(19.1) | 200.7(16.3) |  |
| GRADUATED H.S. | 269 | 50,576( 7\%) | 68.2( 2.8) | 18.5(1.8) | 10.4( 1.7) | 1.2( 0.6) | 1.7( 0.8) | 0.0( 0.0) | 0.0 |
|  |  |  | 2i6.3( 2.0) | 199.4 ( 4.8) | 200.3( 4.4) | 212.3( 4.9 ) | 200.6(12.0) |  |  |
| SOME EDUC AFTER H.S. | 152 | 31,922(10\%) | $73.2(3.6)$ | 15.3( 2.8) | $7.9(2.0)$ | $0.3(0.3)$ | 3.3( 1.6) | 0.0( 0.0) | 0.0 |
|  |  |  | 22.6.8( 3.0 ) | 198.3( 6.5) | 215.1( 6.5) | 207.5 (****) | 224.5( 7.3) |  |  |
| GRaduated coliege | 712 | 146,718( 5\%) | 74.8( 1.6 ) | 13.4( 1.2) | 7.8( 1.1) | 2.4( 0.5) | 1.6( 0.4 ) | 0.0( 0.0) | 0.0 |
|  |  |  | 227.3i 1.3) | 204.8( 2.7 ) | 205.9(3.2) | 227.0( 6.5) | 221.3( 0.0 ) |  |  |
| UNKNOWN | 715 | 127,468( 4x) | $66.1(1.8)$ | 16.3( 1.6) | 13.9( 1.1) | 2.1( 0.5) | 1.5 ( 0.4) | $0.1(0.1)$ | 2.0 |
|  |  |  | 211.1( 1.6) | 192.4(3.4) | 192.4( 2.6) | 192.6(10.4) | 196.4(4.7) | 231.3(****) |  |

* CV is the coofficient o gariation for the sum of the woishts.
(****) Standard orror is eater than 99.9.

Table 16-91
Weighted Response Percentages and Civics Proficiency Means with Standard Errors Grade 4, by Parantal Education, for Main Fucused-BIB Civics Samples

PARENTS" EDUCATIOA (MAEP ID: PARED)

|  | H | WEIGETED N (CV)* | NOT HS | GRAD ES | POST ES | GRAD COL | UTKHOWM | MISSING |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -- TOTAL, -- | 1985 | 374,170( 1x) | $4.7(0.5)$ | $13.5(1.0)$ | 8.5( 0.8$)$ | 39.2( 1.6) | 94.1( 1.3) | 0.4 |
|  |  |  | 207.5( 3.5) | $211.2(1.8)$ | 221.4(2.8) | 222.5(1.3) | 204.8(1.4) |  |
| GENDRR |  |  |  |  |  |  |  |  |
| MALE | 971 | 183.131( 3x) | 3.8( 0.8 ) | 15.5( 1.5) | $7.9(1.1)$ | $41.2(2.0)$ | $31.6(1.4)$ | 0.6 |
|  |  |  | $202.9(4.5)$ | 209.2( 2.5) | $221.9(4.2)$ | 222.8( 1.8 ) | 207.7 ( 1.7) |  |
| EEMALE | 994 | 191.039( 3Z) | $5.5(0.8)$ | 11.6( 1.1) | 9.1( 1.1) | 37.3( 2.2) | $36.4(2.0)$ | 0.1 |
|  |  |  | $210.6(4.7)$ | $233.8(2.6)$ | 221.0( 3.2) | 222.3( 1.7) | 202.5: 2.2) |  |
| RACE/ETHSICITY |  |  |  |  |  |  |  |  |
| WHITI | 1120 | 262,280( 2x) | $4.0(0.7)$ | 13.1( 1.3) | 8.8i 1.0$)$ | 31.8( 1.9 ) | 32.1( 2.6 ) | 0.2 |
|  |  |  | $214.2(4.1)$ | 216.3( 2.0 ) | 226.8( 3.0$)$ | $227.3(1.3 *$ | $211.1(1.6)$ |  |
| BLACK | 353 | 57,663( 62) | $5.1(1.2)$ | 16.3( 2.6 ) | 8.5 ( 1.8 ) | 34.1 ( 2.6) | 36.1 ( 3.0) | 1.6 |
|  |  |  | 187.1( 8.8) | $189.4(4.8)$ | 198.3( 6.5) | 204.8( 2.7) | 192.4( 3.4) |  |
| HISPAHIC | 390 | 40,037( 5x) | $7.8(1 . C)$ | 13.1( 2.1) | 6.3( 1.6$)$ | 28.5 ( 3.5) | 14.3( 3.2) | 0.0 |
|  |  |  | 202.2( 4.5) | $200.3(4.4)$ | 315.1( 6.5) | $205.9(3.2)$ | 192.4( 2.6) |  |
| OTEIR | 102 | 14.100( 8x) |  | $10.2(3.3)$ | $8.1(3.6)$ | $41.5(6.4)$ | $33.1(4.8)$ | 0.0 |
|  |  |  | $185.1(10.4)$ | $205.4(8.2)$ | $223.1(7.1)$ | $224.7(5.0)$ | $185.0(6.3)$ |  |
| PARPATAL EDUCATIOR |  |  |  |  |  |  |  |  |
| LETS THAR B.S. | 116 | 17,487(112) | $100.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | 0.0 |
|  |  |  | $207.5(3.5)$ |  |  |  |  |  |
| GRADUATED B.S. | 269 | 50,576(7x) | $0.0(0.0)$ | $100.0(0.0)$ | $0 . \therefore(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | 0.0 |
|  |  |  |  | $211.2(1.8)$ |  |  |  |  |
| SOME EDUC AFTER H.S. | 152 | 31,922(10\%) | $0.0(0.0)$ | $0.0(0.0)$ | $\begin{aligned} & 100.0(0.0) \\ & 221.4(2.8) \end{aligned}$ | $0.0(0.0)$ | $0.0(0.0)$ | 0.0 |
| GRADUATED COLLEGE | 712 | 146,718( $5 \%$ ) | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | $100.0(0.0)$ | $0.0(0.0)$ | 0.0 |
|  |  |  |  |  |  | 222.5( 1.3) |  |  |
| UnCorown | 718 | 127.468( 4x) | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | 100.0( 0.0$)$ | 0.0 |
|  |  |  |  |  |  |  | 204.8( 1.4) |  |

* CV ia the coefficient of verietion for the sum of the reights.

Table 16-92
Weighted Response Percentages and Civics Proficiency Means with Standard Errors Grade 8, by Gender, for Main Focused-BIB Civics Samples

GERDER OF SUBJECT (MAEP ID: SEX)


[^65]
## Weighted Response Percentages and Civics Proficiency Means with Standard Errors Grade 8, by Derived Race/ethnicity, for Main Focused-BIB Civics Samples

|  | $N$ | HEIGETED N (CV)* | WHITE | BLACK | HISPANIC | ASIAN | ANER IND | UNCLASSIFIED | MISSING |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -- TOTAL -- | 4487 | 504,472( 1\%) | $\begin{array}{r} 69.7(0.6) \\ 266.3(1.2) \end{array}$ | $\begin{array}{r} 15.5(0.5) \\ 243.6(1.9) \end{array}$ | $\begin{array}{r} 10.4(0.4) \\ 240.6(1.7) \end{array}$ | $\begin{array}{r} 2.8(0.3) \\ 262.7(4.1) \end{array}$ | $\begin{array}{r} 1.4(0.2) \\ 242.3(4.4) \end{array}$ | $\begin{array}{r} 0.1(0.0) \\ 254.5(18.5) \end{array}$ | 0.0 |
| GENDEP |  |  |  |  |  |  |  |  |  |
| MaLE | 2156 | 246,208( $2 \%$ ) | 69.4( 0.3 ) | 15.2(0.7) | 10.9( 0.7 ) | 2.6( 0.3 ) | 1.7(0.3) | $0.2(0.1)$ | 0.0 |
|  |  |  | 265.9( 1.6) | 242.1( 2.7) | 238.1( 2.4) | 262.5( 6.2) | 239.8( 7.3.) | $246.6(19.5)$ |  |
| female | 2331 | 258,265 ( 2\%) |  | 15.9( 0.7 ) | $9.9(0.5)$ |  | $1.2(0.2)$ | $0.0(0.0)$ | 0.0 |
| FMALE | 2331 | 2S8,265( 2z) | $266.7(1.3)$ | 245.0(1.9) | $243.2(2.0)$ | $262.9(4.5)$ | $245.7(4.4)$ | 292.6(****) |  |
| RACE/ETHNICITY |  |  |  |  |  |  |  |  |  |
| WHITE | 2708 | 351,704( 2x) | $\begin{aligned} & 100.0(0.0) \\ & 266.3(1.2) \end{aligned}$ | 0.0( 0.0 ) | 0.0( 0.0 ) | 0.0( 0.0 ) | 0.0( 0.0 ) | 0.0( 0.0 ) | 0.0 |
| BLACK | 806 | 78,437(4x) | $0.0(0.0)$ | 100.0( 0.0) | $0.0(0.0)$ | $0.0(0.0)$ | 0.0( 0.0$)$ | 0.0( 0.0) | 0.0 |
|  |  |  |  | 243.6( 1.0 |  |  |  |  |  |
| HISPANIC | 736 | 52,422 ( 4 K ) | 0.0( 0.0 ) | 0.0( $0 \cdots$ | $\begin{aligned} & 100.0(0.0) \\ & 240.6(1.7) \end{aligned}$ | 0.0( 0.7 ) | 0.0( 0.0 ) | $0.0(0.0)$ | 0.0 |
| OTAER | 237 | 21,909( $7 \%$ ) | 0.0( 0.0 ) | $0.0(0.0)$ | 0.0) (0.0) | $\begin{array}{r} 64.5(4.5) \\ 262.7(4.1) \end{array}$ | $\begin{array}{r} 33.4(4.5) \\ 242.3(4.4) \end{array}$ | $\begin{array}{r} 2.1(1.0) \\ 254.5(18.5) \end{array}$ | 0.0 |
| PARERTAL EUUCATION 0 |  |  |  |  |  |  |  |  |  |
| LESS THAN H.S. | 410 | 39,746( 5\%) | $56.5(3.5)$ $243.4(2.8)$ | $11.3(1.7)$ $231.5(4.5)$ | $\begin{array}{r} 28.2(2.9) \\ 228.9(3.3) \end{array}$ | $\begin{array}{r} 1.9(0.6) \\ 249.4(20.1) \end{array}$ | $\begin{array}{r} 2.0(0.7) \\ 231.4(11.1) \end{array}$ | $0.0(0.0)$ | 0.0 |
| GRADUATtD H.S. | 1228 | 136,360( $4 \%$ ) | $67.7(15)$ | 17.8 ( 1.3 ) | $10.5(1.0)$ | $1.7(0.3)$ | $2.3(0.4)$ | 0.0( 0.0) | 0.0 |
|  |  |  | 258.0( 1.6) | 238.9( 2.6) | 240.7( 2.5) | 247.2( 6.8) | 25i.5( 5.4) |  |  |
| SOME EDUC AFTER H.S. | 844 | 97,514(4\%) | 73.6( 1.8$)$ | 15.6 ( 1.5) | $8.7(0.7)$ | $1.2(0.4)$ | J.8( 0.3) | $0.1(0.1)$ | 0.0 |
|  |  |  | 267.5( 1.3) | 252.7( 2.9) | 251.3( 3.1) | 270.2( 9.1) | 248.3( 7.7) | $283.7(16.2)$ |  |
| GRaduated college | 1630 | 193,521(42) | 75.6( 1.2) | $14.1(0.9)$ | 5.6( 0.6 ) | 3.9 ( 5.5 ) | $0.6(0.2)$ | $0.1(0.1)$ | 0.0 |
|  |  |  | 277.7( 1.4) | 250.7( 2.9) | 251.8( 3.5) | 273.8( 5.2) | 256.6( 6.8) | 269.2(10.8) |  |
| UHKNO.N | 358 | 35,677( 6\%) | 49.8( 3.5) | 19.2( 2.0 ) | 20.6( 2.1) | 6.5 ( 2.6) | 3.6 ( 1.3) | $0.3(0.3)$ | 0.0 |
|  |  |  | 244.1(3.6) | 223.1(4.6) | 229.1( 4.4) | 242.5(11.6) | 207.2(10.3) | 201.1(15.5) |  |

(CV is the coefficient of variation for the sum of the weights.
(****) Standard orror is greater than 99.9.

Table lu 94
Weighted Response Percentages and Civics Proficiency Means with Standard Errors Grade 8, by Parental Education, for Main Focused-BIB Cjvics Samples
parents' educhitok (maer id: pared)


* CV is the coefficient of variation for the sum of the waights.

Table 16-95
Weighted Response Percentages and Civics Proficiency Means with Standard Errors Grade 12, by Sender, for Main Focused-BIB Civics Samples

GENDER OF SUBJECT (NAEP ID: SEX;

|  | N | WEIGHTED N (CV)* | male | female | MISSING |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -- TOTAL -- | 4275 | 525,727( 1x) | $\begin{array}{r} 48.4(1.6) \\ 298.6(1.6) \end{array}$ | $\begin{array}{r} 51.6(1.6) \\ 294.1(1.1) \end{array}$ | 0.0 |
| GENDER |  |  |  |  |  |
| male | 2049 | 254,193( 3\%) | $\begin{aligned} & 100.0(0.0) \\ & 298.6(1.6) \end{aligned}$ | 0.0(0.0) | 0.0 |
| female | 2226 | 271,533( 4\%) | 0.0( ( 6.0$)$ | $\begin{aligned} & 100.0(0.0) \\ & 294.1(1.1) \end{aligned}$ | 0.0 |
| RACE/ETHNICITY |  |  |  |  |  |
| WHITE | 2960 | 397,203( 27 ) | $\begin{array}{r} 47.8(1.8) \\ 3050(1.7) \end{array}$ | $\begin{array}{r} 52.2(1.8) \\ 299.1(1.2) \end{array}$ | 0.0 |
| BLACK | 678 | 62,248( 5 X ) | $47.5(2.9)$ | 52.5( 2.9) | 0.0 |
| HISPANIC | 487 |  | 278.1( 52.1 ( 2.3$)$ | 47.9( 2.8) | 0.0 |
|  |  |  | 277.6( 3.8) | 281.0( 2.9) |  |
| OTEER | 150 | 22,370(10x) | $53.9(3.8)$ | $46.1(3.8)$ | 0.0 |
|  |  |  | 289.4(7.2) | 297.5 ( 8.0 ) |  |
| parental education |  |  |  |  |  |
| LESS THAN H.S. | 374 | 38,467(7x) | 44.9(3.4) | 55.1( 3.4) | 0.0 |
|  |  |  | $272.4(3.9)$ | 273.4 ( 3.5) |  |
| GRADUATED H.S. | 1026 | 125,616( 4\%) | 47.2( 2.4) | 52.8 ( 2.4) | 0.0 |
|  |  |  | 286.3 ( 2.4) | 283.8 ( 1.6) |  |
| SOME EDUC AFTER H.S. | 1056 | 125,510( 5\%) | $46.7(1.9)$ $300.9(2.5)$ | $53.3(1.9)$ $296.6(1.5)$ | 0.0 |
| graduated college | 1708 | 222,853( 4\%) | 49.4 ( 1.8) | 50.6 ( 1.8) | 0.0 |
|  |  |  | $311.2(1.9)$ | 303.8 ( 1.6) |  |
| UnKNOWN | 97 | 11,246(13\%) | 67.5( 5.1) | 32.5 ( 5.1) | 0.0 |
|  |  |  | 266.8( 7.9 ) | 263.7(7.7) |  |

* CV is the coofficient of variation for the sum of the weights.


## Weighted Response Percentages and Civics Proficiency Means with Standard Errors

 Grade 12, by Derived Race/ethnicity, for Main F.cused-BIB Civics SamrilesDERIVED RACE/ETHNICITY (NAER ID: DRACE)

|  | ${ }_{4}$ | WEIGHTED N (CV)* | WHITE | BLACK. | 日ISPARIC | ASIAN | AMER IND | UNCLASSIFIED | MISSING |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -- TOTAL -- | 4275 | 525,727( 17) | $\begin{array}{r} 75.6(0.8) \\ 301.8(1.2) \end{array}$ | $\begin{array}{r} 11.8(0.6) \\ 273.8(1.9) \end{array}$ | $\begin{array}{r} 8.4(0.4) \\ 279.2(2.3 \end{array}$ | $\begin{array}{r} 3.1(0.4) \\ 302.5(5.5) \end{array}$ | $\begin{array}{r} 1.0(0.3) \\ 274.2(8.6) \end{array}$ | $\begin{array}{r} 0.1(0.1) \\ 218.2(22.5) \end{array}$ | 0.0 |
| GEIDER |  |  |  |  |  |  |  |  |  |
| MALE | 2049 | 254,193( 3x) | 74.6( 1.1) | 11.6(0.8) | 9.0( 0.5) | 3. $2(0.5)$ | 1.2) $0.4{ }^{\circ}$ | 0.3( 0.2 ) | 0.0 |
|  |  |  | 305.0( 1.7) | 278.i( 3.1$)$ | 277.6( 3.6) | 302.2( 7.6 ) | 271.1(10.1) | 218.2(22.5) |  |
| FEMALE | 2226 | 271,533( 4x) | 76.4( 1.1) | 12.0(0.8) | 7.7(0.3) | 3.0( 0.5 ) | 0.8( 0.4 ) | $\therefore .0(0.0)$ | 0.0 |
|  |  |  | 299.1( 1.2) | 469.9( 2.3) | 281.0( 2.9) | 302.9( 6.3) | 278.4( 9.9) |  |  |
| RACE/ETENICITY |  |  |  |  |  |  |  |  |  |
| WHITE | 2960 | 397,203( 2x) | 100.0( ©.0) | 0.0( 0.0 ) | $0.0(0.0)$ | 0.0( 0.0) | $0.0(0.0)$ | $0.0(0.0)$ | 0.0 |
|  |  |  | 301.9( 1.2) |  |  |  |  |  |  |
| BLACK | 678 | 62,248( 5\%) | 0.0( 0.0) | 100.0( 0.0$)$ | 0.0 ( 0.0) | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | 0.0 |
|  |  |  |  | 273.8( 1.9$)$ |  |  |  |  |  |
| HISPANIC | 487 | 43,906( 4\%) | 0.0( 0.0) | 0.0( 0.0 ) | $\begin{aligned} & 100.0(0.0) \\ & 279.2(2.3) \end{aligned}$ | 0.0( 0.0) | 0.0( 0.0) | 0.0(0.0) | 0.0 |
| OThER | 150 | 22,370(10\%) | $0.0(0.0)$ | 0.0(0.0) | $0.0(0.0)$ | 73.0 ( 7.1) | 23.9( 6.9) | 3.1( 2.0) | 0.0 |
|  |  |  |  |  |  | 302.5 ( 5.5) | 274.2(8.6) | 218.2(22.5) |  |
| PARENTAL EDUCATION |  |  |  |  |  |  |  |  |  |
| LESS THAN h.S. | 374 | 38,467( 7\%) | 55.2(3.7) | 14.5( 2.6) | 26.8( 2.4 ) | 2.8 ( 1.0) | $0.7(0.6)$ | $0.0(0.0)$ | 0.0 |
|  |  |  | 277.4( 3.4) | 261.0( 5.0 ) | 270.8( 4.1 ) | 276.8(13.1) | 238.6(24.5) |  |  |
| GRHDUATED H.S. | 1026 | 125,616(4\%) | 74.4(1.9) | 14.7(1.4) | 7.9( 0.8 ) | 1.6( 0.7 ) | 1.4( 0.6 ) | 0.1( 0.1 ) | 0.0 |
|  |  |  | $290.1(1.7)$ | 265.5( 2.8) | 276.6( 3.9 ) | 288.5(19.4) | 263.5(15.0) | 270.6(24.3) |  |
| SOME EDUC AFTER H.S. | 105¢ | 125,510( 5\%) | $77.3(1.6)$ $303.4(1.6)$ | $13.0(1.1)$ $279.8(2.7)$ | $7.3(0.8)$ $279.9(5.3)$ | $1.3(0.5)$ $318.4(14.6)$ | 1.0( 0.3$)$ | 0.0( 0.0 ) | 0.0 |
| GRA SATED COLLEGE | 1708 | 222,853(42) | 80.5 ( 1.1$)$ | $279.8(2.7)$ $8.5(0.7)$ | $279.9(5.3)$ $5.3(0.5)$ | $318.4(14.6)$ $4.9(0.7)$ | $285.3(12.2)$ $0.7(0.4)$ | 0.1( 0.1) |  |
|  |  |  | $311.2(1.6)$ | 284.7( 2.9) | 291.4(4.1) | 308.0 ( 5.5) | 280.5( 6.3) | 203.4( 9.7) | 0.0 |
| UTKNCWN | 97 | 11,246(13\%) | $45.6(6.8)$ | 21.1( 4.2) | 24.5( 4.9) | 5.6( 2.0) | 3.1( 2.2) | 0.0) 0.0$)$ | 0.0 |
|  |  |  | 275.8(10.2) | 241.2(6.3) | 265.7(8.5) | 266.7(32.2) | 285.0(16.7) |  |  |

* CV is the coefficient of variation for the sum of the weights.

Table 16-97
Weighted Response Percentages and Civics Proficiency Means with Standard Errors Grade 12, by Parental Education, for Main Focused-BIB Civics Samples

|  | H | WEIGBTED \ (CV)* | NOT ES | GRAD HS | POST ES | GRAD COL | UNKNOW\% | MISSIMG |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -- TOTAL -- | 4261 | 523,692( 1x) | $\begin{array}{r} 7.3(0.5) \\ 273.0(2.5) \end{array}$ | $\begin{array}{r} 24.0(1.1) \\ 285.0(1.6) \end{array}$ | $\begin{array}{r} 24.0(1.1) \\ 298.6(1.4) \end{array}$ | $\begin{array}{r} 42.6(1.6) \\ 307.4(1.5) \end{array}$ | $\begin{array}{r} 2.1(0.3) \\ 265.8(5.7) \end{array}$ | 0.4 |
| GENDER |  |  |  |  |  |  |  |  |
| MALE | 2041 | 252,871( 3x) | 6.8( 0.6) | 23.5( 1.4) | $23.2(1.6)$ | 43.5( 2.0) | 3.0( 0.5) | 0.5 |
|  |  |  | 272.4( 3.9) | 286.3( 2.4) | 300.9( 2.5 ) | 311.2( 1.9) | 266.8( 7.9 ) |  |
| FEMALE | 2220 | 270,821(47) | $7.8(0.7)$ | $24.5(1.1)$ | 24.7( 1.1) | 41.6( 1.7) | $1.3(0.2)$ | 0.3 |
|  |  |  | $273.4(3.5)$ | $283.8(1.6)$ | $=36.6(1.5)$ | $303.8(1.6)$ | $263.7(7.7)$ |  |
| RACE/ETENICITY |  |  |  |  |  |  |  |  |
| WHITE | 2852 | 396,245( 2\%) | S.4( 0.6) | 23.6( 1.3) | 24.5(1.3) | 45.3( 1.8) | 1.3( 0.3 ) | 0.2 |
|  |  |  | 277.4( 3.4 ) | 290.1( 1.7) | 303.4( 1.6) | $311.2(1.6)$ | 275.8(10.2) |  |
| BLACK | 674 | 61,628( 5\%) | 8.0( 1.6 ) | $29.9(2.0)$ | 26.4( 2.0) | $30.9(2.4)$ | $3.8(0.8)$ | 1.0 |
|  |  |  | 261.0( 5.0 ) | 265.5( 2.8) | 279.8( 2.7 ) | $284.7(2.8)$ | 241.2( 6.3$)$ |  |
| EISPANIC | 487 | 43,800( 4\%) | 23.5( 2.1) | 22.6( 1.9 ) | 20.9( 2.2) | 26.7( 2.5) | 6.3( 1.3 ) | 0.0 |
|  |  |  | 270.8( 4.1) | 276.6( 3.9) | 278.9( 5.3 ) | 291.4( 4.1) | 265.7( 8.5) |  |
| OTEER | 148 | 21,813(10\%) |  |  |  |  |  | 2.0 |
|  |  |  | $268.9(11.7)$ | $276.5(10.2)$ | $304.0(11.1)$ | $302.8(5.8)$ | $273.2(16.5)$ |  |
| garehial educaiton |  |  |  |  |  |  |  |  |
| LESS THAN R.S. | 374 | 38,467( 7\%) | $100.0(0.0)$ | 0.0( 0.0$)$ | $0.0(0.0)$ | 0.0( 0.0) | $0.0(0.0)$ | 0.0 |
|  |  |  | $273.0 \text { ( } 2.5)$ |  |  |  |  |  |
| GRADUATED H.S. | 1026 | 125,616(4\%) | 0.f( 0.0 ) | $100.0(0.0)$ | 0.0( 0.0) | 0.0( 0.0$)$ | 0.0( 0.0) | 0.0 |
|  |  |  |  | 2P=.0( 1.6$)$ |  |  |  |  |
| SOME EDUC AFTER H.S. | 1056 | 125,510( 5\%) | 0.0( 0.0) | 0.6*0.0) | $\begin{aligned} & 100.0(0.0) \\ & 298.6(1.4) \end{aligned}$ | 0.0( 0.0) | $0.0(0.0)$ | 0.0 |
| GRaduated college | 1708 | 222,853(4X) | $0.0(0.0)$ | $0.0(0.0)$ | 0.0( 0.0$)$ | 100.0( 0.0) | $0.0(0.0)$ | 0.0 |
|  |  |  |  |  |  | 307.4( 1.5) |  |  |
| UNKNOUN | S7 | 11,246(13x) | $0.0(0.0)$ | 0.0( 0.0$)$ | $0.0(0.0)$ | 0.0( 0.0 ) | $100.0(0.0)$ | 0.0 |
|  |  |  |  |  |  |  | $265.8(5.7)$ |  |

[^66]$$
487
$$

Table 16-98
Weighted Response Percentages and U.S. History Proficien . Aears wilh Standard Errors Grade 4, by G̈ender, for Main U.S. History Samples

| GENDER OF SUBJECT (KAEP ID: SEX) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | HEIGATED N (CV)* | MaLE | FEMALE | HiSSSIM |
| - TOIAL -- | 3950 | 751.664( 12) | $\begin{array}{r} 50.7(0.9) \\ 222.9(1.2) \end{array}$ | $\begin{array}{r} 49.3(0.9) \\ 218.2(1.0) \end{array}$ | 0.0 |
| GENDER |  |  |  |  |  |
| MAIL | 2026 | 381,243(2x) | $100.0(0.0)$ | $0.0(0.0)$ | 0.0 |
|  |  |  | $222.9(1.2)$ |  |  |
| frmale | 1924 | 370,420(2x) | $0.0(0.0)$ | $\begin{aligned} & 100.0(0.0) \\ & 218.2(1.0) \end{aligned}$ | 0.0 |
| RACE/ETHNICITY |  |  |  |  |  |
| hHITE | 2258 | 531.472( 1x) | $499(1.2)$ | 50.1( 1.2) | 0.0 |
| BLACK | 682 | 108,783( 32) | 47.8( 2.1) | 52.2( 2.1) | 0.0 |
|  |  |  | 200.1( 2.6 ) | 198.9( 2.3) |  |
| HISPANKC | 811 | 82,452( 32) | 55.4( 1.9 ) | 44.6( 1.9) | 0.0 |
|  |  |  | 204.5( 2.1) | 200.5 ( 2.4) |  |
| OTYER | 199 | 28.956( 8x) | $63.4(3.1)$ | $36.8(3.1)$ | 0.0 |
|  |  |  | $219.7(49)$ | $227.2(4.8)$ |  |
| PARENTAL EDUCATION |  |  |  |  |  |
| LESS THAY H.S. | 240 | 38,427(10\%) | 47.7(3.2) | 52.3 ( 3.2) | 0.0 |
|  |  |  | 296.7( 3.1) | 189.0( 2.6) |  |
| GRaduated his. | 531 | 104.142( 6x) | 43.8( 2.5) | 54.2( 2.5) | 0.0 |
|  |  |  | 215.6( 2.1) | 212.6 ( 2.0) |  |
| SCME EDUC AFTER H.S. | 314 | 60,114( 6x) | 52.8( 3.2) | $47.1: 3.2)$ | 0.0 |
|  |  |  | $230.0(3.7)$ | 225.8( 2.4) |  |
| GRADUATED COLLEGE | $1+16$ | 285,166(4x) | 53.6( 1.5) | $46.4(1.5)$ | 0.0 |
|  |  |  | 233.3 ( 1.8) | 229.1 ( 1.6) |  |
| USKHOWN | 1432 | 261,658(32) | $48.0(1.7)$ | $52.0(1.7)$ | 0.0 |
|  |  |  | 213. ( 1.4) | 211.2(1.3) |  |

* CV is the coofficiont of variation for the sum of the waishts.

Table 16-99
Weighted Response Percentages and U.S. History Proficiency Means with Standard Errors
Grade 4, by Derived Race/ethnicity, for Main U.S. History Samples

DERIVED RACE/EIBNICITY (HAEP ID: DRACE)

|  | \$ | WEIGBIED R (CV)* | WaIte | BLACK | EIISPANIC | ASIAN | AMER IND | UNCLASSIFIED | MISSING |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -- TOTAL -- | 3950 | 751,664( 12) | $\begin{array}{r} 70.7(0.6) \\ 227.5(1.0) \end{array}$ | $\begin{array}{r} 14.5(0.4) \\ 199.5(1.9) \end{array}$ | $\begin{array}{r} 11.0(0.4) \\ 202.7(1.7) \end{array}$ | $\begin{array}{r} 2.0(0.2) \\ 231.3(5.7) \end{array}$ | $\begin{array}{r} 1.8(0.2) \\ 212.7(4.7) \end{array}$ | $\begin{array}{r} 0.1(0.0) \\ 208.6(10.7) \end{array}$ | 0.0 |
| GENDER |  |  |  |  |  |  |  |  |  |
| HALE | 2026 | 381,243( 2\%) | 69.6( 0.9 ) | 13.6(0.7) | $12.0(0.6)$ | 2.1( 0.3 ) | 2.7( 0.5) | $0.1(0.1)$ | 0.0 |
|  |  |  | 230.8( 1.3) | 200.1( 2.6) | 204.5(2.1) | 226.0( 7.6 ) | $214.9(6.5)$ | 214.5( 7.3 ) |  |
| FEMALE | 1824 | 370,420(2\%) | 71.9( 0.9 ) | 15.3( 0.7 ) | 9.9(0.4) | $2.0(0.3)$ | $0.8(0.2)$ | $0.1(0.1)$ | 0.0 |
| -MロIL |  | 370,420( 2x) | 224.4( 1.2) | 198.9( 2.3 ) | 200.5(2.4) | 237.0( 6.0) | 205.7(8.2) | 202.5(***) |  |
| RACE/ETENICITY |  |  |  |  |  |  |  |  |  |
| KBITE | 2258 | 531,472( 1\%) | 100.0( 0.0) | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | 0.0( 0.0) | $0.0(0.0)$ | 0.0 |
|  |  |  | $227.5(1.0)$ |  |  |  |  |  |  |
| BLACK | 682 | 108,783( 3x) | 0.0( 0.0 ) | $100.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | 0.0( 0.0) | 0.0 |
|  |  |  |  | $199.5(1.9)$ |  |  |  |  |  |
| GISPARIC | 811 | 82,452(3x) | $0.0(0.0)$ | $0.0(0.0)$ | 100.0( 0.0$)$ | 0.0( 0.0 ) | 0.0( = `) | $0.0(0.0)$ | 0.0 |
| OTHER | 199 | 28,956( 8x) | 0.0( 0.0) | 0.0( 0.0) | $0.0(0.0)$ | 52.8( 4.8 ) | $45.8(5.0)$ | $1.4(1.0)$ | 0.0 |
|  |  |  |  |  |  | 231.3( 5.7 ) | 212.7(4.7) | 208.6(10.7) |  |
| parental education |  |  |  |  |  |  |  |  |  |
| LESS TEAN B.S. | 240 | 38,427(10x) | 59.0(3.3) | 19.3 ( 3.2) | 17.9( 2.6) | 2.3 ( 1.0) | $1.6(0.8)$ | $0.0(0.0)$ | 0.0 |
|  |  |  | 211.4(3.2) | 184.4( 5.0) | 196.3( 3.5 ) | 197.0( 9.6) | 183.8(16.9) |  |  |
| GRADUATED E.S. | 531 | 104,142( 6\%) | 70.2( 2.0 ) | $18.5(1.7)$ | $8.2(0.9)$ | $0.8(0.3)$ | $2.3(0.7)$ | $0.0(0.0)$ | 0.0 |
|  |  |  | 220.5( 1.7 ) | $197.7(2.4)$ | $200.7(4.6)$ | 204.6(23.3) | 201.3(15.1) |  |  |
| SAPE EDUC AFTER H.S. | 314 | 60,114( 6\%) | 75.0( 2.7) | 11.9( 1.9) | 10.9( 1.6) | 0.4( 0.3$)$ | $1.8(0.6)$ | 0.0( 0.0$)$ | 0.0 |
|  |  |  | 234.9(2.4) | $205.2(5.5)$ | 204.8( 6.0) | 252.7(14.8) | $225.2(9.0)$ |  |  |
| GRADUATED COLLEGE | 1416 | 285,165 ( 4\%) | 73.9( 1.1) | 13.1( 0.9 ) | 8.8( 0.7 ) | 2.6( 0.4 ) | $1.4(0.4)$ | $0.1(0.1)$ | 0.0 |
|  |  |  | $237.7(1.4)$ | 206.8( 2.8 ) | 211.3( 2.3) | 247.9( 5.7) | $223.2(8.0)$ | 208.6(10.7) |  |
| UHKANOM | 1432 | 261,658( 37 ) | 68.5( 1.6) | 13.9 ( 1.3) | 13.3( 0.9 ) | $2.2(0.6)$ | $2.0(0.4)$ | 0.0( 0.0 ) | 0.0 |
|  |  |  | 218.7( 1.3) | 195.2( 2.9 ) | 197.9( 2.3) | 218.2( 5.4) | 210.6( 5.3 ) |  |  |

[^67]
## Table 16-100

Weighted Response Perc intages and U.S. Histnry Proficiency Means with Standard Errors Grade 4, by Parental Education, for Main U.S. History Samples

Parents' education (maEP id: pared)

|  | N | WEIGETED N (CV)* | NOT ES | GRAD ES | POST ES | GRAD COL | UNKROWN | MISSING |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -- Total -- | 3933 | 749,507( 1\%) | $5.1(0.5)$ | 13.9( 0.8 ) | $8.0(0.5)$ | $38.0(1.3)$ | 34.9(0.9) | 0.3 |
|  |  |  | 202.7(2.2) | 214.1( 1.3) | 228.0( 2.4) | 231.4( 1.5) | 212.5(1.0) |  |
| GENDER |  |  |  |  |  |  |  |  |
| kale | 2017 | 380,328( 2\%) | 4.8 ( i.5) | 13.6( 0.9) | 8.4(0.6) | 40.3( 1.6) | $33.0(1.3)$ | 0.2 |
|  |  |  | 206.7(3.1) | 215.6( 2.1) | 230.0( 3.7) | 233.3i 1.8) | 213.9( 1.4) |  |
| ferale | 1916 | 369.179(2\%) | 5.4( 0.7) | 14.2( 1.1) | 7.7( 0.7) | 35.9( 1.6 ) | 36.9( 1 3) | 0.3 |
|  |  |  | 199.0( 2.6 ) | 212.6( 2.0) | 225.8( 2.4) | 229.1(1.6) | 211.2( 1.3) |  |
| RACE/ETENICITY |  |  |  |  |  |  |  |  |
| WHITE | 2256 | 530,946( 1\%) | 4.3(0.5) | 13.8( 1.0 ) | 8.5( 0.6) | 39.7( 1.5) | 33.8( 1.1) | 0.1 |
|  |  |  | 211.4( 3.2 ) | 220.5( 1.7) | 234.9( 2.4) | 237.7( 1.4) | 218.7( 1.3) |  |
| BLACK | 673 | 107,607( 3z) | $6.9(1.5)$ | 17.9( 1.5 ) | 6.7( 1.1) | 34.7( 2.5) | 33.9 ( 3.0) | 1.1 |
|  |  |  | 184.4( 5.0 ) | 197.7( 2.4) | 205.2( 5.5) | 206.8( 2.8 ) | 195.2( 2.8) |  |
| aispanic | 805 | 81,998( 3\%) | 8.4( 1.1) | 10.4( 1.1) | 8.0( 1.1) | $30.7(2.5)$ | 42,5( 2.1) | 0.6 |
|  |  |  | 196.3( 3.5) | 200.7( 4.6) | 204.8( 6.0) | 211.3( 2.3) | 197.9( 2.3) |  |
| OTEER | 139 | 28,956(8\%) | $5.1(1.5)$ | $11.2(3.0)$ | 4.5 ( 1.5 ) | 41.1( 4.8 ) | 38.1 ( 4.9 ) | 0.0 |
|  |  |  | $191.5(9.0)$ | $202.2(11.7)$ | 230.5 ( 7.8 ) | 238.2( 5.5 ) | 214.7(4.7) |  |
| PARENTAL EDUCATION |  |  |  |  |  |  |  |  |
| LESS THAN H.S. | 240 | 38,427(10\%) | 100.0( 0.0) | 0.0( 0.0$)$ | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | 0.0 |
|  |  |  | $202.7(2.2)$ |  |  |  |  |  |
| GRADUATED H.S. | 531 | 104,142( 6\%) | 0.E, 0.0) | 100.0( 0.0 ) | $0.0(0.0)$ | 0.0( C.0) | $0.0(0.0)$ | 0.r |
|  |  |  |  | 214.1( 1.3) |  |  |  |  |
| SOME EDUC AFTER H.S. | 314 | 60,114( 6\%) | $0.0(0.0)$ | $0.0(0.0)$ | 100.0 ( U.0) | 0.0( 0.0) | $0.0(0.0)$ | 0.0 |
|  |  |  |  |  | 228.0( 2.4) |  |  |  |
| GRADUATED COLLEGE | 1416 | 285,166( 4\%) | $0.0(0.0)$ | $0.0(0.0)$ | 0.0) (0.0) | 100.0( 0.0) | $0.0(0.0)$ | 0.0 |
|  |  |  |  |  |  | 231.4( 1.5) |  |  |
| UNKHOWIN | 1432 | 261,658( 3\%) | 0.0( 0.0) | $0.0(0.0)$ | $0.0(0.0)$ | 0.0( 0.0 ) | $100.0(0.0)$ | 0.0 |
|  |  |  |  |  |  |  | $212.5(1.0)$ |  |

[^68]Table 16-101
Weighted Response Percentages and U.S. History Proficiency Means with Standaad Errors Grade 8, by Gender, for Main U.S. History Samples

GENDER of SUBJECT (NMEP ID: SEX)

|  | N | WEIGATED $N$ (CV)* | Male | FEMALE | MISSING |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -- rotal -- | 6460 | 731,581( 1\%) | $49.5(0.8)$ | $50.5(0.8)$ | 0.0 |
|  |  |  | $265.2(1.0)$ | $261.6(0.8)$ |  |
| GENDER |  |  |  |  |  |
| MALE | 3156 | 362,158( 2 z ) | 100.0( 0.0) | $0.0(0.0)$ | 0.1 |
|  |  |  | 266.2( 1.0 ) |  |  |
| fehale | 3304 | 369,423( $2 \%$ ) | -.0( 0.0) | 100.0( 0.0 ) | 0.0 |
|  |  |  |  | 261.6(0.8) |  |
| race/eimilicity |  |  |  |  |  |
|  | 4006 | 521, 5:,0( 12) | 50.1( 0.9) | 49.9(0.9) | 0.0 |
|  |  |  | 272.7( 1.2 ) | $268.1(0.9)$ |  |
| BLACK | 1084 | 106,016( 3\%) | $44.8(1.6)$ | $55.1(1.6)$ | 0.1 |
|  |  |  | 248.7( 2.1) | $243.8(1.7)$ |  |
| hispanic | 1068 | 77,623: 3\%) | 53.7 ( 1.5 ) | 46.3 ( 1.5) | 0.0 |
|  |  |  | $245.6(2.4)$ | $242.9(2.0)$ |  |
| OTHER | 282 | 26,396( 7\%) | 44.2( 4.0$)$ | 55.8( 4.0) | 0.4 |
|  |  |  | 264.8( 4.5) | 263.1( 3.0 ) |  |
| parental education |  |  |  |  |  |
|  |  |  |  |  |  |
| GRADUATED E.S. |  |  | 245.0( 2.7) | 244.8( 2.1) |  |
|  | 1701 | 196,123( 36) | 50.0( 1.4) | 50.0( 1.4 ) | 0.1 |
|  |  |  | 257.4( 1.9$)$ | 254.7 ( 1.2) |  |
| SORE EDUC After r.s. | 1185 | 135,331( 3\%) | 50.1( 1.6) | 49.9( 1.5 ) | 0.0 |
|  | 2386 | 284,3c0( 3\%) | $272.6(1.8)$ $50.8(1.1)$ | $265.6(1.5)$ $49.2(1.1)$ | 0.0 |
| GRaduated college |  |  | 276.6 ( 1.4) | 273.1 ( 1.1) |  |
| UTKSOWT | 574 | 55,504 ( 5\%) | 51.1( 1.9) | 48.9(1.9) | 0.0 |
|  |  |  | 247.0( 2.5) | 240.6( 2.3) |  |

[^69]492

Table 16-102
Weighted Response Percentages and U.S. History Proficiency Means with Standard Erroze Grade 8, by Derived Race/ethnicity, for Main U.S. History Samples

DERIVED RACF./ETHNICITY (NAEP ID: DRACE)

|  | $N$ | WEIGETED N (CV)* | WHITE | BLACK | HISPANIC | ASIAN | AMER IND | UNCEATSIFIED | MISSING |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -- TOTAL -- | 68,62 | 731,766( 1: | $\begin{array}{r} 71.3(0.6) \\ 270.4(0.8) \end{array}$ | $\begin{array}{r} 14.5(0.6) \\ 246.0(1.5) \end{array}$ | $\begin{array}{r} 10.6(0.3) \\ 244.3(1.9) \end{array}$ | $\begin{array}{r} 2.2(0.2) \\ 273.3(2.6) \end{array}$ | $\begin{array}{r} 1.3(0.2) \\ 248.6(3.8) \end{array}$ | $\begin{array}{r} 6 . \text { if } 0.0) \\ 20(1.3(11.4) \end{array}$ | 0.0 |
| GENDER |  |  |  |  |  |  |  |  |  |
| MALE | 3158 | 362,343( $2 \%$ ) | 72.1( 0.8 ) | 13.2( 0.6) | 11.5(0.5) | 2.1( 0.2 ) | 1.0( 0.3) | 0.1( 0.1) | 0.0 |
|  |  |  | $272.7(1.2)$ | 248.8( 2.1) | 245.6( 2.4 ) | 272.8( 5.0 ) | 250.8( 8.0 ) | 255.3(16.9) |  |
| gemale | 3304 | 369,423(2\%) | 70.5( 0.8$)$ | 15.8( 0.6 ) | 9.7( 0.4 ) | 2.3( 0.3 ) | 1.6( 0.3 ) | $0.1(0.0)$ | 0.0 |
|  |  |  | 268.1(0.9) | 243.8( 1.7) | 242.9(2.0) | 273.8(3.4) | 247.2(5.0) | $266.0(13.7)$ |  |
| RACE/ETHNICITY |  |  |  |  |  |  |  |  |  |
| WIITE | 4006 | 521.546( 1x) | $100.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | 0.0 |
|  |  |  | $270.4(0.8)$ |  |  |  |  |  |  |
| BLACK | 1095 | 106,085 ( 3x) | 0.0( 0.0$)$ | $\begin{aligned} & 100.0(0.0) \\ & 246.0(1.5) \end{aligned}$ | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | 0.0 |
| HISPANIC | 1068 | 77,623( 3x) | $0.0(0.0)$ | 0.0( 0.0$)$ | $100.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | 0.0 |
|  |  |  |  |  | 244.3(1.9) |  |  |  |  |
| OTHER | 293 | 26,513( 7x) | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | $60.6(4.7)$ | $36.1(4.6)$ | $3.3(1.0)$ | 0.0 |
|  |  |  |  |  |  | $273.3(2.6)$ | $248.6(3.8)$ | $260.5(11.4)$ |  |
| PARENTAL EDUCATION |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| LESS THAN H.S. |  |  | 249.6( 2.6 ) | 238.7( 2.9) | 238.4(3.5) | 270.5(18.0) | 233.4(13.7) | 255.6(\%.1.0) |  |
| GRADUATED H.S. | 1703 | 196,308( 3x) | 70.6( 1.2 ) | 16.7( 0.9 ) | 9.9 ( 0.7 ) | 0.9( 0.3 ) | 1.7(0.4) | 0.2( 0.1 ) | 0.0 |
|  |  |  | 261.4( 1.5) | 240.6 ( 2.3) | $245.0(2.5)$ | 258.9( 5.6) | 248.7 ( 0.9 ) | 275.3(12.8) |  |
| SOKE EDUC AFTER H.S. | 1195 | 135,631( $3 x$ ) | $73.1(1.4)$ | 15.3( 1.1) | 8.9( 0.9 ) | $1.8(0.3)$ | $1.0(0.3)$ | $0.1(0.0)$ | 0.0 |
|  |  |  | 274.6( 1.3) | 254.0 ( 1.9) | 249.6( 2.9 ) | 277.3( 7.5) | 260.1(10.7) | 220.5(35.2) |  |
| GRadUATED COLLEGE | 2386 | 284,300( 3x) | $79.4(1.1)$ | 10.8( 0.8 ) | $6.1(0.6)$ | 2.9( 0.3) | $0.8(0.2)$ | $0.1(0.0)$ | 0.0 |
|  |  |  | 279.0( 0.9 ) | 255.2( 2.4) | 253.8( 2.9 ) | 283.2( 3.2) | 259.5(7.8) | $281.2(5.5)$ |  |
| UNKNOWN | 574 | 55,504( 56) | 47.4( 2.6) | 20.4( 2.2) | 25.8 ( 1.9) | 4.8( 1.1) | 1.6(0.6) | $0.0(0.0)$ | 0.0 |
|  |  |  | 254.0( 2.6) | 230.3( 2.3) | 233.8( 2.7) | 257.4( 5.7) | 236.6( 8.4) |  |  |

[^70]Table 16-103
Weighted Response Percentages and U.S. History Proficiency Means with Standard Errors Grade 8, by Parental Education, for Main U.S. History Samples

PARENIS' EDUCAITON (NAEP ID: PARED)

|  | N | WEIGETED N | (cV)* | NOT HS | GRAD HS | POSI HS | GRAD COL | UNKNOTN | MISSING |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -- TOTAL -- | 6445 | 730,125( | 1 ${ }^{\text {I }}$ | $\begin{array}{r} 8.0(0.3) \\ 244.9(1.7) \end{array}$ | $\begin{array}{r} 26.9(0.8) \\ 256.1(1.2) \end{array}$ | $\begin{array}{r} 18.6(0.6) \\ 269.1(1.1) \end{array}$ | $\begin{array}{r} 38.9(0.9) \\ 274.9(0.9) \end{array}$ | $\begin{array}{r} 7.6(0.4) \\ 243.8(1.8) \end{array}$ | 0.2 |
| GENDER |  |  |  |  |  |  |  |  |  |
| Hale | 3145 | 361,170 | 2x) | $6.2(0.4)$ | 27.2( 1.0) | 18.8( 0.8 ) | $40.0(1.0)$ | 7.9( 0.5 ) | 0.3 |
|  |  |  |  | 245.0( 2.7) | 257.5( 1.9 ) | $272.6(1.9)$ | 276.6( 1.4) | 247.0( 2.5) |  |
| FEHALE | 3300 | 368,954( | 2\%) | 9.8( 0.6 ) | 26.6 ( 0.9) | 18.3( 0.7 ) | $37.9(1.2)$ | $7.4(0.4)$ | 0.1 |
| F-HLE | 350 | 360,954( |  | 244.8( 2.1) | 254.7(1.2) | 265.6( 1.5) | 273.1( 1.1) | 240.6(2.3) |  |
| RACE/ETENICITY |  |  |  |  |  |  |  |  |  |
| WHITE | 4000 | 520,8431 | 12) | 6.0( 0.4 ) | 26.6(0.9) | 19.0( 0.7) | 43.3( 1.2) | 5.1( 0.3) | 0.1 |
|  |  |  |  | 249.6( 2.6) | 261.4(1.5) | 274.6( 1.3) | 279.0( 0.9 ) | 254.0( 2.6) |  |
| BLACK | 1090 | 105,565 | 3x) | 9.4( 1.1) | $31.1(1.6)$ | 19.6( 1.4) | $29.2(1.8)$ | 10.7( 1.2 ) | 0.5 |
|  |  |  |  | 238.7( 2.9 ) | 240.6( 2.3) | 254.0( 1.9) | 255.2( 2.4) | 230.3( 2.3) |  |
| HISPANIC | 1066 | 77,489( | 3x) | 18.6 ( 1.8 ) | $25.1(1.7)$ | 15.5( 1.7 ) | $22.4(2.0)$ | 18.5( 1.6) | 0.2 |
| arskurc |  |  |  | 238.4( 3.5 ) | $245.0(2.5)$ | 249.6( 2.9 ) | 253.8 ( 2.9 ) | $233.8(2.7)$ |  |
| OTAER | 289 | 26,228( | 7X) | $11.0(1.9)$ | 20.8( 2.7) | 14.6( 2.4 ) | $40.0(2.7)$ | 13.6( 2.5) | 1.1 |
|  |  |  |  | $247.0(10.7)$ | 253.8( 5.2 ) | 270.0( 5.5) | 278.2( 2.8 ) | 252.1( 5.1) |  |
| Parental education |  |  |  |  |  |  |  |  |  |
| LESS TPAR H.'S. | 587 | 58,381( | 4x) | $\begin{aligned} & 100.0(0.0) \\ & 244.9(1.7) \end{aligned}$ | 0.0(0.0) | 0.0( 0.0; | $0.0(0.0)$ | 0.0( 0.0$)$ | 0.0 |
| GRaduater h.S. | 1703 | 196,308( | 3x) | $0.0(0.0)$ | 100.0( 0.0) | 0.0! | $0.0(0.0)$ | 0.0(0.0) | 0.0 |
|  |  |  |  |  | 256.1 ( 1.2) |  |  |  |  |
| SOME EDUC AFTER H.S. | 1195 | 135,631( | 3x) | $0.0(0.0)$ | $0.0(0.0)$ | $100.0(0 . v)$ | $0.0(0.0)$ | $0.0(0.0)$ | 0.0 |
|  |  |  |  |  |  | 269.1 ( 1.1) |  |  |  |
| GRaDUATED COLLEGE | 2386 | 284,300 | 37) | $0.0(0.0)$ | $0.0(0.0)$ | 0.0 ( 0.C) | 100.0( 0.0 ) | $0.0(0.0)$ | 0.0 |
|  |  |  |  |  |  |  | 274.9( 0.5) |  |  |
| UNKYOFN | 574 | 55,504( | 5x) | $0.0(0.0)$ | $0.0(0.0)$ | 0.0( 0.0) | 0.0( 0.0 ) | $\begin{aligned} & 100.0(0.0) \\ & 243.8: 1.8) \end{aligned}$ | 0.0 |

* CV is the coofficient of variation for the sum of the weights.

Table 16-104

## Weighied Response Percentages and U.S. History Eroficiency Means with Standard Errors Grade 12, by Gender, for Main U.S. History Samples

GENDER OF SUBJECT (NAEP ID: SEX)

|  | N | WEIGRTED N (CV)* | MALE | FEMALE | MISSING |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -- TOTAL -- | 5507 | 677,105( 1\%) | $\begin{array}{r} 47.7(1.3) \\ 298.5(1.3) \end{array}$ | $\begin{array}{r} 52.3(1.3) \\ 201.8(1.1) \end{array}$ | 0.0 |
| GENDER |  |  |  |  |  |
| MALE | 2583 | 322,977( 3\%) | 100.0( 0.0 ) | $0.0(0.0)$ | 0.0 |
|  |  |  | 298.5( 1.3) |  |  |
| female | 2914 | 354,128( 3\%) | 0.0( 0.0) | 100.0( 0.0) | 0.0 |
|  |  |  |  | 291.8( 1.1) |  |
| RACE/ETHNICITY 3730 |  |  |  |  |  |
| WHITE | 3730 | 500,024( 1\%) | 48.0( 1.4) | $52.0(1.4)$ | 0.0 |
|  |  |  | $305.3(1.4)$ | $297.2(1.3)$ |  |
| BLACK | 975 | 92,352( 3\%) | 4\%.5 ( 1.8 ) | $52.5(1.8)$ | 0.0 |
|  |  |  | 276.6( 2.5) | 272.4( 1.9 ) |  |
| HISPANIC | 616 | 56,047( $5 \%$ ) | 42.8( 2.8) | 57.2( 2.8) | 0.0 |
|  |  |  | 274.7( 2.3) | 273.2( 2.3) |  |
| OTHER | 186 | 28,681( 8\%) | $52.0(3.2)$ | 48.0 ( 3.2) | 0.0 |
| OTH |  |  | 291.8( 7.6 ) | 303.4( 5.7) |  |
| - |  |  |  |  |  |
|  |  |  |  |  |  |
| LESS THAN H.S. | 518 | 54,278( 7x) | 41.7( 2.5) | 58.3( 2.5) | 0.0 |
|  |  |  | 275.8( 2.8) | 273.1( 3.0 ) |  |
| GRADUATED H.S. | 1379 | 166,473( 3 X ) | 47.6 ( 2.0) | 52.4( 2.0) | 0.0 |
|  |  |  | 287.8( 1.6) | $283.0(1.6)$ |  |
| SONE EDUC AFTER H.S. | 1344 | 162,888( $3 \chi$ ) | $45.6(2.0)$ | 54.4( 2.0 ) | 0.0 |
|  |  |  | 300.5( 1.8) | 293.7( 1.4) |  |
| GRADUATED COLLEGE | 2119 | 27i. 223( 4\%) | 49.4( 1.6) | 50.6( 1.6) | 0.0 |
|  |  |  | 310.0( 1.9 ) | 302.1 ( 1.7) |  |
| UNKNOWV | 123 | 13,361(12\%) | $62.7(5.1)$ | 37.3( 5.1) | 0.0 |
|  |  |  | 264.4( 5.5) | 258.0( 5.7) |  |

* CV is the coefficient of variation for the sum of the wirights.


## Table 16-105

## Weighted Response Percentages and U.S. History Proficiency Means with Standard Errors

 Grade 12, by Derived ..ace/ethnicity, for Main U.S. History Samples| DERIVED RACE/ETHIICITY (KAEP ID: DPACE) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\wedge$ | WEIGHIED f ( | W日ITE | BLACK | EISPANIC | ASIAN | AMER IND | UNCLASSIFIED | MISSING |
| -- TOTAL -- | 5507 | 677.105 ( 1\%) | $\begin{array}{r} 73.8(0.6) \\ 301.1(1.2) \end{array}$ | $\begin{array}{r} 13.6(0.4) \\ 274.4(1.7) \end{array}$ | $\begin{array}{r} 8.3(0.4) \\ 273.9(1.8) \end{array}$ | $\begin{array}{r} 3.3(0.3) \\ 298.4(7.3) \end{array}$ | $\begin{array}{r} 0.9(0.2) \\ 283.1(8.0) \end{array}$ | $\begin{array}{r} 0.1(0.1) \\ 264.6(36.8) \end{array}$ | 0.0 |
| GENDER 0 |  |  |  |  |  |  |  |  |  |
| MALE | 2593 | 322,877(32) | $74.4(0.0)$ $305.3(1.4)$ | $13.6(0.7)$ $276.6(2.5)$ | $\begin{array}{r} 7.4(0.6) \\ 274.7(2.3) \end{array}$ | 293.3( 0.6$)$ | 291.4( 6.0$)$ | $264.6(36.8)$ | 0.0 |
| frmale | 2914 | 354.128( 3\%) | 73.4( 0.7 ) | 13.7( 0.7 ) | $9.1(0.4)$ | $3.0(0.3)$ | $0.9(0.3)$ | 0.0( 0.0) | 00 |
| ¢EHLE |  | 354.128( 32) | $287.2(1.3)$ | $272.4(1.9)$ | $273.2(2.3)$ | $305.9(f 6)$ | $294.7(9.8)$ |  |  |
|  |  |  |  |  |  |  |  |  |  |
| WHITE | 3730 | 500,026( 1X) | $\begin{aligned} & 100.0(0.0) \\ & 301.1(1.2) \end{aligned}$ | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | $0.6 \cdot 0.0)$ | $0.0(0.0)$ | 0.0 |
| BLACK | 875 | 92,352( 3x) | $0.0(0.0)$ | $100.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | 0.0( 0.0) | $0.0(0.0)$ | 0.0 |
|  |  |  |  | 274.4( 1.7$)$ |  | $0.0(0.0)$ | 0.0(0.0) | $0.0(0.0)$ | 0.0 |
| EISPANIC | 616 | 56,047( 5x) | 0.0(0.0) | $0.0(0.0)$ | $\begin{aligned} & 102.0(0.0) \\ & 273.9(1.8) \end{aligned}$ | $0.0(0.0)$ | 0.0(0.0) | $0.0(0.0)$ | 0.0 |
| OTEER | 186 | 28,681( 8x) | $0.0(0.0)$ | $0.0(0.0)$ | 0.0( 0.0$)$ | $\begin{array}{r} 77.2(4.8) \\ 299.4(7.3) \end{array}$ | $\begin{array}{r} 20.8(4.3) \\ 293.1(6.0) \end{array}$ | $\begin{array}{r} \left.2.1^{\prime} 1.5\right) \\ 264.6(36.8) \end{array}$ | 0.0 |
|  |  |  |  |  |  |  |  |  |  |
| LESS TRAN B.S. | 518 | S4.270( 78) | $282.5(3.7)$ | 261.9( 5.3) | $265.8(3.8)$ | 278.8(17.3) | 271.6( 8.6 ) |  |  |
| GidDUATED E.S. | 1379 | 166.473( 32) | $74.0(1.2)$ | 16.4( 1.0 ) | $6.5(0.6)$ | 1.9( 0.4) | $1.1(0.3)$ | 0.1( 0.1) | 0.0 |
|  |  |  | 289.8 ( 1.3) | $270.2(1.8)$ | $272.5(4.4)$ | 286.8( 7.7) | $277.6(7.0)$ $0.9(0.3)$ | $273.0(7.7)$ $0.0(0.0)$ |  |
| SOME EDUC AFTER H.S. | 1344 | 162,888( 3\%) | $75.4(1.2)$ $301.0(1.3)$ | $15.1(1.1)$ $283.2(2.8)$ | $6.5(0.6)$ $281.4(3.1)$ | $2.2(0.6)$ 293.1(11.0) | $0.9(0.3)$ $282.3(16.2)$ | $0.0(0.0)$ | 0.0 |
| GRadUATED COLLEGE | 2119 | 277.223(4x) | 79.4( 1.0 ) | 10.1( 0.6) | $5.3(0.5)$ | $4.5(0.7)$ | $0.7(0.3)$ | $0.0(0.0)$ | 0.0 |
|  |  |  | 310.5(1.6) | $277.9(2.8)$ | 285.9( 3,1) | 311.8 ( 8.2) | $316.2(9.1)$ | 286.9(****) |  |
| UMKYCAN | 123 | 13,361(12x) | 35.4( 6.0 ) | 24.5( 5.3) | $33.9(5.3)$ | 6.1 ( 2.7) | $0.0(0.0)$ | $=0(0.0)$ | 0.0 |
|  |  |  | 283.9( 8.0) | 248.7 ( 7.0) | $252.0(5.0)$ | 244.1(11.5) |  |  |  |

[^71]
## Weighted Response Percentages and U.S. History Proficiency Means with Standard Errors Grade 12, by Parental Education, for Main U.S. History Samples

PARENTS' EDUCATION (NAEP ID: PARED)

|  | N | WEIGEIED N (CV)* | Hot HS | GRAD HS | POST HS | GRAD COL | UNKHOWR | MISSIMG |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -- total -- | 5483 | 674,223( 1 X ) | 8.1( 0.6$)$ | $24.7(0.9)$ | $24.2(0.8)$ | 41.1( 1.4 ) | 2.0( 0.2 ) | 0.4 |
|  |  |  | 274.2(2.0) | 285.3( 1.1) | 296.8( 1.1) | 306.0( 1.6) | 262.0( 3.9) |  |
| GENDER |  |  |  |  |  |  |  |  |
| MALE | 2580 | 321,479(3x) | 7.0( 0.7 ) | 24.7( 1.3) | 23.1( 1.1) | 42.6(1.8) | 2.6( 0.4 ) | 0.5 |
|  |  |  | 275.8( 2.8) | 28. 8( 1.6) | $300.5(1.8)$ | 310.0( 1.9) | 264.4( 5.5) |  |
| female | 2903 | 352,744( 3 X ) | 9.0( 0.6 ) | 24.7( 0.9 ) | 25.1( 1.0 ) | 38.8( 1.5) | 1.4( 0.2 ) | 0.4 |
|  |  |  | 273.1( 3.0) | 283.0( 1.6) | 293.7( 1.4) | 302.1( 1.7) | 258.0( 5.7) |  |
| RACE/ETHNICITY |  |  |  |  |  |  |  |  |
| WHITE | 3717 | 498,532 ( 17) | 5.5( 0.6) | 24.7(1.0) | 24.6( 0.9 ) | $44.2(1.6)$ | $0.9(0.2)$ | 0.3 |
|  |  |  | 282.5( 3.7) | 289.8( 3.3 ) | 301.0( 1.3) | 310.5( 1.6) | $283.9(8.0)$ |  |
| BLACK | 973 | 92,195( 32) | 9.9( 1.4 ) | 29.7 ( 1.5) | 26.6( 1.7) | $30.2(2.1)$ | 3.6 ( 1.0) | 0.2 |
|  |  |  | 261.9( 5.3) | $270.2(1.9)$ | 283.2( 2.8) | 277.9( 2.9) | 248.7( 7.0 ) |  |
| HISPANIC | 608 | 55,167(4x) | 26.5( 2.6 ) | 19.5( 1.8 ) | 19.2( 1.7) | 26.7( 2.2 ) | $8.2(1.5)$ | 1.6 |
|  |  |  | 265.8( 3.8) | 272.5( 4.4 ) | 281.4( 3.1) | 285.9(3.1) | $252.0(5.0)$ |  |
| OTHER | 185 | 28,328( $8 x$ ) | 10.3( 3.6) | 18.0( 2.8) | 17.9(3.8) | 50.9( 6.2) | 2.9 ( 1.3) | 1.2 |
|  |  |  | 277.6(11.4) | 283.0( 5.2) | 292.8(10.3) | 312.3( 6.9) | 244.1(11.5) |  |
| PARENTAL EDUCATION |  |  |  |  |  |  |  |  |
| LESS THAN H.S. | 518 | 54,278( 7\%) | 100.0( 0.0) | 0.0( 0.0$)$ | 0.0( 0.0$)$ | 0.0( 0.0$)$ | $0.0(0.0)$ | 0.0 |
|  |  |  | 274.2( 2.0) |  |  |  |  |  |
| GRaduated h.s. | 1379 | 156,473( 3 ) | 0.0( 0.0 ) | 100.0( 0.0 ) | 0.0( 0.0) | 0.0( 0.0 ) | 0.0( 0.0) | 0.0 |
|  |  |  |  | 285.3( 1.1) |  |  |  |  |
| SOME EDUC AFTER H.S. | 1344 | 162,888( 32) | 0.0( 0.0) | $0.0(0.0)$ | 100.0( 0.0) | 0.0( 0.0) | 0.0( 0.0) | 0.0 |
|  |  |  |  |  | 296.8( 1.1) |  |  |  |
| GRaduated college | 2119 | 277,223( $4 \%$ ) | 0.0( 0.0 ) | $0.0(0.0)$ | 0.0( 0.0 ) | 100.0( 0.0) | 0.0( 0.0) | 0.0 |
|  |  |  |  |  |  | 306.0( 1.6) |  |  |
| UNKNOWN | 123 | 13,361(12\%) | 0.0( 0.0$)$ | $0.0(0.0)$ | 0.0( 0.0$)$ | 0.0) 0.0$)$ | $100.0(0.0)$ | 0.^ |
|  |  |  |  |  |  |  | $262.0(3.9)$ |  |

[^72]Table 16-107
Weighted Response Perventages and Geography Proficiency Means with Standard Errors
Grade 12, by Gender, for Main Geography Samples


[^73]Table 16-108
Weighted Response Percentages and Geography Proficiency Meáns with Standard Errors Grade 12, by Derived Race/ethnicity, for Main Geography Samples

DERIVED RACE/ETHNICITY (GAEP ID: DRACE)

|  | N | WEIGHTED N (CV:* | WHITE | BLACK | HISPANIC | ASIA' | AMER IND | UNCLASSIFIED | MISSING |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -- TOTAL -- | 3030 | 371,737( 12) | $\begin{array}{r} 75.5(0.8) \\ 301.1(1.1) \end{array}$ | $\begin{array}{r} 13.5(0.5) \\ 258.4(2.0) \end{array}$ | $\begin{array}{r} 7.0(0.5) \\ 271.8(3.9) \end{array}$ | $\begin{array}{r} 2.7(0.3) \\ 298.7(4.3) \end{array}$ | $\begin{array}{r} 1.1(0.3) \\ 282.5(4.8) \end{array}$ | $\begin{array}{r} 0.3(0.1) \\ 291.0(22.6) \end{array}$ | 0.0 |
| GENDER |  |  |  |  |  |  |  |  |  |
| MALE | 1425 | 177,542( 4\%) | 74.9( 1.3 ) | 12.3( 1.0) | $7.4(0.7)$ | 3.3( 0.6) | 1.6( 0.4) | $0.5(0.3)$ | 0.0 |
|  |  |  | 309.8( 1.6) | 262.3( 2.6) | $279.1(5.5)$ | 304.2(4.4) | 287.5( 6.1) | 285.7(30.0) |  |
| female | 1605 | 184.195(2\%) | $75.8(1.0)$ | 14.6( 0.6 ) | 6.6( 0.7 ) | $2.2(0.4)$ | 0.6 ( 0.2) | $0.1(0.1)$ | 0.0 |
|  |  |  | 283.3(1.2) | 255.4(2.5) | 264.4( 3.7) | 290.9(8.1) | 280.5( 8.2) | 267.8(****) |  |
| RACE/ETHNICITY |  |  |  |  |  |  |  |  |  |
| WHITE | 2093 | 280.485 ( 27) | 100.0( 0.0 ) | $0.0(0.0)$ | 0.0 ( 2.0) | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | 0.0 |
|  |  |  | 301.1( 1.1) |  |  |  |  |  |  |
| BLACK | 535 | 50,187(4\%) | $0.0(0.0)$ | $\begin{aligned} & 100.0(0.0) \\ & 258.4(2.0) \end{aligned}$ | $0.0(0.0)$ | 0.05001 | $0.0(0.0)$ | $0.0(0.0)$ | 0.0 |
| HISPANIC | 300 | 25,866( 7x) | $0.0(0.0)$ | 0.0( 0.0$)$ | $100.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | $0.0(0.0)$ | 0.0 |
|  |  |  |  |  | 271.8( 3.9) |  |  |  |  |
| OTHER | 102 | 15,078(10x) | $0.0(0.0)$ | 0.0( 0.0$)$ | 0.0( 0.0) | $67.5(6.4)$ | $26.0(5.8)$ |  | 0.0 |
|  |  |  |  |  |  | $298.7(4.3)$ | $282.5(4.8)$ | $291.0(22.6)$ |  |
| PAREKTAL EDUCATION 260 |  |  |  |  |  |  |  |  |  |
| LESS THAN R.S. | 268 | 28,609( 7x) | 51.i( 3.3) | 20.4( 2.5) | 22.0( 2.4) | 3.1( 1.4) | $2.9(1$ | 0.0( 0.0 ) | 0.0 |
|  |  |  | 276.1( 3.1) | 248.0 ( 5.6) | 258.8( 6.2) | 278.1( 8.4) | 288.2(11.8) |  |  |
| GRADUATED H.S. | 750 | 90,037( 5x) | 74.3( 1.8 ) | 17.3( 1.3) | 5.5( 0.9 ) | 1.7(0.4) | $0.9(0.5)$ | $0.2(0.2)$ | 0.0 |
|  |  |  | 291.1( $1 . .7$ ) | 254.5( 4.8 ) | 270.7( 3.7 ) | 285.5 ( 5.9) | 290.6(13.7) | 284.7(10.1) |  |
| SOME EDUC AFTER H.S. | 725 | 84,847( 47 ) | 75.8( 1.5 ) | 14.9( 1.2) | $6.8(1.1)$ | $1.9(0.8)$ | 0.6( 0.4 ) | $0.0(0.0)$ | 0.0 |
|  |  |  | $301.2(1.6)$ | 263.1( 3.4 ) | 279.5( 7.3 ) | 310.1( 7.1) | 314.4(17.7) |  |  |
| GRADUATED COLLEGE | 1151 | 157,243( 3X) | 82.2( 1.2 ) | 8.4( 0.7 ) | 4.5( 0.5 ) | 3.5( 0.5) | 1.1( 0.4 ) | $0.3(0.2)$ | 0.0 |
|  |  |  | $310.5(1.5)$ | $267.0(4.1)$ | $281.9(5.5)$ | $309.0(5.4)$ | 288.9( 6.6) | 324.0(41.7) |  |
| UNKHOHN | 82 | 9,552(12\%) | 46.6( 6.5) | 26.2( 5.4) | 16.0( 3.7) | 7.5(2.4) | $0.0(0.0)$ | 3.7( 3.7 ) | 0.0 |
|  |  |  | 264.5(10.8) | 241.2( 8.0) | 255.1( 8.1) | 248.6(20.5) |  | 251.9(****) |  |

* CV is the coefficient of variation for the sum of the meights.
(****) Standard error is greator than 99.8.

Table 16-109
Welghted Response Percentages and Geography Proficiency Means with Standard Errors Grade 12, by Parental Education, for Main Geography Samples


[^74]
## APPENDIX A

Consultants for the Development of 1988 NAEP Objectives and Items

## Appendix A

## CONSULTANTS FOR THE DEVELOPMENT <br> OF 1988 NAEP OBJECTIVES AND ITEMS

## READING

## Learning Area Committee

Peter Mosenthal, Syracuse University, Syracuse, NY Richard Venezky, University of Delaware, Newark, DE

## Development Consultants and Reviewers

Jo Beth Allen, Kansas State University, Manhattan, KS
Arthur Applebee, National Council of Teachers of English, Urbana, Il Michael Axline, University of Oregon, Eugene, OR
Fernie Baca, University of Colorado, Denver, CO
Richard Beach, University of Minnesota, Minneapolis, MN
Barbara Bianchi, Paideia School, Atlanta, GA
Susan Blank, Manpower Demonstration Research Corporation, Brooklyn, NY
Robin Butterfield, Northwest Regional Educational Laboratory, Portland, OR
Robert Calfee, Stanford University, Stanford, CA
Jeanne Chall, Harvard Graduate School of Education, Cambridge, MA
Carita Chapman, Chicago Public Schools, Chicego, IL
Ruth Coleman, North 3ide High School Mothers Alumni Club, Fort Wayne, Iiv
Christorpher Connell, Associated Press, Washington, DC
Larry Coon, McDonald's Restauran. , Henderson, TX
Bernice Cullinan, New York University, New York, NY
Mary E. Curtis, Harvard Graduate Schcol of Education, Cambridge, MA Jacqueline Danzberger, Youthwork Inc., Arlington, VA
Martha Darling, Washington Roundtable Education Study, Bellevue, WA Philip DiStefano, University of Colorado, Boulder, CO
Terry Dozier, South Carolina State Department of Education, Columbia, SC
Priscilla Drum. University of California at Santa Barbara, Santa Barbara, CA
William Eller, State University of New York at Buffalo, Amherst, NY
Leo Estrada, University of California, Los Angeles, CA
Claryce Evans, Boston Public Scnools, Boston, MA
Marjorie Farmer, School District of Philadelphia, Philadelphia, PA
Roger Farr, University of Indiana, Bloomington, IN
Edmund Farrell, University of Texas, Austin, TX
Edward Fry, Rutgers University, New Brunswick, NJ
Carol G:bson, National Urban League, New York, NY
Kenneth Goodman, University of Arizona, Tucson, AZ
Naomi Gordon, Public Schools of Brookline, Lexington, MA
Donald Graves, University = New Hampshire, Durham, NH
Jean Greenlaw, North Texas 3 :ate University, Denton, TX
Doris Hankins, Germantown High School, Germantown, TN
Jerome Harste, University of Indiana, Bloomington, IN

David Hayes，University of Georgia，Athens，GA
Paul Heffernan，Star Market，Newtonville，MA
Harold Herber，Syracuse University，Syracuse，NY
Jane Holt，Champlain Valley Union High School，Hinesburg，VT
Shu－in Huang，City of Thornton，Thornton，CO
Evaline Khayat Kruse，Audubon Junion High School，Los Angeles，CA
Judith Langer，University if California，Berkeley，CA
Diane Lapp，Boston University，Boston，MA
Herbert J．Lapp，Jr．，GPU Nuclear Corporation，Parsippany，NJ
K̄on Lessnau，hamburger University，Oakbrook，IL
Ray Marshall，University of Texas，Austin，TX
sarills A．Miller，Reading Development Seminars，Minneapolis，MN
Charlas Moody，University of Michigan，National Alliance of Black School
Educators，Ann Arbor，MI
Edwin Newman，NBC News，New York，NY
Pedro Pedraza，Jr．，Hunter College，New York，NY
Anthony Petrosky，University of Pittsburgh，Pittsburgh，PA
Carolyn Pollan，State of Arkansas，Fort Smitn，AR
Walter L．Powers，School District $⿰ ⿰ 三 丨 ⿰ 丨 三 八$ 271，Coeur d＇Alene，ID
John Readance，Louisiana State University，Baton Rouge，LA
Beverly Roller，Jefferson County Public Schools，Littleton，CO
Glenn E．Rotz，Highland Elementary School，Clarkson，WA
Sarah Saint－Onge，Godine Publishing Co．，Boston，MA
Adan C．Salgado，Johnston High School，Austin，TX
S．Jay Samuels，University of Minnesota，Minneapolis，MN
Robert Schreiner，University of Minnesota，Minneapolis，MN
John Stewig，University of Wisconsin，Milwaukee，WI
Dorothy Strickland，Columbia University，New York，NY
Robert Tierney，University of Illinois，Champagne－Urbana，IL
Jaap Tuinman，Simion Fraser University，Burnaby，B．C．，Canada
Janet Tully，Marriott Corporationnn，Washington，DC
Richard Vacca，Kent State University，Kent， OH
Rod Vahl，Central High School，Davenport，IA
Sheila Valencia，University of Colorado，Boulder，CO
Thomas Vallejos，University of Colorado，Boulder，CO
Maria Watkins，University of Pennsylvania，Graduate School of Education， Philadelphia，Fonnsyy vania
Rick Wetherell，North Bend High School．West Bend，OR
Susan M．Wolt，The Hastings Center，Hastings－on－Hudson，NY
Kathy Yen，San Francisco Public Schools，San Francisco，CA Seymour Yesner，Brookline High School，Brookline，MA

## WRITING

## Learning Area Committee

Arthur Applebee，Stanford University，Stanford，CA
Mary Barr，California State Department of Education，San Diego，CA
David Bartholomae，University of Pittsburgh，Pittsburgh，PA
Miriam Chaplin，

Paul Diehl, Uriversity of Iowa, Iowa City, IA
Ed Folsom, University of Iowa, Iowa City, IA
Helen Kelley, State Department of Education, Commonwealth of Virginia, Richmond, VA

## Development Consultants and Reviewers

Robert Alligood, Plymouth Public Schools, Plymouth, NC
Lee Antell, Champlin, $\mathbb{N}$
Elsa Bartlett, New York University Medical Center, New York, NY
Opaline Brice, California PTA, Inglewood, CA
Bill Burns, Boulder High School, Boulder, CO
Mary Busch, Indiana Central College, Indianapolis, IN
Robin Butterfield, N.W. Indian Reading Program, Portland, GR
Shirley Cain, Golden, CO
Rosa Casarez, Downey, CA
Patricia Candal, University of South Crscolina, Columbia, SC
Courtney Cazden, Harvard University, Cambridge, MA
Gilbert Cho, Cambridge, MA
Jane Christensen, National Council of Teachers of English Urbana, IL
Nancy Ciarleglio, New Haven PTA, New Haven, CT
Edmond Cody, North Side Independent School District, San Antonio, TX
Charles Go ${ }^{\text {nr }}$, University of San Diego-La Jolla, La Jolla, CA
Florence Cox, Chicago Region PTA, Chicago, IL
Alonzo Crim, Atlanta City Schools, Atlanta, GA
John Daly, aiversity of Texas at Austin, Austin, ' CX
Leonard Dascon, Washoe City School District, Reno, NV
Vivian Davis, Tri-Ethnic Committee, Dallas, TX
John Dawkins, Yardley, PA
Margaret Dinn, Dade County Elementary \& Secondary Schools, Miami, FL Joanne Eresh, West Liberty Training Center, Pittsburgh, PA
Marjorie Farmer, Schoo? District of Philadelphia, Philadelphia, PA
N. rcia Farr, University of Illinois at Chicsī̃, Chicago, IL

Paul Fawson, Weber County School District, Ogden, IT Eleanor Francke, Lincoln Public schools, Lincoln, NE June Gabler, Woodhaven School District, Romulus, MI Darrell Garber, New Orleans Public Schols, New Orleans, LA Pete Garcia, Espanola School District, Espannla, NM Perry Gilmore, University of Alaska at Fairbanks, Fairbanks, AK Gene Goff Jr., West Virginia Congress of Parents and Teachers, Inc., Huntington, WV
Eonald Graves, University of New Hampshire, Durham, NH
Karen Greenberg The Cicy University of New York, New York, NY
Carol Ann Greenhalgh, Texas Educatior. Agency, Austin, TX
Robert Gundlach, Northwestern University, Evanston, TI
Kris Gutierrez, University of Colorado, Boulder, CO
Carol Harner, University of Denver, Denver, CO
Barbara Hasek, Oregon State PTA, Springfield, OR
Mary Heim, Grant Elementary School, Casper, WY
Diane Hernandez, Lafayette Elementary School, Lafayette, CO
Wayne Hill, Board of Education, Cumberland, MD

Susan Hogsgard, Pittsburgh Board of Education, Pittsburgh, PA
Jack Holmquist, Nebraska PTA, York, NE
Shu-In Huang, City of Thornton, Thornton, CO
Ann Humes, Southwest Regional Laboratory, Las Aiamitos, CA
Enid Humphrey, West Side Community Schools, Omaha, NE
Richard Johnson, Center for New Schools, Highland Park, IL
Donaid Jones, Jefferson County Public Schools, Lakewood, CO
Kenneth Kantor, University of Georgia, Athens, GA
Jaima Killian, Wheat Ridge, CO
James Rex Kirk Sr., Utah PTA, Tooele, UT
Carl Klaus, University of Iowa, Iowa City, IA
Rita Klemm, Wheat Ridge Senior High School, Wheat Ridge, CO
Shari Lahi, Buckeye Central School District, New Washington, OH
Judith Langer, University of California at Berkeley, Berkeley, CA
Glenda Liston, Texas Congress of Parents and Teacheers, Marshall, TX
Wendy Littlefair, Measurement, Inc., Durham, NC
Richard Lloyd-Jones, University of Iowa, Iowa City, IA
Fay Loo, Seward Park High School, New York, NY
Dorothy Magett, Seattle Public Schools, Seattle, WA
Betty Mangum, State Department of Public Instruction, Raleigh, NC
Maureen McCarchy, Totten Jatermediate School, Staten Island, NY
George McCulley, Michigan Tech University, Houghton, MI
Carol Mathews, Boulder High School, Boulder, CO
Frances McCormick, Manning Junior High School, Golden, ©
Sister Jarlath McManus, Archdiocese of Denver, Denver, CO
Mary Meier, Eugene School District, Eugene, OR
John Mellon, University of Illinois, Evanston, IL
Patti Mendes, University of Colorado, Boulder, CO
Vana Meredith, State Department of Education, Columbia SC
Donna Miller, Orange County Public Schools, Orlando,
Sandra Murphy, University of Caiifornia at Berkeley, -rkeley, CA
Jeff Oliver, Lincoln Elementary School, Boulder, CO
Robert Palmacier, Birmingham Roard of Education, Birmingham, AL Jan Patton, Findlay City Schools, Findlyy, OH
Jesse Perry, San Diego Public Schools, San Diego, CA
Anthony Petrosky, University of Pittsburgh, Pittsburgh, PA
Lorraine Plasse, Springfield Public Schools, Springfield, MA
Sanford Powell, Northwest Mississippi Teacher Center, Senatobia, NY
Edys Quellmaiz, University of California at Los $\mathbb{\ell}$. $\mathrm{E}^{\text {' }}$ es, Los Angeles, CA
Edward Reidy, West Hartford Public Schools, West Hartford, CT
Edward Roeber, Michigan Department of Education, Lansing, MI
Marilyn Rosenblat, College Learning Laboratory, Buffalo, NY
Thomas Roy, Ithaca City Schools, Ithaca, NY
Charles Schuster, University of Wisconsin, Milwaukee, WI
Evelyn Scott, Englewood, CO
Sandra Seale, Cherry Creek High School, Aurora, CO
Sharif Shakrani, Michigan Department of Education, Lansing, MI
Mary Ann Shea, University of Colorado, Boulder, CO
Yvonne Siu-Runyan, Boulder Valley Schools, Pasadena, CA
Robert Smith, Sandusky City Schols, Sandusky, OH
Geneva Smitherman, Wayne State University, Detroit, MI
Susan Sowers, Cambridge, MA

Mary Stitt, Jefferson County Public Schcols, Lakewood, CO
Barhara Thompson, Wisconsin Department of Public Ins ruction, Madison, WI
Donnd Townsend, Texas Education Agency, Austin, TX
Lynn Troyka, CUNY, Queensborough Community College, Bayside, NY
Tomas Vallejos, University of Minnesota, Minneapolis, 4 N
Faith Waters, Bucks County School District, Doylestown, PA
Maria Watkins, Philadelphia, PA
Richard Weaver, Bentonville Schools, Bentonvilie, AR Ben Wỉllan:, Chicago Board of Education, Chicago, IL Darneil hilliams, Bishop College, Dallas, TX
John Wood, Jr:chem Elementary School, Rroomfield, CO
Seymour Yesner, Brookline Education Center, Brookline, MA

## geography

## Learning Area Committise

Russ Allen, Wisconsin Department of Public Instruction, Madison, WI Norman Bettis, Illinois State University, Normal, IL Marianne Kenrey, Cherry Creek Schonls, Denver, C0 Dana Kurfman, Prince Georges County Schools, Landover, MD Christopher Salter, National Geographic Society, Washington, DC

## Development Gonsintants and Reviewers

Alan Backler, Indiana University, Bloomington, IN Phillip Bacon, University of Houston, Houston, TX Richard Boehn, Texas State University, San Marcos. TX Nancy Brown, Mississippi Department of Educstion, Jackson, MS Gary Elbow, Texas Tech University, Lubbock, : X Charles Gritzner, South Dakota State University, Bronkings, Sid
Michael Hartoonian, Wisconsin Department of Public Instruction, Madison, WI Richard Helboci:, La Fosta: Journal of American Postal History, West Linn, OR Gail Hobbs, University of California, Los Angeles, CA Briave'. Holcomb, Rutgers University, New Brunswick, NJ Oscar Horst, Western Michigan University, Kalamazoo, MI Mary Jean Katz, Portland, OR
Gail Ludwig, University of Missouri, Columbia, MO James Marran, New Trier Township High Sc' ol, Winnetka, IL Gary Miller, F.W. Cox High School, Virgina Beacn, VA William Miller, Louisiana Department of Education, Baton Rouge, I A. Janice Monk, University of Arizona, Tucson, AZ
Salvatore Natoli, National Council for the Social Studies, Washington, DC Fleta Nockels, Dogulas County Schools, Castle Rock, CO
Zouglas Phillips, Anchorage School District, Anchorage, AK
Sandra Pritchard, West Chester University, Wect Chester, PA Wilifam R. Strong, University of North Alaba , Florence, AL Doug Wilms, East Carolina Uniwersity, Greenville, NC Barbara Winston, Northeastern Illinois University, Chicago, IL

## U.S. HISTORY

## Learning Area Committee

Mary Graham, Metropolitan Public Schools, Nashville, TN
Joel Grnssman, University of Wisconsin, Madison, WI
David Hammack, Case Western Reserve University, Cleveland, OH
Peter Kneedler, California Department of Education, Sacramento, CA Sheila Mann, American Political Science Associates, Washington, DC Sam Nacoli, National Council for the Social Studies, Washington, DC Harry Scheiber, Chair, University of California, Berkeley, CA
Betty Waugh, West Mesa High School, Albuquer fue, NM

## State Advisory Committee

Russ Allen, Wisconsin Department of Public Instruction, Madison, WI Helen Brown, Bureau of Curriculum, In-Service \& State Dept., Baton Rouge, LA John Chapman, Michigan State Department of Education Lansing, MI
Roger Hammer, Wyoming Department of Education, Cheyєnne, WY
Peter Kneedler, Californla Department of Education, Sacramento, CA
Douglas Robertson, State Department of Public Adminstration, Raleigh, NC Lois Rubin, Virginia Department of Education, Richmond, VA

## Development Consultants and Reviewers

Ron Adams, Kingswcod High School, Wolfeboro, NH
James F. Adomanis, Annapolis, MD
Susan Austin, Bala Cynwyd, PA
Marvin Awbrey, Fresno Unified School District, Fresno, CA
Rosemary Bane, Robertson Academy, Nashville, TN
J. Sherman Barker, The Hotchkiss School, Lakeville, CT

Jim Bell, Poway High School, Yoway, CA
Marjorie Bingham, St. Louis Park Schools, St. Louis Park, MN
Jeanine Blumberg, SUNY at Srony Brook, Stony Brook, NY
Mabel McKinney Bowning, YEFs, American Bar Assn., Chicago, IL
Judy Bristol, Houston Independent School District, Houston, TX
Nancy Brown: Mississippi Board of Education, Jackson, MS
George Burson, Aspen lligh School, Aspen, CO
Robert Campbell, Wesleyan Church, Lambertville, NJ
Mary Ann Cardia, The Philadelphia Schnol, Philadelphia, PA
Carol Chaet, Cambridge Public. Schools, Cambridge, MA
Phyllis larke, Boulder Valley Schools, Boulder, CO
Harriet Crane, The Baldwin School, Bryn Mawr, PA
Gerald Danzer, University of Chicago, Chicago, IL
Robert M. Dawson, Albuquerque, NM
Charlotte de Costa, The Baldwin School, Bryn Mawr, PA
Cooper Delk, McMurray Middle School, Nashville, TN

Deborah Drucker, Springbrook High School, Chevy Chase, MD
Terrie Epstein, Cherry Creek High School, Englewood, CO
William Fernekes, Flemington, NJ
George Flittie, Portland, OR
Mary Giunta (ex officio), NARA/NHPRC, Washington, DC
C. Dale Greewald, Learning Improvement Services, Nederland, CO

David Harris, Oakland County Public Schools, Pontiac, MI
JoAnn Heidenrich, Hillwood High School, Nashville, TN
Sylvia Hoffert, St. Louis Country Day School, St. Louis, MO
Reverend Giles P. Hayes, O.S.B., The Delbarton School, Morristown, NJ
Linda Glickstein, Philadelphia, PA
David Glickstein, Philadelphia, PA
Paul Dent is Hoffm ${ }^{\wedge}$ Canyon del Oro High School, Tucson, AZ
Donna Hudson, 01 iter Elementary School, Antioch, TN
Alison Johnson, Gıencliff High School, Nashville, TN
Savannah Jones, Birmingham Public Schools, Birmingham, AL
Sylvia Karnowsky, Overton High School, Nashville, TN
Joseph Kovacs, Edison School District, Edison, NJ
David Laudenschlager, Rapid City Central High School, Rapid City, SD
James Loguidice, Bucks County Intermediate Unit, Doylestown, PA
Thomas Lyons, Phillips Academy, Andover, MA
Anne McNair, Kirkpatrick Elementary School, Nishville, TN
Mary McFarland, Parkway School District, Chesterfield, MO
David Meisrow, Portland, OR
Fay Metcalf, National Council of the Social Studies, Washington, DC
S. Rex Morrow, Pennsylvania State University, University Park, PA

Carla Nankervis, Meigs Magnet School, Nashville, TN
Louise Osborne, Fall-Hamilton Elementary School, Nashville, TN
Arthur Pease, Lebanon High School, Lebanon, NH
Frederick W. Pfister, Bloomfield Hills, MI
Douglas Phillips, Anchorage School District, Anchorage, AK
John Phillips, Sacramento, CA
Catherine Pickle, Memphis City Schools, Memphis, TN
Gene Pickel, Oak Rijge School, Oak Ridge, TN
Helen Richardson, Fulton County Board of Education, Atlanta, GA
Susan Roberts, Albuquerque, NM
Lucille Robinson, Ontario-Montclair, Ontario, CA
Al Rocca, Sequoia Junior High School, Redding, CA
John Rossi, El Cerrito Senior High, El Cerrito, CA
Jennie Scott, Moore Middle School, Nashville, TN
Denny Shillings, Homewood-Flossmore Community High School, Flossmore, IL
Larry Strickland, Public Instruction Office, Tumwater, WA
Ruth Sykes, Haywood Elementary School, Nashville, TN
Elaine M. Takenaka, Department of Education, Honolulu, HI
Jan Talbot, Fair Oaks, CA
Steven Teal, Hercules, CA
Nan Teeter, Percy Priest Elementary School, Nashville, TN
Paul Tice, McMurray Middle School, Nashville, TN
Mary Jane Turner, Center for Civic Education, Calabasas, CA
Jane Vandercook, Hunters Lane Comprehensive High School, Hendersonville, TN
Deborah Welch, AHA, Washington, DC
Mary Lou Williams, Santa Fe, NM

Thomasine Wilson, Berkeley, CA
Virginia Wilson, North Carolina School of Science and Mathematics, Durham, NC Celeste Woodley, Boulder Valley Schools, Boulder, CO
Brain R. Wright, Neel's Bend Middle School, Nashville, TN

## cIVICS

## Learning Area Committee

Russ Allen, Wisconsin Department of Public Instruction, Madison, WI
Mary Graham, Metropolitan Public Schools, Nashville, TN
Joel Grossman, University of Wisconsin, Madison, WI
David Hammack, Case Western Reserve University, Cleveland, OH
Peter Kneedler, California Department of Education, Sacramento, CA Sheila Mann, American Political Science Associates, Washington, DC Sam Natoli, National Council for the Social Studies, Washington, DC Harry Scheiber, Chair, University of California, Berkeley, CA Betty Waugh, West Mesa High School, Albuquerque, NM

## State Advisory Committee

Russ Allen, Wisconsin Department of Public Instruction, Riadison, WI Helen Brown, Bureau of Curriculum, In-Service \& State n c., Baton Rouge, LA John Chapman, Michigan Scate Department of Education, Lansing, MI Roger Hammer, Wyoming Department of Education, Cheyenne, WY
Peter Kneedler, California Department of Education, vacramento, CA Douglas Robertson, State Department of Public Admirstration, Raleigh, NC Lois Rubin, Virginia Department of Education, Richinond, VA

Development Consultants and Reviewers
Ron Adams, Kingswood High Schorl, Wolfeboro, NH
James F. Adomanis, Annapolis, MD
Susan Austin, Bala Cynwyd, PA
Marvin A.wbrey, Fresno Unified School Discrict, Fresno, CA
Rosemary Dane, Robertson Academy, Nashville, TN
J. Sherman Barker, The Hotchkiss School Lakeville, CT

Jim Bell, Poway High School, Poway, CA
Marjorie Binghan, St. Louis Park Schools, St. Louis Park, MN
Jeanine Blumberg, SUNY at Stony Brook, Stony Brook, NY
Mabel McKinney Bowníng, YEFC, American Bar Assn., Chicago, IL
Judy Bristol, Houston Independent School District, Houston, TX
Nancy Brown, Mississippi Board of Education, Jachs;on, MS
George Burson, 1spen High School, Aspen, CO
Robert Campbell, Wesleyan Church, Lambertville, NJ
Mary Ann Cardia, The Philadelphia School, Philadelphia, PA
Carol Ćnaet, Cambridge Public Schools, Cambridge, MA
Phyllis Clarke, Boulder Valley Schools, Boulder, CO

Harriet Crane, The aldwin School, Bryn Mawr, PA
Gerald Danzer, University of Chicago, Chicago, IL
Robert M. Dawson, Albuquerque, NM
Charlotte de Costa, The Baldwin School, Bryn Mawr, PA
Cooper Delk, McMurray Middle School, Nashville, TN
Deborah Drucker, Springbrook High School, Chevy Chase, MD
Terrie Epstein, Cherry Creek High School, Enzlewood, CO
William Fernekes, Flemington, NJ
George Plititie, Portland, OR
Mary Giunta (ex officio), NARA/NHPRC, Washington, DC
C. Dale Greenwald, Learning Improvement Services, Nederland, CO

David Harris, Oakland County Public Schools, Pontiac, MI
JoAnn Heidenreich, Hillwood High School, Nashville, TN
Sylvia Hoffert, St. Louis Country Day School, St. Louis, MO
Reverend Giles P. Hayes, O.S.B., The Delbarton School, Morristown, NJ
Linda Glickstein, Philadelphia, PA
David Glickstein, Philadelphia, PA
Paul Dennis Hoffman, Canyon del Oro High School, Tucson, AZ
Dnnna Hudson, Old Center Elementary School, Antic-h, TN
Alison Johnson, Glencliff High School, Nashville, TN
Savannah Jones, Birmingham Public Schools, Birmingham, AL
Sylvia Karnowsky, Overton High School, Nashville, TN
Joseph Kovacs, Edison School District Edison, NJ
David Laudenschlager, Rapid City Central High Schosi, Rapid City, SD
James Loguidice, Bucks County Intermediate Unit, Doylestown, PA
Thomas Lyons, Phillips Academy, Andover, MA
Ann McNair, Kirkpatrick Elementary School, Nashville, TN
Mary McFarland, Parkway School District, Chesterfield, MO
David Meisrow, Portland, OR
Fay Metcalf, National Council of the Social Studies, Washington, DC
S. Rex Morrow, Pennsylvania State University, University Park, PA

Carla Nankervis, Meigs Magret School, Nashville, TN
Louis Osborne, Fall-Hamilton Elementary School Nashville, TN
Arthur Pease, Lebanon High School, Lebanon, NH
Frederick W. Pfister, Bloomfield Hills, MI
Douglas Phillips, Anchorage School District, Anchorage, AK
John Phillips, California Department of Education, Sacramento, CA
Catherine Pickle, Memphis City Schools, Memphis, TN
Gene Pickel, Oak Ridge School, Oak Ridge, TN
Helen Richardson, Fulton County Board of Education, Atlanta, GA
Susan Roberts, Albuquerque, MM
Lucille Robinson, Ontario-Montclair, Ontario, CA
Al Rocca, Sequioa Junior High School, Redding CA
John Rossi, El Cerrito Senior High, El Cerrito, CA
Jennie Scott, Moore Middle School, Nashville, TiN
Denny Shillings, Homewood-Flossmore Community High School, Clossmore, IL
Larry Strickland, Public Instruction Office, Tumwiter, WA
Ruth Sykes, Haywood Elementary School, Nashville, ${ }^{\top} \mathrm{N}$
Elaine M. Takeraka, Department of Education, Honolus?. HI
Jan Talbot, Fair Oaks, CA
Steven Teal, Hercules, CA
Nan Teeter, Percy Priest Elementary School, Nashville, TN

Paul Tice, McMurray Middle School, Nasiville, TN
Mary Jane Turner, Center for Civic Education, Calabasas, CA
Jane Vandercook, Hunters Lane Comprehensive High School, Herdersonville, TN Deborah Welch, AHA, Washingion. DC
Joy Weldon, Bethlehem, PA
Mary Lou Williams, Santa Fe, IM
Thomasine Wilson, Berkeley, CA
Virginia Wilson, NC School of Science and Mr+hematics, Durham, NC Celeste Wocdley, Bou: • Valley Schools, Bc er, CO Brian R. Wright, Neely's Bend Middle School, Nashville, TN

## background questions consultants

Valeria Ford, Office of Research and Student Assessment, DC Public Schools Susan Fuhrman, Eagleton Institute for Politics, Rutgers University Barbara Heyns, Center for Applied Social Science Research, . y York University Nancy Karweit, Center for the Social Organization of Schools, Hopkins University
Lorraine McDonnell, Rand Corporation
Vilma Ortiz, Manpower Demonstration Research Corporation Michael Smith, School of Education, Stanford University Herb Walberg, University of Illinois at Chicago Circle

## APPENDIX B

## Distribation of Weight Components for 1988 NAEP Samples

```
Appendix B
distribution of weight comoonents for 1988 NaEP SAMPLES
```

The following 11 tables, which are cited throughout Chapter 8, "Weighting Procedures and Estimation of Sampiing Variance," show the distribution of weight components for the 1988 NAEP samples, including base weights, the various nonresponse adjustment factors, trimming factors, and poststratification factors, for the student weights, the excluded student weights and the teacher-student. weights. A description of each table is given in Chapter 8, sections 8.1.1 through 8.1.6.

Table B-1
Distrisution of Student Base Weights - Assessed Students

| Sample | No. of Cases | Mean | Standard Deviation | Min. | $\begin{gathered} 25 \text { th } \\ \text { Percentile } \end{gathered}$ | Median | $\begin{gathered} 7 \text { Sith } \\ \text { Percentile } \end{gathered}$ | $\underline{M a x}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade 4/Age 9 Main | 20312 | 157.1 | 63.5 | 56.8 | 107.7 | 123.1 | 215.7 | 860 \% |
| Grade 8/Age 13 Main | 36699* | 88.6 | 45.4 | 21.2 | 61.0 | 77.6 | 120.1 | 526.0 |
| Grade 12/Age 17 Main | 32710 | 72.9 | 35.9 | 20.7 | 44.9 | 56.1 | 100.4 | 402.7 |
| Age 9 Bridge - Books 51-56 | 5188 | 728.5 | 428.7 | 213.1 | 396.2 | 617.6 | 980.3 | 4787.3 |
| Age 9 Bridge - Book 91 | 1274 | 2159.2 | 1259.0 | 364.0 | 112!.5 | 1833.9 | 2971.5 | 8187.1 |
| Age 9 Bridge - Boci 92 | 1240 | 2145.0 | 1272.7 | 364.0 | 1145.1 | 1852.9 | 2940.9 | 8187.1 |
| Age 9 Bridge - Book 93 | 1197 | 2277.7 | 1593.7 | 639.3 | 1149.3 | 1.873 .6 | 2958.9 | 13169.7 |
| Age 13 Bridge - Books 51-56 | 5500 | 646.7 | 245.7 | 180.1 | 480.4 | 647.1 | 740.3 | 3867.7 |
| Age 13 Bridge - Book 90 | 1938 | 1288.5 | 444.0 | 360.2 | 984.5 | 1281.2 | 1558.0 | 3970.0 |
| Age 13 Bridge - Book 91 | 1405 | 1924.4 | 630.0 | 853.5 | 1450.3 | 1921.8 | 2220.8 | 3593.9 |
| Age 13 Bridge - Book 92 | 1281 | 2057.7 | 1031.0 | 600.3 | 1483.5 | 1906.1 | 2496.2 | 11.603 .0 |
| Age 13 Bridge - Books 93 | 1256 | 1904.7 | 810.9 | 540.3 | 1488.8 | 1921.8 | 2249.5 | 12149.2 |
| Age 17 Bridge - Bocks 5l-56 | 4622 | 492.0 | 248.7 | 166.1 | 306.5 | 405.0 | 609.7 | 1552.4 |
| Age 17 Bridge - Books 61-67 | 7052 | 335.9 | 169.5 | 95.1 | 203.8 | 281.2 | 447.6 | 1075.3 |
| Age 17 Bridge - Book 90 | 1786 | 1017.4 | 484.3 | 332.3 | 633.7 | 854.3 | 1300.9 | 2328.5 |

* Number inciudes 509813 -year-old students who were assessed as part of the International Assessment of Mathematics and Science (see A World of Differences. An International Assessment of Mathematics and Science. Technical Report [King, Bertrand, \& Dupuls, 1989]).

Table B-2
Distribution of School Nonresponse Adjustments - Assessed Studenis

| Sample | No. of Cases | Mean | Standard Deviation | Min. | $\begin{gathered} 25 \mathrm{th} \\ \text { Percentile } \end{gathered}$ | Median | $\begin{gathered} 75 \mathrm{th}_{1} \\ \text { Percent:le } \end{gathered}$ | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade 4/Age 9 Main | 20312 | 1.108 | 0.289 | 0.796 | 1.000 | 1.000 | 1.000 | 3.174 |
| Grade 8/Age 13 Main | 36699* | 1.150 | 0.318 | 0.836 | 1.000 | 1.000 | 1.107 | 2.847 |
| Grade 12/Age 17 Main | 32710 | 1.222 | 0.450 | 0.872 | 1.000 | 1.000 | 1.260 | 3.045 |
| Age 9 Bridge - Books 5l-56 | 5188 | 1.055 | 0.172 | 1.000 | 1.000 | 1.000 | 1.000 | 2.000 |
| Age 9 Bridge - Book 91 | 1274 | 1.047 | 0.152 | 1.000 | 1.000 | 1.000 | 1.000 | 2.007 |
| Age 9 Bridge - Book 92 | 1240 | 1.055 | 0.167 | 1.000 | 1.000 | 1.000 | 1.000 | 2.007 |
| Age 9 Bridge - Book 93 | 1197 | 1.057 | 0.174 | 1.000 | 1.000 | 1.000 | 1.000 | 2.007 |
| Age 13 Bridge - Books 5l-56 | 550 | 1.002 | 0.097 | 0.760 | 1.000 | 1.000 | 1.000 | 1.890 |
| Age 13 Bridge - Book 90 | 1938 | 1.008 | 0.117 | 0.775 | 1.000 | 1.000 | 1.000 | 1.913 |
| Age 13 Bridge - Book 91 | 1405 | 1.006 | 0.106 | 0.775 | 1.000 | 1.000 | 1.000 | 1.913 |
| Age 13 Bridge - Book 92 | 1281 | 1.000 | 0.065 | 0.775 | 1.000 | 1.000 | 1.000 | 1.913 |
| Age 13 Bridge - Books 93 | 1256 | 1.00 s | 0.107 | 0.775 | 1.000 | 1.000 | 1.000 | 1.913 |
| Age 17 Bridge - Books 51-56 | 4622 | 1.154 | 0.331 | 0.990 | 1.000 | 1.000 | 1.005 | 2.000 |
| Age 17 Bridge - Books 61-67 | 7052 | 1.148 | 0.325 | 0.990 | 1.000 | 1.000 | 1.005 | 2.000 |
| Age 17 Bridge - Book 90 | 1786 | 1.159 | 0.331 | 0.990 | 1.000 | 1.000 | 1.930 | 2.012 |

* Number includes 5,098 13-year-old students who were assessed as par: of the Interriational Assessment of Mathematics and Science (see A World of Differences. An International Assessment of Mathematics and Science. Technical Report (King, Bertrand, \& Dupuis, 1989]).

Table B-3
Distribution oE Session Nonresprense Adjustme،is - Assessed Students

| Sample | No. of Cases | Mean | Standard Deviation | Min. | $\begin{gathered} 25 \mathrm{th} \\ \text { Percent:1le } \end{gathered}$ | Median | 75 c <br> Percens | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade 4/Age 9 Main | N/A |  |  |  |  |  |  |  |
| Grade 8/Age 13 Main | N/A |  |  |  |  |  |  |  |
| Grade 12/Age 17 Main | N/A |  |  |  |  |  |  |  |
| Age 9 Bridge - Books 5l-56 | 5188 | 1.039 | 0142 | 1.000 | 1200 | 1.000 | 1.000 | 2.000 |
| Age 9 Bridge - Book 91 | 1274 | 1.037 | 0.153 | 1.000 | 1.000 | 1.000 | 1.000 | 1.997 |
| Age 9 Bridge - Book 92 | 1240 | 1.039 | 0.154 | 1.000 | 1.000 | 1.000 | 1.000 | 1.997 |
| Age 9 Bridge - Book 93 | 1197 | 1.062 | 0.210 | 1.000 | 1.000 | 1.000 | 1.000 | 2.453 |
| Age 13 Bridge - Books 51-56 | 550 | 1.006 | 0.050 | 1.050 | 1.000 | 1.000 | 1.000 | 1.434 |
| Age 13 Bridge - Book 90 | 1938 | 1.018 | 0.161 | 1.000 | 1.000 | 1.000 | 1.000 | 2.961 |
| Age 13 Bridge - Book 91 | 1405 | 0.982 | 0.099 | 0.411 | 1.000 | 1.000 | 1.000 | 1.000 |
| Age 13 Bridge - Book 92 | 1281 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Age 13 Bridge - Books 93 | 1256 | 0.990 | 0.151 | 0.464 | 1.000 | 1.000 | 1.000 | 2.647 |
| Age 17 Bridge - Books 5l-56 | 4622 | 1.093 | n. 266 | 1.000 | 1.000 | 1.000 | 1.000 | 2.504 |
| Age 17 Bridge - Books 61-67 | 7052 | 1.068 | 0.209 | 1.000 | 1.000 | 1.000 | 1.000 | 2.000 |
| Age 17 Bridge - Book 90 | 1786 | 1.098 | 0.260 | 1.000 | 1.000 | 1.000 | 1.000 | 2.131 |

## Table B-4

Distribution of Age-Only-Eligible Students Nonresporise Adjustments - assessed Students

| Sample | No. of Cases | Meaz | Standard <br> Deviation | Min. | $\begin{gathered} \text { 25th } \\ \text { Percentile } \end{gathered}$ | Median | $\begin{gathered} 75 \text { th } \\ \text { Percentile } \end{gathered}$ | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade 4/Age 9 Main | 23012 | 1.010 | 0.087 | 1.000 | 1.000 | 1.000 | 1.000 | 2.314 |
| Grade 8/Age 13 Main | 36699* | 1.097 | 0.097 | 1.000 | 1.000 | 1.000 | 1.000 | 3.068 |
| Grade 12/Age 17 Main | 32710 | 1.011 | 0.160 | 1.000 | 1.000 | 1.000 | 1.000 | 4.656 |
| Age 9 Bridge - Books 51-56 | 5188 | 1.014 | 0.110 | 1.000 | 1.000 | 1.000 | 1.000 | 2.273 |
| Age 9 Bridge - Book 91 | 1274 | 1.008 | 0.087 | 1.000 | 1.000 | 1.000 | 1.000 | 2.248 |
| Age 9 Bridge - Book 92 | 1240 | 1.010 | 0.081 | 1.000 | 1.000 | 1.000 | 1.000 | 1.780 |
| Age 9 Bridge - Book 93 | 1197 | 1.022 | 0.120 | 1.000 | 1.000 | 1.000 | 1.000 | 2.273 |
| Age 13 Bridge - Books 51-56 | 5500 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Age 13 Bridge - Book 90 | 1938 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Age 13 Bridge - Book 91 | 1405 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Age 13 Bridge - Book 92 | 1281 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Age 13 Bridge - Books 93 | 1256 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Age 17 Bridge - Books 51-56 | 4622 | 1.003 | 0.065 | 1.000 | 1.000 | 1.000 | 1.000 | 2.270 |
| Age 17 Bridge - Books 61-67 | 7052 | 1.005 | 0.081 | 1.000 | 1.000 | 1.000 | 1.000 | 2.270 |
| Age 17 Bridge - Book 90 | 1785 | 1.006 | 0.080 | 1.000 | 1.000 | 1.000 | 1.000 | 2.270 |

[^75]Table B-5
Distribution of Student Nonresponse Adjustments - Assessed Students

| Sample | No. of Cases | Mean | Standard Deviation | Min. | $\begin{gathered} 25 \mathrm{th} \\ \text { Percentile } \end{gathered}$ | Median | $\begin{gathered} \text { 75th } \\ \text { Percentile } \end{gathered}$ | Max, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade 4/Age 9 Main | 23012 | 1.080 | 0.062 | 1.000 | 1.044 | 1.063 | 1.101 | 2.121 |
| Grade 8/Age 13 Main | 36699* | 1.133 | 0.095 | 1.000 | 1.073 | 1.112 | 1.159 | 1.857 |
| Grade 12/Age 17 Main | 32710 | J. 265 | 0.198 | 1.000 | 1.135 | 1.216 | 1.320 | 2.672 |
| Age 9 Bridge - Books 51-56 | 5188 | 1.077 | 0.053 | 1.000 | 1.037 | 1.067 | 1.108 | 1.265 |
| Age 9 Bridge - Book 91 | 1274 | 1.090 | 0.069 | 1.000 | 1.039 | 1.077 | 1.138 | 1.258 |
| Age 9 Bridge - Book 92 | 1240 | 1.088 | 0.091 | 1.000 | 1.021 | 1.15 | 1.112 | 1.373 |
| Age 9 Bridge - Book 93 | 1197 | 1.081 | 0.092 | 1.000 | 1.019 | 1.073 | 1.102 | 1.667 |
| Age 13 Bri ige - Books 5l-56 | 5500 | 1.113 | 0.16 | 1.000 | 1.052 | 1.091 | 1.140 | 2.333 |
| Age 13 Bridge - Book 90 | 1938 | 1.1 .21 | 0.1 .47 | 1.000 | 1.048 | 1.102 | 1.152 | 3.667 |
| Age 13 Bridge - Book 91 | 1405 | 1.108 | 0.117 | 1.000 | 1.046 | 1.068 | 1.138 | 1.904 |
| Age 13 Bridge - Book 92 | 1281 | 1.095 | 0.107 | 1.000 | 1.030 | 1.065 | 1.124 | 2.000 |
| Age 13 Bridge - Books 93 | 1256 | 1.121 | 0.137 | 1.000 | 1.053 | 1.097 | 1.161 | 2.200 |
| Age 17 Bridge - Books 5l-56 | 4622 | 1.277 | 0.241 | 1.055 | 1.167 | 1.223 | 1.296 | 2.749 |
| Age 17 Bridge - Books 61-67 | 7052 | 1.268 | 0.262 | 1.045 | 1.149 | 1.205 | 1.267 | 3.14! |
| Age 17 Bridge - Book 90 | 1786 | 1.271 | 0.210 | 1.026 | 1.166 | 1.232 | 1.311 | 2.078 |

[^76]Table B-6
Distribution of Trimming Factors - Assessed Students

| Sample | No. of Cases | Mean | Standard <br> Deviation | Min. | $\begin{gathered} 25 \text { th } \\ \text { Percentile } \end{gathered}$ | Median | $\begin{gathered} \text { 75th } \\ \text { Percentile } \end{gathered}$ | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade 4/Age 9 Main | 23012 | 0.995 | 0.026 | $0.7 こ 9$ | 1.000 | 1.000 | 1.000 | 1.000 |
| Grade 8/Age 13 Main | 36699* | 0.998 | 0.022 | 0.725 | 1.000 | 1.000 | 1.000 | 1.000 |
| Grade 12/Age 17 Main | 32710 | 0.998 | 0.021 | 0.760 | 1.000 | 1.000 | 1.000 | 1.000 |
| Age 9 Bridge - Books 51-56 | 5188 | 0.995 | 0.046 | 0.560 | 1.000 | 1.000 | 1.000 | 1.000 |
| Age 9 Bridge - Book 91 | 1274 | 0.993 | 0.032 | 0.809 | 1.000 | 1.000 | 1.000 | 1.000 |
| Age 9 Bridge - Book 92 | 1240 | 0.996 | 0.026 | 0.759 | 1.000 | 1.000 | 1.000 | 1.000 |
| Age 9 Bridge - Book 93 | 1197 | 0.991 | C. 054 | 0.556 | 1.000 | 1.000 | 1.000 | 1.000 |
| Age 13 Bridge - Books 51-56 | 5500 | 1.000 | 0.004 | 0.970 | 1.000 | 1.000 | 1.000 | 1.000 |
| Age 13 Bridge - Book 90 | 1938 | 0.998 | 0.012 | 0.901 | 1.000 | 1.000 | 1.000 | 1.000 |
| Age 13 Bridge - Book 91 | 1405 | 0.999 | 0.037 | 0.953 | 1.000 | 1.000 | 1.000 | 1.000 |
| Age 13 Bridge - Book 92 | 1281 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| Age 13 Bridge - Books 93 | 1256 | 0.996 | 0.024 | 0.847 | 1.000 | 1.000 | 1.000 | 1.000 |
| Age 17 Bridge - Buoks 51-56 | 4622 | 0.991 | 0.053 | 0.91 | 1.000 | 1.000 | 1.000 | 1.000 |
| Age 17 Bridge - Books 61-67 | 7052 | 0.992 | 0.050 | 0.654 | 1.000 | 1.000 | 1.000 | 1.000 |
| Age 17 Bridge - Bcok 90 | 1786 | 0.993 | 0.040 | 0.691 | 1.000 | 1.000 | 1.000 | 1.000 |

* Number includes $5,{ }^{\cdots \cdots}$ 13-year-old students who were assessed as part of che International Assessment of Mathematics and Science (suc A World of Differences: An International Assessment of Mathematics and Science. Technical Report [King, Bertrand, \& Dupuis, 1989]).

Table B-7
Distribution of Poststratification Factors - Assessed Students

| Sample | No. of Cases | Mean | $S$ =andard Deviacion | Min. | $\begin{gathered} 25 \mathrm{th} \\ \text { Percentile } \end{gathered}$ | Median | 75th <br> Percentile | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade 4/Age 9 Main | 23012 | 1.037 | 0.228 | 0.618 | 0.862 | 1.146 | 1.146 | 1.435 |
| Orade 4/Age 9 Main Winter | 12293 | 0.960 | 0.244 | 0.529 | 0.774 | 0.995 | 1.12' | 1.857 |
| Grade 4/Age 9 Main Spring | 10719 | 1.127 | 0.253 | 0.667 | 0.915 | 1.174 | 1.290 | 1.680 |
| Grade 8/Age 13 Main | 36699* | 1.046 | 0.165 | 0.715 | 0.939 | 1.051 | 1.147 | 1.381 |
| Grade 8/Age 13 Main Winter | 19131 | 1.007 | 0.271 | 0.664 | 0.833 | 0.924 | 1.146 | 1.680 |
| Grade 8/Age 13 Main Spring | 17568 | 1.083 | 0.224 | 0.752 | 0.958 | 1.027 | 1.173 | 1.556 |
| Grade 12/Age 17 Main | 32710 | 1.120 | 0.116 | 0.909 | 1.009 | 1.110 | 1.243 | 1.380 |
| Grade 12/Age 17 Main Winter | 18542 | 1.086 | 0.166 | 0.747 | 0.955 | 1.067 | 1.237 | 1.272 |
| Grade 12/Age 17 Main Spring | 14168 | 1.152 | 0.118 | 0.943 | 1.061 | 1.156 | 1.251 | 1.591 |
| Age 9 Bridge - Books 5l-56 | 5188 | 1.010 | 0.273 | 0.544 | 0.858 | 1.072 | 1.159 | 1.984 |
| Age 9 Bridge - Book 91 | 1274 | 1.025 | 0.190 | 0.656 | 0.992 | 1.048 | 1.118 | 1.262 |
| Age 9 Bridge - Book 92 | 1240 | 1.012 | 0.250 | 0.598 | 0.818 | 1.093 | 1.212 | 1.330 |
| Age 9 Bridge - Book 93 | 1197 | 1.084 | 0.236 | 0.577 | 1.024 | 1.051 | 1.127 | -. 331 |
| Age 13 Bridge - Books 51-56 | 5500 | 1.072 | 0.167 | 0.926 | 0.970 | 1.030 | 1.110 | 1.548 |
| Age 13 Bridge - Book 90 | 1938 | 1.050 | 0.124 | 0.8 ? | 0.939 | 1.061 | 1.227 | 1.252 |
| Age 13 Bridge - Book 91 | 1405 | ?. 078 | 0.183 | 0.785 | 0.942 | 1.054 | 1.236 | 1.340 |
| Age 13 Bridge - Book 92 | 1281 | 1.170 | 0.177 | 0.842 | 0.926 | 1.043 | 1.267 | 1.310 |
| Age 13 Bridge - Books 93 | $1<56$ | 1.281 | 0.176 | 0.974 | 1.044 | 1.069 | 1.329 | 1.596 |
| Age 17 Bridge - Books 51-56 | 462? | 1.259 | 0.376 | 0.939 | 0.997 | 1.098 | 1.327 | 2.210 |
| Age 17 Bridge - Books 51-67 | 7052 | 1.211 | 0.376 | 0.871 | 1.077 | 1.108 | 1.316 | 2.985 |
| Age 17 Bridge - Book 90 | 1786 | 0.993 | 0.186 | 0.985 | 1.087 | 1.195 | 1.282 | 1.625 |

[^77]Table B-8
Distribution of Aggregate Adjustments to Base Weights - Assessed Students

| Sample | No. of Cases | Mean | Standard <br> Deviation | Min. | $\begin{gathered} 25 \mathrm{th} \\ \text { Percentile } \end{gathered}$ | Median | $\begin{gathered} 75 \mathrm{th} \\ \text { Percentile } \\ \hline \end{gathered}$ | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade 4/Age 9 Mair | 23012 | 1.245 | 0.451 | 0.510 | 1.012 | 1.189 | 1.393 | 4.702 |
| Grade 8/Age 13 Main | 36699* | 1.367 | 0.467 | 0.542 | 1.109 | 1.240 | 1.510 | 4.757 |
| Grade 12/Age 17 Main | 32710 | 1.744 | 0.768 | 0.970 | 1.322 | 1.447 | 1.793 | 8.106 |
| Age 9 Bridge - Books 5l-56 | 5188 | 1.216 | 0.401 | 320 | 0.957 | 1.184 | 1.347 | $3.1{ }^{1} 2$ |
| Age 9 Bridge - Book 91 | 1274 | 1.191 | 0.336 | 84 | 1.049 | 1.167 | 1.320 | 2.429 |
| Age 9 Bridge - Book 92 | 1240 | '. 222 | 0.393 | 0.476 | 1.026 | 1.213 | 1.389 | 2.947 |
| Age 9 Bridge - Book 93 | 1197 | 1.230 | 0.437 | 0.377 | 1.052 | 1.161 | 1.403 | 3.645 |
| Age 13 Bridge - Books 51-56 | 5500 | 1.220 | 0.292 | 0.728 | 1.033 | 1.127 | 1.300 | 3.772 |
| Age 13 Bridge Book 90 | 1938 | 1.230 | 0.315 | 0.802 | 1.069 | 1.186 | 1.315 | 4.178 |
| Age 13 Bridge - Book 91 | 1405 | 1.145 | 0.275 | 0.414 | 0.969 | 1.112 | 1.293 | 2.354 |
| Age 13 Bridge - Book 92 | 1281 | 1.178 | 0.224 | 0.830 | 0.980 | i. 189 | 1.332 | 2.229 |
| Age 13 Bridge - Books 93 | 1256 | 1.305 | 0.404 | 0.496 | 1.089 | 1.257 | 1.450 | 3.685 |
| Age 17 Bridge - Books 51-56 | 4622 | 2.027 | 0.956 | 1.021 | 1.266 | 1.639 | 2.554 | 6.708 |
| Age 17 Bridge - Books 61-67 | 7052 | 1.951 | 0.993 | 0.930 | 1.274 | 1.608 | 2.334 | 9.134 |
| Age 17 Bridge - Book 90 | 1786 | 1.937 | 0.778 | 1.110 | 1.394 | 1.592 | 2.286 | 5.495 |

* Number includes 5,09813 -year-old students who were assessed as part of the International Assessment of Mathematics and Science (see A World of Differences. An International Assessment of Mathematics and Scıence. Technical Report [King, Bertrand, \& Dupuis, 1989]).

Table B-9
Distribution of Final Student Weight - Assessed Students

| S: le | No. of Cases | Mean | Standard Deviation | Min. | $\begin{gathered} 25 \mathrm{th} \\ \text { Percentile } \end{gathered}$ | Median | $\begin{gathered} 75 \mathrm{th} \\ \text { Percentile } \end{gathered}$ | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade 4/Age 9 Main | 23012 | 194.5 | 100.6 | 37.6 | 122.7 | 170.0 | 261.2 | 1517.4 |
| Grade 8/Age 13 Main | 36699* | 118.2 | 55.1 | 17.7 | 74.8 | 104.9 | 149.7 | 1449.6 |
| Grade 12/Age 17 Main | 32710 | 123.0 | 71.4 | 31.6 | 68.0 | 114.2 | 152.5 | 840.0 |
| Age 9 Bridge - Books 5l-56 | 5188 | 863.0 | 518.6 | 134.7 | 462.8 | 727.8 | 1155.3 | 6584.2 |
| Age 9 Bridge - Book 91 | 1274 | 2520.6 | 1492.7 | 242.6 | 1369.7 | 2222.9 | 3355.1 | 9311.3 |
| Age 9 Bridge - Book 92 | 1240 | 2586.7 | 1589.8 | 227.8 | 1381.4 | 2163.3 | 3497.3 | 7898.9 |
| Age 9 Bridge - Book 93 | 1197 | 2681.8 | 1654.8 | 470.7 | 1444.3 | 2256.7 | 3788.1 | 15842.6 |
| Age 13 Bridge - Books 51-56 | 5500 | 784.0 | 349.3 | 174.6 | 549.7 | 740.0 | 955.1 | 4352.6 |
| Age 13 Bridge - Book 90 | 1938 | 1569.6 | 610.4 | 326.4 | 1176.3 | 1484.6 | 1961.7 | 6029.8 |
| Age 13 Bridge - Book 91 | 1405 | 2170.4 | 767.0 | 685.2 | 1612.6 | 2163.4 | 2688.5 | 4436.1 |
| Age 13 Bridge - Book 92 | 1281 | 2373.0 | 1017.8 | 587.5 | 1859.2 | 2265.3 | 2797.9 | 12106.2 |
| Age 13 Bridge - Books 93 | 1256 | 2443.2 | 1205.5 | 630.3 | 1821.3 | 2328.9 | 2994.6 | 15380.3 |
| Age 17 Bridge - Books 51-56 | 4622 | 971.0 | 674.2 | 268.5 | 536.4 | 802.8 | 1152.6 | 5870.1 |
| Age 17 Bridge - Books 61-67 | 7052 | 636.4 | 463.8 | 125.6 | 349.2 | 531.0 | 744.1 | 612 i .6 |
| Age 17 Bridge - Brok 90 | 1786 | 1925.8 | 1226.2 | 612.4 | 1106.6 | 1566.0 | 2251.3 | 8733.1 |

[^78]Table B-10
Distributions of Weight Components for Excluded Studen:s

| Comporient/Sample | No. of Cases | Mean | Standard <br> Deviation | $\underline{M 2 n}$ | $\begin{aligned} & \text { 25th } \\ & \text { Percentiles } \end{aligned}$ | Median | $\begin{gathered} 75 \mathrm{th} \\ \text { Percentile } \end{gathered}$ | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Weight |  |  |  |  |  |  |  |  |
| Grade 4/Age 9 | 2254 | 83.8 | 45.8 | 25.6 | 58.3 | 66.2 | 108.3 | 292.7 |
| Grade 8/Age 13 | 3064 | 65.5 | 36.0 | 12.8 | 43.0 | 59.7 | 82.0 | 434.5 |
| Grade 11/Age 17 | 538 | 174.7 | 83.8 | 78.7 | 107.2 | 140.6 | 228.7 | 388.1 |
| Grade 12/Age 17 | 1527 | 70.5 | 51.3 | 25.0 | 41.8 | 50.3 | 98.1 | 3309 |
|  |  |  |  |  |  |  |  |  |
| Grade 4/Age 9 | 2254 | 1.070 | 0.216 | 0.796 | 1.000 | 1.300 | 1.000 | 3.174 |
| Grade 8/Age 13 | 3064 | 1.119 | 0.295 | 0.760 | 1.000 | 1.000 | 1.058 | 2.847 |
| Grade 11/Age 17 | 538 | 1.158 | 0.338 | 0.990 | 1.000 | 1.000 | 1.078 | 2.000 |
| Grade 12/Age 17 | 1527 | 1.212 | 0.393 | $0.87{ }^{\circ}$ | 1.000 | 1.000 | 1.260 | 3.045 |
| Session Nonresponse Adjustment |  |  |  |  |  |  |  |  |
| Gras'e 4/Age 9 | 2254 | 1.048 | 0.153 | 1.000 | 1.000 | 1.000 | 1.600 | 2.000 |
| Grade 8/Age 13 | 3064 | 1.003 | 0.064 | 1.000 | 1.000 | 1.000 | 1.000 | 1.513 |
| Grade 11/Age 17 | 538 | 1.046 | 0.158 | 1.000 | 1.000 | 1.000 | 1.000 | 2.000 |
| Grade 12/Age 17 | N/A |  |  |  |  |  |  |  |
| Age-only Eligible Nonresponse Adjustment |  |  |  |  |  |  |  |  |
| Grade 4/Age 9 | 2254 | 1.097 | 0.066 | 1.000 | 1.000 | 1.000 | 1.000 | 2.039 |
| Grade 8/Age 13 | 3064 | 1006 | 0.089 | 1.000 | 1.000 | 1.000 | 1.000 | 3.068 |
| Grade 11/Age 17 | 538 | 1.009 | 0.109 | 1.000 | 1.000 | 1.000 | 1.000 | 2.270 |
| Grade 12/Age 17 | 1527 | 1.026 | 0.179 | 1.000 | 1.000 | 1.000 | 1.000 | 4.656 |
| Student Nonresponse Adjustmert |  |  |  |  |  |  |  |  |
| Grade 4/Age 9 | 225'\% | 1.076 | 0.168 | 1.000 | 1.000 | 1.004 | 1.040 | 1.882 |
| Grade 8/Age 13 | 3064 | 1.064 | 0.188 | 1.000 | 1.000 | $\div .000$ | 1.041 | 3.000 |
| Grade 11/Age 17 | 538 | 1.06 | 0.114 | 1.000 | 1.000 | 1.000 | 1.056 | 1.444 |
| Grade 12/Age 17 | 1527 | 1.038 | 0.117 | 1.000 | 1.000 | 1.000 | 1.032 | 1.807 |

Table B-10 (continued)
Distributions of Weight Components for Excluded Students

| Component/Sarple | No. of Cases | Moan | Standard <br> Deviation | Min. | $\begin{gathered} 25 \text { th } \\ \text { Percentile } \end{gathered}$ | Median | $\begin{gathered} 75 \text { th } \\ \text { Percentile } \end{gathered}$ | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Trimming Factor |  |  |  |  |  |  |  |  |
| Grade 4/Age 9 | 2253 | 0.936 | 0.179 | 0.301 | 1.000 | 1.000 | 1.000 | 1.000 |
| Grade 8/Age 13 | 3064 | 0.988 | 0.051 | 0.622 | 1.000 | 1.000 | 1.000 | 1.000 |
| Grade 11/Age 17 | 538 | 0.961 | 0.143 | 0.363 | 1.000 | 1.000 | 1.000 | 1.000 |
| Grade 12/Age 17 | 1527 | 0.972 | 0.131 | 0.180 | 1.000 | 1.000 | 1.000 | 1.000 |
| Poststratifization Factor |  |  |  |  |  |  |  |  |
| Grade 4/Age 9 | 2253 | 0.981 | 0.271 | 0.618 | 0.696 | 1.069 | 1.164 | 1.447 |
| Grade 8/Age 13 | 3064 | 1.062 | 0.186 | 0.713 | 0.939 | 1.082 | 1.222 | 1.377 |
| Grade 11/Age 17 | 538 | 1.509 | 0.401 | 0.912 | 1.104 | 1.548 | 1.805 | 2.465 |
| Grade 12/Age 17 | 1527 | 1.109 | 0.130 | 0.909 | 0.991 | 1.110 | 1.209 | 1.380 |
| Combined Weighted Adjustments |  |  |  |  |  |  |  |  |
| Grade 4/Age 9 | 2253 | 1.117 | 0.528 | 0.314 | 0.636 | 1.107 | 1.349 | 4.282 |
| Grade 8/Age 13 | 3064 | 1.256 | 0.461 | 0.596 | 0.958 | 1.184 | 1.31 ? | 3.933 |
| Grade 11/Age 17 | 538 | 1.814 | 0.766 | 0.912 | 1.280 | 1.692 | 2.019 | 6547 |
| Grade 12/Age 17 | 1527 | 1.365 | 0.526 | 0.223 | 1.091 | 1.235 | 1.509 | 5.921 |
| Final Student Weight |  |  |  |  |  |  |  |  |
| Grade 4/Age 9 | 2253 | 102.9 | 78.4 | 18.3 | 45.1 | 81.3 | 139.1 | 566.4 |
| Grade 8/Age 13 | 3064 | 80.3 | 49.5 | 9.1 | 52.0 | 70.4 | 96.4 | 641.2 |
| Grate 11/Age 17 | 538 | 318.9 | 231.3 | 86.9 | 183.2 | 246.5 | 384.8 | 1889 - |
| Grade 12/Age 17 | 1527 | 88.0 | 47.8 | 23.7 | 51.6 | 71.6 | 115.3 | 333. |

Table B-11
Distributions of Weight Components for Teacher Data Files

| Component/Sample | No. of Cases | Mean | Standard <br> Deviation | Min. | $\begin{gathered} 25 \mathrm{th} \\ \text { Percentile } \\ \hline \end{gathered}$ | Median | $\begin{gathered} \text { 75th } \\ \text { Percencile } \end{gathered}$ | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Student Nonresponse Adjusted Student: Weight |  |  |  |  |  |  |  |  |
| Grade 4 | 3901 | 790.0 | 403.2 | 251.7 | $4: 3.9$ | 784.3 | 944.6 | 3004.2 |
| Grade 8 | 3570 | 869.8 | 522.1 | 157.0 | 340.7 | 762.4 | 1039.1 | 5344.7 |
|  |  |  |  |  |  |  |  |  |
| Grade 4 | 3901 | 1.138 | 0.227 | 0.946 | 1.008 | 1.042 | 1.158 | 2.319 |
| Grade 8 | 3570 | 1.174 | 0.255 | 0.986 | 1.026 | 1.095 | 1.219 | 3.359 |
|  |  |  |  |  |  |  |  |  |
| Trimming actor |  |  |  |  |  |  |  |  |
| Grade 4 | 3901 | C. 994 | 0.036 | 0.715 | 1.000 | 1.000 | 1.000 | 1.000 |
| Grade 8 | 3570 | 0.997 | 0.023 | 0.757 | 1.000 | 1.000 | 1.000 | 1.000 |
| Poststratification Factor |  |  |  |  |  |  |  |  |
| Grade 4 | 3901 | 1.050 | 0.194 | 0.731 | 1.056 | 1.067 | 1.212 | 1.415 |
| Grade 8 | 3570 | 1.021 | 0.111 | 0.844 | 0.967 | 0.901 | 1.133 | 1.170 |
| Final Teacher Data Student Weight |  |  |  |  |  |  |  |  |
| Grade 4 | 3901 | 835.5 | 467.0 | 184.1 | 499.0 | 752.1 | 015.4 | 3283.0 |
| Grade 8 | 3570 | 873.1 | 488.3 | 155.5 | 557.3 | 772.3 | 1089.6 | 5241.0 |

## APPENDIX C

Contrast Codings and Estima ted Effects for 1988 NAEP Conditioning Varis ${ }^{3}$,

541

## Appendix C

## CONTRAST CODINGS AND ESTIMATED EFFECTS FOR 1988 NAEP CONDITIONING VARIABLES

This appendix contains information about the conditioning variables 'sed in the construction of plausible values for che 1988 assessme..ts of reading, writing, civics, U.S. history, geography, mathematics, and science.

The first part of the appendix gives the contrast codings for each set of conditioning variables used in 1988. Codings for the common conditioning variajles, which were used for cross-sectional studies in reading, writing, civics, U.S. history, ald geography, are given in Table C-l. In addition, subject-specific conditioning variabies used in each cross-sectional study are given for reading (Table C-2), writing (C-4), civics (C-6), U.S. history (C-8), and geography (C-9). The complete set of conditioning variables for each subject area in which plausible values were constructed for trend studi s are given for reading (Table C-3), writing (C-5), civics (C-7), mathematics (C-10), and science (C-1l).

The second part of the appendix shows the estimated effects, by subject area, sample(s), and age class, for the conditioning variables used in crossstctional studies for reading (Tables c-12 to $\mathrm{C}-18$ ), civics ( $\mathrm{C}-22$ to $\mathrm{C}-27$ ), U.S. history ( $\mathrm{C}-34$ to $\mathrm{C}-36$ ), and geography ( $\mathrm{C}-37$ ) and for the conditioning variables used in trend studies for reading ( $C-19$ to $C-21$ ), civics ( $C-28$ to $\mathrm{C}-33$ ), mathematics ( $\mathrm{C}-38$ to $\mathrm{C}-40$ ), and science ( $\mathrm{C}-41$ to $\mathrm{C}-43$ ).

Note that all effect estimates are in the metrics used in the original calibration of the scale. The transformations needed to repres?nt these effects in terms of the metric of the final reporting scales appear in the chapters that describe the scaling of each subject area. Note also that certain conditioning variables do not have effect estimates. This is because those variables are approximate linear combinations of the other conditionirg variables.

Some conditioning variables were constructed by rezoding the values of a data variable or by combi.ing and recoding data frum two or more variables. A descriptica of how these conditioning variables were derived for each subject area is prorided in Appendix D.

Tables C-1 through C-11

## CONTRAST CODINGS FOR 1988 NAEP CONDITIONING VARIABLES

## Table C-1

Contràst Codings for 1988 Common Conditioning Variables


[^79]Table C-l (continued)
Contrast Codings for 1988 Common Conditioning Variables

| Conditioning Variable | $\begin{gathered} \text { Ag- } \\ \text { Classes } \end{gathered}$ | Variablr Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: |
| TV Watching | All | 1 None | 000 |
|  |  | 2 One hour or less per day | 101 |
|  |  | 3 Two hours | 204 |
|  |  | 4 Three hours | 309 |
|  |  | 5 Four hours | 416 |
|  |  | 6 Five hours | 525 |
|  |  | 7 Six or more hours per day | 636 |
|  |  | BLK Missing | 309 |
| Home Language Minority | All | 1 Never | 0 |
| (How often do people in |  | 2,3 Sometimes, Always | 1 |
| your home speak a languag other than English) |  | BLK liissing | 0 |
| Homework | 9 | 1 Don't have any | 100 |
|  |  | 2 Don't do any | 010 |
|  |  | $31 / 2$ hour | 011 |
|  |  | 4 One hour | 012 |
|  |  | $5>$ One hour | 013 |
|  |  | BLK Missing | 000 |
|  | 13, 17 | 1 Don't have any | 100 |
|  |  | 2 Don't do any | 010 |
|  |  | $31 / 2$ hour | 011 |
|  |  | 4 One hour | 012 |
|  |  | 5 Two hours | 013 |
|  |  | $6>$ Two hours | 014 |
|  |  | BLK Missing | 000 |
| Percent in Lunch Program | All | 0 | $\overline{000} 0$ |
|  |  | 1 | 0010 |
|  |  | 2 | 0020 |
|  |  | - | . |
|  |  | 99 | 0990 |
|  |  | 100 | 1000 |
|  |  | BLK | 0001 |

[^80]Table C-1 (continued)
Contrast Codings for 1988 Common Conditioning Variables

| $\begin{gathered} \text { Conditioning } \\ \text { Variable } \end{gathered}$ | $\begin{gathered} \text { Age } \\ \text { Classes } \end{gathered}$ | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: |
| Percent White in School | All | 0-49 White Minority | 10 |
|  |  | 50-79 Integrated | 01 |
|  |  | 80-100 Predominantly White | 00 |
|  |  | BLK Missing | 00 |
| Age by Grade | All | 1 < Modal Age, Modal Grade | 0000 |
|  |  | 2 Modal Age, < Modal Grade | 1000 |
|  |  | 3 Modal Age, Modal Grade, and |  |
|  |  | Missing | 0100 |
|  |  | 4 Modal Age, > Modal Grade** | 0010 |
|  |  | $5>$ Modal Age, Modal Grade |  |
| Public v. Private Schools | All | 1 Public | 0 |
|  |  | 2 Private | 1 |
|  |  | 3 Catholic | 1 |
|  |  | 4 Bureau of Indian Affairs | 1 |
|  |  | 5 Dept. of Defense | 1 |
|  |  | BLK Missing | 1 |
| Sumeone at Home Helps with Homework | $\hat{n}^{+1}$ | 1 Almost Every Day | 1 |
|  |  | 2 Once or Twice a Week | 1 |
|  |  | 3 Once or Twice a Month | 0 |
|  |  | 4 Never | 0 |
|  |  | 5 Don't Have Homework | 0 |
|  |  | BLK Missing | 0 |
| Went to Preschool | 9 | 1 Yes | 1 |
|  |  | 2 No | 0 |
|  |  | 3 I Don't Know | 0 |
|  |  | BLK Missing | 0 |
| Singie/Multiple Parent at Home | All | 1 Yes to Father and Mother at Home | 1 |
|  |  | 2 Any Other Responses | 0 |
|  |  | BLK Missing | 0 |
| * Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as ons contrast. |  |  |  |
|  |  |  |  |  |

Table C-1 (continued)
Contrast Codings for 1988 Common Conditioning Variables

| Conditioning Variable | $\begin{gathered} \text { Age } \\ \text { Classes } \end{gathered}$ | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: |
| Mother at Home | All | 1 Yes | 1 |
| (Does your mother |  | 2 No | 0 |
| live at home) |  | BLK Missing | 0 |
| Mother Works Outside of Home | 9 | 1 Yes | 1 |
|  |  | 2 No | 0 |
|  |  | 3 Mother Not at Home | 0 |
|  |  | BLK Missing | 0 |
|  | 13, 17 | 1 Yes, Full-Time | 1 |
|  |  | 2 Yes, Part-Time | 1 |
|  |  | 3 No | 0 |
|  |  | 4 Mother Not at Home | 0 |
|  |  | BLK Missing | 0 |
| Grownup at Home Right After School | 9 | 1 Yes | 1 |
|  |  | 0 No | 0 |
|  |  | BLK Missing | 0 |
| Pages a Day Read for School and Homework | All | 1 More Than 20 | 11 |
|  |  | $216-20$ | 11 |
|  |  | 311-15 | 11 |
|  |  | $\begin{array}{lll}4 & 6 & 10\end{array}$ | 10 |
|  |  | 55 or Fewer | 00 |
|  |  | BLK Missing | 00 |
| Do You Expect to Graduate from High School | 13 | 1 Yes | 1 |
|  |  | 2 No | 0 |
|  |  | BLK Missing | 0 |
| Days of School Missed Last Month | 13,17 | 1 None | 1 |
|  |  | 21 or 2 Days | 1 |
|  |  | 33 or 4 Days | 0 |
|  |  | 45 to 10 Days | 0 |
|  |  | 5 More chan 10 Days | 0 |
|  |  | BLK Missing | 0 |

[^81]Table C-1 (continued)
Contrast Codings for 1988 Common Conditioning Variables

| $\begin{gathered} \text { Bon tioning } \\ \text { Jariable } \end{gathered}$ | $\begin{gathered} \text { Age } \\ \text { Classes } \end{gathered}$ | Variable Cod'ng | Contrast Coding* |
| :---: | :---: | :---: | :---: |
| Grades in School | 13, 17 | 1 A | 4.0 |
|  |  | $2 \mathrm{~A}-\mathrm{B}$ | 3.5 |
|  |  | 3 B | 3.0 |
|  |  | 4 B-C | 2.5 |
|  |  | 5 C | 2.0 |
|  |  | $6 \mathrm{C}-\mathrm{D}$ | 1.5 |
|  |  | 7 D | 1.0 |
|  |  | $8<$ D | 0.5 |
|  |  | BLK Missing | 2.0 |
| High School Program | 17 | 1 General | 00 |
|  |  | 2 Collage Preparatory | 10 |
|  |  | 3 Vocational, Technical | 01 |
|  |  | BLK Missing | 00 |
| Post-secondary Plans | 17 | 1 Work Full Time | 00 |
|  |  | 2 Two-year College | 10 |
|  |  | 3 Four-year College | 01 |
|  |  | 4 Other | 00 |
|  |  | BLK Missing | 00 |
| Hours of Outside Work | 17 | 1 None | 0 |
|  |  | $2<6$ Hours | 4 |
|  |  | 36 to 10 Hours | 8 |
|  |  | 411 to 15 Hours | 13 |
|  |  | 516 to 20 Hours | 18 |
|  |  | 621 to 25 Hours | 23 |
|  |  | 726 to 30 Hours | 28 |
|  |  | $8>30$ Hours | 40 |
|  |  | BLK Missing | 0 |
| Type of English Class In | 17 | 1 Not Taking | 00 |
|  |  | 2 Advanced Placement | 10 |
|  |  | 3 College Preparatory | 10 |
|  |  | 4 General | 00 |
|  |  | 5 Remedial | 01 |
|  |  | BLK Missing | 00 |

Table C-2
Contrast Codings for 1988 Reading Cross-sectional Conditioning Variables

| $\begin{aligned} & \text { Cond }{ }^{\text {t }} \text { tioning } \\ & \underline{\underline{a}} \text { 'able } \end{aligned}$ | $\begin{gathered} \text { Age } \\ \text { Classes } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Variable } \\ \text { Name } \end{gathered}$ | Variable Coding | Contras: Coding* |
| :---: | :---: | :---: | :---: | :---: |
| Home environaent and support | All | RHOME | Low Meaium High | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ |
| Students' independent reading | All | RINDRDG | Low Medium High | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ |
| Students' use of materials | 13, 17 | RUSEMAT | Low <br> Medium High | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ |
| Teacher instructional behaviors | 13, 17 | RTEACH | Low Mediur High | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ |
| Students' behaviors and support | 17 | RBEHAV | Low Medium High | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ |
| Reading strategies | 17 | RSTRATG | Low <br> Medium High | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ |
| Students' school and coursework | 17 | RSCHWRK | Low Medium High | $\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$ |
| Magazines at home | 9 | R800101 | Yes <br> No <br> M.ssing | $\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned}$ |
| Books at home | All | R800301 | 10 or fewer <br> 11 to 20 <br> 21 to 30 <br> More than 30 <br> Missing | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 1 \end{aligned}$ |

[^82]Table C-2 'continued)
Contrast Codings for 1988 Reading Cross-sectional Conditioring Jariables

| Conditioning Variable | $\begin{gathered} \text { Age } \\ \text { Classet } \end{gathered}$ | Variable Name | Variable Coding | Contras Codins* |
| :---: | :---: | :---: | :---: | :---: |
| Read :tories | Ali | R800401 | Alm'st every day | 1 |
|  |  |  | Once or twice a week | 2 |
|  |  |  | Once or twice a month | 3 |
|  |  |  | Never or hardly ever | 4 |
|  |  |  | I don't know | 4 |
|  |  |  | Missing | 4 |
| Read aloud | 9 | R800501 | Almost every day | 1 |
|  |  |  | Once or twice a wee's | 2 |
|  |  |  | Once or twice a monch | 3 |
|  |  |  | Never or hardly ever | 4 |
|  |  |  | Missing | 4 |
| Read for furt | All | S003501 | Almost every day | 1 |
|  |  |  | Once or twice a week | 2 |
|  |  |  | Once or twice a month | 3 |
|  |  |  | A few times a year | 4 |
|  |  |  | Never or hardly ever | 5 |
|  |  |  | Missing | 5 |
| Teli about book | All | S003502 | Almost every day | 1 |
|  |  |  | Once or twice a week | 2 |
|  |  |  | C . nr twice a murith | 3 |
|  |  |  | - - times a year | 4 |
|  |  |  | Never or hardly ever | 5 |
|  |  |  | Missing | 5 |
| Books from library | All | S003503 | Almost erery day | 1 |
|  |  |  | Once or twice 3 week | 2 |
|  |  |  | Once or twice a month | 3 |
|  |  |  | A few times vear | 4 |
|  |  |  | Never or ha: ly ever | 5 |
|  |  |  | Missing | 5 |

[^83]Table C-2 (continued)
Contrast Codings for 1988 Reading Cross-sectional Conditioning Variables

| Conditioning Variable | $\begin{gathered} \text { Age } \\ \text { Classes } \end{gathered}$ | Variable <br> Name | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: |
| Buy own books | All | S003504 | Almost every day | 1 |
|  |  |  | Once or twice a week | 2 |
|  |  |  | Once or twice a month | 3 |
|  |  |  | A few times a year | 4 |
|  |  |  | Noter or hardly ever | 5 |
|  |  |  | Missing | 5 |
| Kind of reader | All | S003301 | A poor reader | 1 |
|  |  |  | A good reader | 2 |
|  |  |  | A very good reader | 3 |
|  |  |  | I don't know | 1 |
|  |  |  | Missing | 1 |
| Teacher asks | 9 | R800701 | Almost every day | 1 |
|  |  |  | Once or twice a week | 2 |
|  |  |  | Once or twice a month | 3 |
|  |  |  | Never or hardly ever | 4 |
|  |  |  | Missing | 4 |
| Magazines at home | 13, 17 | R800201 | Yes | 1 |
|  |  |  | No | 2 |
|  |  |  | Missing | 2 |
| Talk about reading | 13, 17 | R800601 | Almost every day | 1 |
|  |  |  | Once or twice a week | 2 |
|  |  |  | Once or twice a month | 3 |
|  |  |  | Never or hardly ever | 4 |
|  |  |  | Missing | 4 |
| Read after TV show | 13, 17 | S003505 | Almost every day | 1 |
|  |  |  | Once or twice a week | 2 |
|  |  |  | Once or twice a month | 3 |
|  |  |  | A few times a year | 4 |
|  |  |  | Never or hardly ever | 5 |
|  |  |  | Missing | 5 |

Table $\mathrm{C}-2$ (continued)
Contrast Codings for 1988 Reading Cross-sectional Conditioning Variables

| Conditioning Variable | $\begin{gathered} \text { Age } \\ \text { Classes } \end{gathered}$ | Variable <br> Name | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: |
| Author you like | 13, 17 | S003506 | Almost every day | 1 |
|  |  |  | Once or twice a week | 2 |
|  |  |  | Once or twice a month | 3 |
|  |  |  | A few times a year | 4 |
|  |  |  | Never or hardly ever | 5 |
|  |  |  | Missing | 5 |
| Read in spare time | 13, 17 | 1801101 | Never | 1 |
|  |  |  | Fiction | 2 |
|  |  |  | Nonfiction | 2 |
|  |  |  | Fiction and norfiction | 2 |
|  |  |  | Missing | 1 |
| Use dictionary | 13, 17 | R800801 | Almost every day | 1 |
|  |  |  | Once or twice a week | 2 |
|  |  |  | Once or twice a month | 3 |
|  |  |  | A few times a year | 4 |
|  |  |  | Never or hardly ever | 5 |
|  |  |  | Missing | 5 |
| Use encyclopedia | 13, 17 | S007309 | Almost every day | 1 |
|  |  |  | Once or twice a week | 2 |
|  |  |  | Once or twice a month | 3 |
|  |  |  | A few times a year | 4 |
|  |  |  | Never or hardly ever | 5 |
|  |  |  | Missing | 5 |
| Analyze reading | 13, 17 | R801201 | A lot | 1 |
|  |  |  | Some | 2 |
|  |  |  | Not at all | 3 |
|  |  |  | Missing | 3 |
| Write on reading | 13, 17 | S008501 | Almost every day | 1 |
|  |  |  | Once or twice a week | 2 |
|  |  |  | Once or twice a month | 3 |
|  |  |  | A few times a year | 4 |
|  |  |  | Never or hardly ever | 5 |
|  |  |  | Missing | 5 |

[^84]Table C-2 (continued)
Contrast Codings for 1988 Reading Cross-sectional Conditioning Varıables

| Conditioning Variable | $\begin{gathered} \text { Age } \\ \text { Classes } \end{gathered}$ | Variable Name | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: |
| Teacher-main idea | 13, 17 | 5004602 | Almost every time | 1 |
|  |  |  | More than $1 / 2$ the time | 2 |
|  |  |  | About $1 / 2$ the time | 3 |
|  |  |  | Less thar 1/2 the time | 4 |
|  |  |  | Never or hardly ever | 5 |
|  |  |  | Missing | 5 |
| Teacher-vocabulary | 13, 17 | S004601 | Almost every time | 1 |
|  |  |  | More than $1 / 2$ the time | 2 |
|  |  |  | About $1 / 2$ the time | 3 |
|  |  |  | Less than $1 / 2$ the time | 4 |
|  |  |  | Never or hardly ever Missing | 5 |
| Teacher-questions | 13, 17 | 500،\%01 | Almost every time | 1 |
|  |  |  | More than $1 / 2$ the time | 2 |
|  |  |  | About 1/2 the time | 3 |
|  |  |  | Less than $1 / 2$ the time | 4 |
|  |  |  | Never or hardly ever | 5 |
|  |  |  | Riissing | 5 |
| Can't understand | 13, 17 | S008601 | A lot | 1 |
|  |  |  | Some | 2 |
|  |  |  | None | 3 |
|  |  |  | Missing | 1 |
| Read story, nuvel | 17 | S004301 | Almost every day | 1 |
|  |  |  | Once or twice a week | 2 |
|  |  |  | Once or twice a month | 3 |
|  |  |  | A few times a year | 4 |
|  |  |  | Never or haid'.y ever | 5 |
|  |  |  | Missing | 5 |
| Read newspaper | 17 | S004304 | Almost every day | 1 |
|  |  |  | Once or twice a week | 2 |
|  |  |  | Once or twice a month | 3 |
|  |  |  | A few times a year | 4 |
|  |  |  | Never or hardly ever | 5 |
|  |  |  | Missing | : |

[^85]Table C-2 (continued)
Contrast Codings for 1988 Reading Cross-sectional Conditioning Variables

| Conditioning Variable | $\begin{gathered} \text { Age } \\ \text { Cluises } \end{gathered}$ | Variable Name | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: |
| Read magazine | 17 | S004305 | Almost every day | 1 |
|  |  |  | Once or twice a week | 2 |
|  |  |  | Once or twice a month | 3 |
|  |  |  | A few times a year | 4 |
|  |  |  | Never or hardly ever | 5 |
|  |  |  | Missing | 5 |
| Read material over | 17 | S005101 | Almost every time | 1 |
|  |  |  | More than $1 / 2$ the time | 2 |
|  |  |  | About $1 / 2$ the time | , |
|  |  |  | Less than $1 / 2$ the time | 4 |
|  |  |  | Never or hardly ever | 5 |
|  |  |  | Missing | 5 |
| Take notes | 17 | S005102 | Almost every time | 1 |
|  |  |  | More than $1 / 2$ the time | 2 |
|  |  |  | About 1/2 the time | 3 |
|  |  |  | Less than $1 / 2$ the time | 4 |
|  |  |  | Never or hardly ever | 5 |
|  |  |  | Missing | 5 |
| Make outlines | 17 | S005103 | Almost every $t$ ne | 1 |
|  |  |  | More than $1 / 2$ the time | 2 |
|  |  |  | Abcut $1 / 2$ the time | 3 |
|  |  |  | Less than $1 / 2$ the time | 4 |
|  |  |  | Never or harily ever | 5 |
|  |  |  | Missing | 5 |
| Answer questions | 17 | S005104 | Almost every time | 1 |
|  |  |  | More than $1 / 2$ the time | 2 |
|  |  |  | About 1/2 the time | 3 |
|  |  |  | Less than $1 / 2$ the time | 4 |
|  |  |  | Never or hardly ever | 5 |
|  |  |  | Missing | 5 |
| AP English | 17 | S006403 | Yes |  |
|  |  |  | No | 2 |
|  |  |  | Missing | 2 |

[^86]Table C-2 (continued)
Contrast Codings for 1988 Reading Cross-sectional Conditioning Variables

| Conditioning Variable | $\begin{gathered} \text { Age } \\ \text { Classes } \end{gathered}$ | Variable <br> Name | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: |
| Remedial English | 17 | S006¢:01 | Yes | 1 |
|  |  |  | No | 2 |
|  |  |  | Missing | 1 |
| Time on literature | 17 | R800901 | Most of the time | 1 |
|  |  |  | More than $1 / 2$ the time | 2 |
|  |  |  | About $1 / 2$ the time | 3 |
|  |  |  | Less than $1 / 2$ the rime | 4 |
|  |  |  | None or almost none | 5 |
|  |  |  | Missing | 5 |
| Time on homework | 17 | R801001. | None assigned | 0 |
|  |  |  | Don't do it | 0 |
|  |  |  | Less than 1 hour | 1 |
|  |  |  | 1 hour | 2 |
|  |  |  | 2 insurs | 3 |
|  |  |  | 3 hours | 4 |
|  |  |  | 4 hours | 5 |
|  |  |  | 5 or more hours | 6 |
|  |  |  | Missing | 0 |
| English grades | 17 | R801101 | Mostly A | 1 |
|  |  |  | $A$ and $B$ | 2 |
|  |  |  | Mostly B | 3 |
|  |  |  | $B$ and $C$ | 4 |
|  |  |  | Mostly C | 5 |
|  |  |  | $C$ and D | 6 |
|  |  |  | Mostly D | 7 |
|  |  |  | Mostly below D | 8 |
|  |  |  | Missing | 8 |
| Reading level of student | Grd. 4 | T019701 |  | 1 |
|  |  |  | 2 at grade level | 2 |
|  |  |  | 3 below grade level | 3 |
|  |  |  | Missing | 3 |

[^87]$$
\frac{514}{55} 5
$$

Table C-2 (continued)
Contrast Codings for 1988 Reading Cross-sectional Conditioning Variables

| ```Conditioning Variable``` | $\begin{gathered} \text { Age } \\ \text { Classes } \end{gathered}$ | $\begin{gathered} \text { Yariable } \\ \text { Name } \end{gathered}$ | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: |
| Level of student's reading group | Grd. 4 | T020001 | ```l high 2 average 3 low 4 do not have groups Missing``` | $\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 00 \\ & 00 \end{aligned}$ |
| Help student with reading with reading aloud aloud | Grd. 4 | T020111 | ```l almost every day 2 several times a week 3 once a week or less Missing``` | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 1 \end{aligned}$ |
| Help student with comprehensive skills | Grd. 4 | T020121 | ```l almost every day 2 several times a week 3 once a week or less Missing``` | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 1 \end{aligned}$ |
| Help student with wordattack skills | Grd. 4 | T020131 | 1 almost every day <br> 2 severdl times a week 3 once a week or less Missing | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 1 \end{aligned}$ |
| Help student with vocabulary | Grd. 4 | T020141 | 1 almost every day <br> 2 seve:al times a week <br> 3 once a week or less <br> Missing | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 1 \end{aligned}$ |
| Does student receive remedial reading prog | Grd. 4 | T020701 | 1 yes <br> 2 nc Missing | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ |
| Are students assigned to class by ability | Grd. 4 | T012601 | 1 yes <br> 2 no Missing | $\begin{aligned} & 2 \\ & 2 \end{aligned}$ |
| Reading ability level of student in class | Grd. 4 | T021701 | 1 mostly high <br> 2 mostly average <br> 3 mostly low <br> 4 mixed ability levels <br> Missing | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 2 \end{aligned}$ |

[^88]Table C-2 (continued)
Contrast Codings for 1988 Reading Cross-sectional Conditioning Variables

| $\begin{aligned} & \text { Condjitioning } \\ & \text { Vaziable } \end{aligned}$ | $\begin{gathered} \text { Age } \\ \text { Classes } \end{gathered}$ | Variable Name | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: |
| Time spent on typical day day for direct instruction | Grd. 4 | T021801 | ```1 30 minutes or less 260 minutes 390 minutes 4120 minutes or more Missing``` | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$ |
| Percent of reading instruction-individual | Grd. 4 | T021901 | $\begin{aligned} & <10 \\ & 10-14 \\ & 15-24 \\ & 25-100 \\ & \text { Hissing } \end{aligned}$ | $\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 00 \end{aligned}$ |
| Percent of reading instruction-small group | Grả. 4 | T021902 | $\begin{aligned} & 0-24 \\ & 25-45 \\ & 50-74 \\ & 75-100 \\ & \text { Missing } \end{aligned}$ | $\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 00 \end{aligned}$ |
| Percent of reading <br> instruction-whole class | Grd. 4 | T021903 | $\begin{aligned} & 0-24 \\ & 25-49 \\ & 50-74 \\ & 75-10 n \\ & \text { Missing } \end{aligned}$ | $\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 00 \end{aligned}$ |
| Are students assigned to groups by ability | Grd. 4 | T022101 | ```l yes 2 no 3 Do not form reading groups Missing``` | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$ |
| Use same reading bock for all students in class | Grd. 4 | T022201 | 1 yes <br> 2 No, diff levels within same basal <br> 3 No, use different basal series <br> 4 No, use other books or magazines | 100 010 001 000 |

[^89]Table C-2 (continued)
Contrast Codings for 1988 Reading Cross-sectional Conditioning Variables

| Conditioning | Age | Variable | Variable | Contrast |
| :---: | :---: | :---: | :---: | :---: |
| Variable | $\underline{\text { Classes }}$ | Name | Coding | $\underline{\text { Coding* }}$ |

Number of resources used Grd. 4 T022301- $0 \quad 0$ (of 5--book collection, T022305 1 1 children's paper, 2 2 2
reading kits, computer, 3
instruction software 4
4
5 5
How often - read aloud to Grd. 4 T022421 1 almost every day 1 students

How often - have students Grd. 4 T022431 1 almost every day 1
meet in small groups

How often - have students Grd. 4 T022441 l almost every da; 1
write about something they read

How often - have students Grd. 4 T02245l 1 almost every day 1
complete woríbooks
2 1-2 times a week 2
$31-2$ times a month 3
4 a few times a year 4
5 never 5
Missing 5

[^90]Table C-2 (continued)
Contrast Codings for 1988 Reading Cross-sectional Conditioning Variables

| Conditioning Variable | $\begin{gathered} \text { Age } \\ \text { Classes } \end{gathered}$ | Variable <br> Name | Variable Coding | Contrast Coding: |
| :---: | :---: | :---: | :---: | :---: |
| How often - have students rer 1 books they choose | Grd. 4 | T022461 | 1 almost every day <br> 2 1-2 times a week <br> 3 1-2 times a month <br> 4 a few times a year <br> 5 never <br> Missing | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 5 \end{aligned}$ |
| How often - have students read information material | Grd. 4 | T022471 | 1 almost every day <br> 2 1-2 times a week <br> 3 1-2 times a month <br> 4 a few times a year <br> 5 never <br> Missing | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 5 \end{aligned}$ |
| How often - take class to the library | Grd. 4 | T022481 | 1 almost every day <br> 2 1-2 times a week <br> 3 1-2 times a month <br> 4 a few times a year <br> 5 never <br> Missing | $\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$ |
| Highest academic degree held | Grd. 4 | T023201 | 1 High school diploma <br> 2 Associate degree/ voc certificate <br> 3 Bachelor's degree <br> 4 Master's degree <br> 5 Educatnl specialist <br> 6 Doctorate <br> 7 First professional degree <br> Missing | $\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 4 \end{aligned}$ |
| Number of special trainings in teaching reading (of 4--inservice, undergrad, graduate, continuing educ.) | Grd. 4 | $\begin{aligned} & \text { T023502- } \\ & \text { T023505 } \end{aligned}$ | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | $0$ |

[^91]Table C-2 (continued)
Contrast Codings for 1988 Reading Cross-sectional Conditioning Variables

| Conditioning Variable | $\begin{gathered} \text { Age } \\ \text { Classes } \end{gathered}$ | Variable Name | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: |
| Ability to get desired instructional materials and resources | Grd. 4 | T024001 | 1 get all needed | 1 |
|  |  |  | 2 get most needed | 2 |
|  |  |  | 3 get some needed | 3 |
|  |  |  | 4 don't get any needed | 3 |
|  |  |  | Missing | 3 |
| If could start over, would become a teacher | Grd. 4 | T024101 | 1 certainly | 1 |
|  |  |  | 2 probably | 2 |
|  |  |  | 3 chances about even | 3 |
|  |  |  | 4 probably not | 4 |
|  |  |  | 5 certainly not | 5 |
|  |  |  | Missing | 3 |

[^92]Table C-3
Contrast Codings for 1988 Reading Trend Conditioning Variables

| Conditioning Variable | Ages | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: |
| Overall | Al ${ }^{1}$ | --- | 1 |
| Gender | All | 1 Male | 0 |
|  |  | 2 Female | 1 |
| Ethnicity | All | 1 White | 000 |
|  |  | 2 Black | 100 |
|  |  | 3 Hispanic | 010 |
|  |  | 4 Asian American | 001 |
|  |  | 5 American Indian | 000 |
|  |  | 6 Unclassified | 000 |
| STOC | All | 2 Low Metro | 00 |
|  |  | 3 High Metro | 10 |
|  |  | 1,4-7 All Others and Missing | 01 |
| Region | All | 1 Northeast | 000 |
|  |  | 2 Southeast | 100 |
|  |  | 3 Central | 010 |
|  |  | 4 West | 001 |
| Parents' Education | All | $1<$ High School | 0000 |
|  |  | 2 High School Grai | 1000 |
|  |  | 3 Post-High School | 0100 |
|  |  | 4 College Grad | 0010 |
|  |  | BLK Missing and I Don't Know | 0001 |
| Items in the Home (the items asked are: Newspaper, Dictionary, ン 25 books, Encyclopedia Video games, Magazines) | All | 0 None of the six items | 00 |
|  |  | 1 One of the six items | 10 |
|  |  | 2 Two of the six items | 20 |
|  |  | 3 Three of the six items | 30 |
|  |  | 4 Four of the six items | 40 |
|  |  | 5 Five of the six items | 50 |
|  |  | 6 six of the six items | 60 |
|  |  | .3LK Missing | 01 |

[^93]Table C-3 (continued)
Contrast Codings for 1988 Reading Trend Conditioning Variables

| Conditioning Variable | Ages | Variable Coding | Contrast Goding* |
| :---: | :---: | :---: | :---: |
| TV Watching | All | 1 None | 000 |
|  |  | 2 One hour or less per day | 101 |
|  |  | 3 Two hours | $2 \mathrm{G4}$ |
|  |  | 4 Three hours | 309 |
|  |  | 5 Four hours | 416 |
|  |  | 6 Five hours | 525 |
|  |  | 7 Six or mere hours per day | 636 |
|  |  | BLK Missirg | 309 |
| Homtwork | All | 1 Don't have any | 00 |
|  |  | 2 Don't do any | 00 |
|  |  | 3 < one hour | 10 |
|  |  | 4 One to two hours | 20 |
|  |  | $5>$ twe hours | 30 |
|  |  | BLK Missing | 01 |
| Home Language Minority | All | 1 English | 00 |
|  |  | 2 Spanish | 10 |
|  |  | 3 Other | 10 |
|  |  | BLK Missing | 01 |
| Pages Read | All | 1 More than 20 | 10 |
|  |  | 216.20 | 10 |
|  |  | 3 11-15 | 10 |
|  |  | 4 6-10 | 10 |
|  |  | 55 or fewer | 00 |
|  |  | BLK Missing | 01 |
| Percent in Lunch Program | All | 0 | 2000 |
|  |  | 1 | 0010 |
|  |  | 2 | 0020 |
|  |  | - | - |
|  |  | 95 | 0990 |
|  |  | 100 | 1000 |
|  |  | BLK Missing | 0001 |

[^94]Table C-3 (continued)
Contrast Codings for 1988 Reading Trend Conditioning Variables

| Conditioning <br> Variable | Ages | Variable Coding <br> Cercent White in School | All |
| :--- | :--- | :--- | :--- |

[^95]
## Tãole C-4

Contrast Codings for 1988 Writing Cross-sectional Conditioning Variables

| $\begin{aligned} & \text { Conditioning } \\ & \text { Variable } \end{aligned}$ | Grades | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: |
| Enjoy Writing | All | 1. Almost Always | 5 |
|  |  | 2. More than half the time | 4 |
|  |  | 3. Half the time | 3 |
|  |  | 4. Less than half the time | 2 |
|  |  | 5. never | 1 |
|  |  | BLK missing | 3 |
| Positive Teacher Feedback | All | 0 No positive feedback | 0 |
|  |  | 1 Little positive fe ${ }^{\text {Jback }}$ | 1 |
|  |  | 2 Some positive feedback | 2 |
|  |  | 3 A Lot of positive feedback | 3 |
|  |  | BIK Lissing | 0 |
| Negative Teacher Feedback | All | 0 no negative feedback | 0 |
|  |  | 1 Little negative feedback | 1 |
|  |  |  | 2 |
|  |  | BLK missing | 0 |
| Amount Written for English Class | 8,12 | alot of short, never long | 100000 |
|  |  | a lot of short, a lot of long | 010000 |
|  |  | a lot of short, some long | 001000 |
|  |  | some short, some long | $00 \mathrm{nl00}$ |
|  |  | some short, never long | 000010 |
|  |  | some short, a lot of long | 000001 |
|  |  | never short, a lot of long | 000001 |
|  |  | never short, some long | 000001 |
|  |  | never short, never long | 000000 |
|  |  | either missing | 000100 |
| Amount Written for Histery Class | 8,12 | a lot of short, never long | 100000 |
|  |  | a lor of short, a lot of long | 010000 |
|  |  | a lot of short, some long | 001000 |
|  |  | some short, some long | 000100 |
|  |  | some short, never long | 000010 |
|  |  | some short, a lot of long | 000001 |
|  |  | never short, a lot of long | 000001 |
|  |  | never short, some long | 000001 |
|  |  | never short, never long | 000000 |
|  |  | either missing | 000100 |

[^96]Table C-4 (continued)
Contrast Codings for 1988 Writing Cross-sectional Conditioning Variables

| Conditioning Variable | Grades | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: |
| Instruction on Writing Process II | 8,12 | 1. Almost Always | 5 |
|  |  | 2. More than half the time | 4 |
|  |  | 3. Half time | 3 |
|  |  | 4. Less than half the time | 2 |
|  |  | 5. Never | 1 |
|  |  | BLK missing | 3 |
| Success in English Class II | 8,12 | 1. a lot | 1 |
|  |  | 2. some | 2 |
|  |  | 3. none | 3 |
|  |  | BLK missing | 2 |
| Success in English Cless III | 12 | 1 Mostly A | 8 |
|  |  | 2 between A and B | 7 |
|  |  | 3 Mostly B | 6 |
|  |  | 4 Between B and C | 5 |
|  |  | 5 Mostly C | 4 |
|  |  | 6 Between C and D | 3 |
|  |  | 7 Mostly D | 2 |
|  |  | \& Mostly < D | 1 |
|  |  | BLK missing | 5 |
| Fime Spent on Writing III | 12 | 1 lots of time | 4 |
|  |  | 2 some time | 3 |
|  |  | 3 little time | 2 |
|  |  | 4 no time | 1 |
|  |  | BLK missing | 2 |
| Revisions | 12 | 1 Almost Always | 5 |
|  |  | 2 More than half the time | 4 |
|  |  | 3 Half the time | 3 |
|  |  | 4 Less than half the time | 2 |
|  |  | 5 Never | 1 |
|  |  | BLK Missing | 3 |

[^97]Table C-4 (continued)

Contrast Codings for 1988 Writing Cross-sectional Conditioning Variables

| ```Conditioning Variable``` | Grades | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: |
| Planning | 12 | 1 Almost Always | 5 |
|  |  | 2 More than half the time | 4 |
|  |  | 3 Half the time | 3 |
|  |  | 4 Less than half the time | 2 |
|  |  | 5 Never | 1 |
|  |  | BiK missing | 3 |
| Time Spent on Writing II | 8 | 1 Weekly | 4 |
|  |  | 2 Monthly | 3 |
|  |  | 3 Yearly | 2 |
|  |  | 4 Never | 1 |
|  |  | BLK Missing | 3 |
| Time Spent on Writing I | 4 | 1 Weekly | 300 |
|  |  | 2 Monthly | 010 |
|  |  | 3 Yearly | col |
|  |  | 4 never | 000 |
|  |  | BLK missing | 010 |
| Success in English | 4 | 1 Daily | 1000 |
| Class I |  | 2 Weekly | 0100 |
|  |  | 3 Monthly | 0010 |
|  |  | 4 Yearly | 0001 |
|  |  | 5 Never | 0000 |
|  |  | BLK Missing | 0010 |
| Instruction on | 4 | 1 Almost Always | 5 |
| Writing Process I |  | 2 More than half the time | 4 |
|  |  | 3 Half time | 3 |
|  |  | 2 Less than half the time | 2 |
|  |  | 1 Never | 1 |
|  |  | BLK Missing | 3 |

[^98]Table C-5
Contrast Codings for 1988 Writing Trend Conditioning Variables

| Conditioning Variable | Ages | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: |
| Overall | Als. | -- | 1 |
| Sex | All | 1 Miale | 0 |
|  |  | 2 Female | 1 |
| Ethnicity | All | 1 White | 10 |
|  |  | 2 Black | 00 |
|  |  | 3 Hispanic | 01 |
|  |  | 4 Asian American | 10 |
|  |  | 5 American Indian | 10 |
|  |  | 6 Unclassified | 10 |
|  |  | BLK Missing | 10 |
| STOC | Ali | 2 Low Metro | 00 |
|  |  | 3 High Metro | 10 |
|  |  | 1,4-7 All others | 01 |
| Region | All | 1 Northeast | 000 |
|  |  | 2 Southeast | 100 |
|  |  | 3 Central | 010 |
|  |  | 4 West | 001 |
| Parents' Education | A11 | 1 < High School | 0000 |
|  |  | 2 High School Grad | 1000 |
|  |  | 3 Post-High School | 0100 |
|  |  | 4 College Grad | 0010 |
|  |  | 5 I Don't Know, Missing | 0001 |
| G:ade | All | 4 | 00 |
|  |  | 8 | 10 |
|  |  | 11 | 01 |
| Items in the Home | All | 10 to 3 of five items | 00 |
|  |  | 24 of five items | 10 |
|  |  | 3 all five items | 01 |
|  |  | BLK missing | 00 |

[^99]Tab?.c C-5 (continued)
Contrast Codings for 1988 Writing Trend Conditioning Variabies

| Conditioning Variable | Ages | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: |
| Modal age | A11 | 1 less than modal age | 10 |
|  |  | 2 modal age | 00 |
|  |  | 3 greater than modal age | 01 |
| Homework | All | 1 Don't have any | 00000 |
|  |  | 20 done | 10000 |
|  |  | 3 less than 1 hour | 01000 |
|  |  | 41 to 2 hours | 00100 |
|  |  | $52+$ hours | 00010 |
|  |  | BLK missing | 00001 |
| School Type | A11 | 1 public | 0 |
|  |  | 2 private | 1 |
|  |  | 3 Catholic | 1 |
|  |  | 4 Bureau of Indian Affairs | 1 |
|  |  | 5 Dept. of Defense | 1 |
|  |  | missing | 1 |
| TV Watching | All | 1 less than 1 hour | $0 \stackrel{00}{ }$ |
|  |  | 21 hour | 101 |
|  |  | 32 hours | 204 |
|  |  | 43 hours | 309 |
|  |  | 54 hours | 416 |
|  |  | 65 hours | 525 |
|  |  | 7 more than 6 hours | 636 |
|  |  | BLK missing | 309 |
| Mother's wcrking Outside of home | A11 | 1 yes | 1 |
|  |  | 2 no | 0 |
|  |  | RLK missing | 0 |
| Primary language Spoken in the home | A11 |  | 00 |
|  |  | 2 Spanish | 10 |
|  |  | 3 other | 01 |
|  |  | 4 missing | 01 |

[^100]Table C-5 (continued)
Contrast Codings for 1983 Writing Trend Conditioning Variables

| Conditioning Variable | Ages | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: |
| Percent Lunch Program | All | 0 | $\overline{000} 0$ |
|  |  | 1 | 0010 |
|  |  | 2 | 0020 |
|  |  | 99 | 0990 |
|  |  | 100 | 100 C |
|  |  | BLK missing | 0001 |
| Percent of White <br> Students in School | All | 0-49.9 Minority school | 00 |
|  |  | 50-79.9 Integrated school | 10 |
|  |  | 80-100 Predominantly White | 01 |
|  |  | BLK Missing | 01 |
| Grades in School | All | 1. Mostly A | 4.0 |
|  |  | 2. Mostly B | 3.0 |
|  |  | 3. Mostly C | 2.0 |
|  |  | 4. Mostly D | 1.0 |
|  |  | 5. Less than D | 0.0 |
|  |  | 6. between A and B | 3.5 |
|  |  | 7. between $B$ and $C$ | 2.5 |
|  |  | 8. between $C$ and $D$ | 1.5 |
|  |  | 9. between D and F | 0.5 |
|  |  | BLK missing | 2.0 |
| Pages a Day Read for School and Homework | All | 1. more than 20 | 100 |
|  |  | 2. $16-20$ | 100 |
|  |  | 3. $11-15$ | 100 |
|  |  | 4. 6-10 | 010 |
|  |  | 5. less than 5 | 001 |
|  |  | BLK missing | 000 |
| Number of Reports Written | All | 0 no repolis, or missing | 0 |
|  |  | 1 one report | 1 |
|  |  | 2 two reports | 2 |
|  |  | 3 three reports | 3 |
|  |  | 4 four reports | 4 |
|  |  | 5 five reports | 5 |
|  |  | 6 six reports | 6 |
|  |  | 7 seven reports | 7 |

[^101]Table C-6
Contrast Codings for 1988 Civics Cross-secticnal Conditioning Variables

| Conditioning Variable |  | Grades | Variable <br> Name | $\begin{aligned} & \text { Variable } \\ & \text { Coding } \end{aligned}$ | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency of Social Studies Class | 4 | (Main and Intercorr.) | S008701 | 1 everyday | 1000 |
|  |  |  |  | 2 3-4/wk | 0100 |
|  |  |  |  | 3 1-2/wk | 0010 |
|  |  |  |  | 4 less than 1/wk | 0001 |
|  |  |  |  | 5 never or hardl | ver 0000 |
|  |  |  |  | missing | 0000 |
| Studied Government | 4 | (Main and Intercorr.) | P800501 | 1 yes | 10 |
|  |  |  |  | 2 no | 00 |
|  |  |  |  | missing | 01 |
| Number of subjects studied a lot (out of 6) |  | (Main) | ST-ALOT | 0 | 0 |
|  |  |  |  | 1 | 1 |
|  |  |  |  | 2 | 2 |
|  |  |  |  | 3 | 3 |
|  |  |  |  | 4 | 4 |
|  |  |  |  | 5 | 5 |
|  |  |  |  | 6 | 6 |
| Studied Laws |  | (Main and Intercorr.) | P800601 | 1 a lot | 1 |
|  |  |  |  | 2 some | 1 |
|  |  |  |  | 3 not at all | 0 |
|  |  |  |  | missing | 0 |
| Studied Judges and Courts |  | (riain) | P800701 | 1 a lot | 1 |
|  |  |  |  | 2 some | 1 |
|  |  |  |  | 3 not at all | 0 |
|  |  |  |  | missing | 0 |
| Studied President and Leaders |  | (Main and Interco_r.) | P800801 | $i$ a lot | 1 |
|  |  |  |  | 2 some | 1 |
|  |  |  |  | 3 not at all | $n$ |
|  |  |  |  | missing | 0 |
| Studied Elections and Voting |  | (Main) | P800901 | 1 a lot | 1 |
|  |  |  |  | 2 some |  |
|  |  |  |  | 3 not at all | 0 |
|  |  |  |  | missing | 0 |

[^102]Table C-6 (continued)
Contrast Codings for 1988 Civics Cross-sectional Conditioning Variables

| Conditioning Variable |  | Grades | Variable Name | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Studied |  | (Main and | P801001 | 1 a lot | 1 |
| Community |  | Intercorr.) |  | 2 some | 1 |
|  |  |  |  | 3 not at all | 0 |
|  |  |  |  | missing | 0 |
| Studied Rights and Responsibilities |  | (Main) | P801101 | 1 a lot | 1 |
|  |  |  |  | 2 some | 1 |
|  |  |  |  | 3 not at all | 0 |
|  |  |  |  | missing | 0 |
| Frequency of Current Events | 4 | (Main) | P802101 | 1 every day | 1000 |
|  |  |  |  | 23 -4/wk | 0100 |
|  |  |  |  | $3 \mathrm{l}-2 /$ month | 0010 |
|  |  |  |  | 4 few/year | 0001 |
|  |  |  |  | 5 never | 0000 |
|  |  |  |  | missing | 0000 |
| Studied Civics in Fifth Grade |  | (Main and Intercorz.) | P800101 | 1 yes | 1 |
|  |  |  |  | 2 no | 0 |
|  |  |  |  | 3 don't know | c |
|  |  |  |  | missing | 0 |
| Studied Civics in Sixth Grade |  | (Main and Intercorr.) | P800102 |  |  |
|  |  |  |  | $2 \text { no }$ | 0 |
|  |  |  |  | 3 don't know | 0 |
|  |  |  |  |  | 0 |
| Studied Civics <br> in Seventh Grade | 8 | (Main and <br> Intercorr.) | P800103 | 1 yes | 1 |
|  |  |  |  | 2 no | 0 |
|  |  |  |  | 3 don't know | 0 |
|  |  |  |  | missing | 0 |
| Studied Civiss <br> in Eighth Grade | 8 | (Maj.n and Intercorr.) | P800104 | 1 yes | 1 |
|  |  |  |  | 2 no | 0 |
|  |  |  |  | 3 don't know | 0 |
|  |  |  |  | missing | 0 |

[^103]Table C-6 (continued)
Contrast Codings for 1988 Civics Cross-sectional Conditioning Variables

| Conditioning Variabie |  | Grades | Variable <br> Name | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Studied Sivics | 8 | (Main andIntercorr.) | STCV-INC | $\stackrel{ }{ }$ | 1 |
| of Answers |  |  |  | 0 | 0 |
| Number of Subjects Studied a lot (out of 10) | 8 | (Main) | ST-ALOT | 0 | 0 |
|  |  |  |  | 1 | 1 |
|  |  |  |  | 2 | 2 |
|  |  |  |  | 3 | 3 |
|  |  |  |  | 4 | 4 |
|  |  |  |  | 5 | 5 |
|  |  |  |  | 6 | 6 |
|  |  |  |  | 7 | 7 |
|  |  |  |  | 8 | 8 |
|  |  |  |  | 9 | 9 |
|  |  |  |  | 10 | 10 |
| Studied | 8 | (Main and Intercorr.) | P801201 | 1 a lot | 2 |
| Constitution |  |  |  | 2 some | 2 |
|  |  |  |  | 3 not at all | 1 |
|  |  |  |  | missing | 0 |
| Studied Congress | 8 | (Main and Intercorr.) | P801202 | 1 a lot | 2 |
|  |  |  |  | 2 some | 2 |
|  |  |  |  | 3 not at all | 1 |
|  |  |  |  | missing | 0 |
| Studied Lavis | 8 | (Main and Intercorr.) | P8012.03 | 1 a lot | 2 |
|  |  |  |  | 2 some | 2 |
|  |  |  |  | 3 not at all | 1 |
|  |  |  |  | missing | 0 |
| Studied Courts | 8 | (Main and Intercorr.) | P801204 | 1 a lot | 2 |
|  |  |  |  | 2 some | 2 |
|  |  |  |  | 3 not at all | 1 |
|  |  |  |  | missing | 0 |

[^104]Table C-6 (continued)
Contrast Codings for 1988 Civics Cross-sectional Conditioning Variables

| Conditioning Variable |  | Grades | Variable Name | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Studied | 8 | (Main and | P801205 | 1 a lot | 2 |
| President |  | Intercorr.) |  | 2 some | 2 |
|  |  |  |  | 3 not at all | 1 |
|  |  |  |  | missing | 0 |
| Studied <br> Political <br> Parties | 8 | (Main and Intercorr.) | P801206 | 1 a lot | 2 |
|  |  |  |  | 2 some | 2 |
|  |  |  |  | 3 not at all | 1 |
|  |  |  |  | missing | 0 |
| Studied State and Local Government | 8 | (Main and Intercorr.) | P801207 | 1 a lot | 2 |
|  |  |  |  | 2 some | 2 |
|  |  |  |  | 3 not at all | i |
|  |  |  |  | missing | 0 |
| Studied | 8 | (Main and Intercorr.) | P801208 | 1 a lot | 2 |
| Demfacracy |  |  |  | 2 some |  |
|  |  |  |  | 3 not at all | 1 |
|  |  |  |  | missing | 0 |
| Studied Other Governments |  | (Main) | P8G1209 | 1 a lot | 2 |
|  |  |  |  | 2 some | 2 |
|  |  |  |  | 3 not at all | 1 |
|  |  |  |  | missing | 0 |
| Studied Rights \& Responsibilities | 8 | (Main) | P80121U | 1 a lot | 2 |
|  |  |  |  | 2 some | 2 |
|  |  |  |  | 3 not ar all | 1 |
|  |  |  |  | missing | 0 |
| Active in 4 Areas of Civics$(1,2,5,8)$ |  | (Main) | - Vi -ACT | 1 | 1 |
|  |  |  |  | 0 | 0 |
| Active in 2 <br> Areas of Civics $(3,10)$ |  | (Main) | CVB-ACT | 1 | 1 |
|  |  |  |  | 0 | 0 |

[^105]Table C-6 (continued)
Contrast Codings for 1988 Civics Cross-sectional Conditioning Variables

| Conditioning Variable |  | Grades | Variable <br> Name | Variable Coding | Contrast Coding: |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Active in 2 |  | (Main) | CVC-ACT | 1 | 1 |
| Areas of Civics $(4,9)$ |  |  |  | 0 | 0 |
| Active in 2 |  | (Main) | CVD-ACT | 1 | 1 |
| Areas of Civics $(6,7)$ |  |  |  | 0 | 0 |
| Not Active in | 8 | (Main) | CVD-NOT | 1 | 1 |
| 2 Areas of |  |  |  | 0 | 0 |
| Civics (6, 7) |  |  |  |  |  |
| Difficulty | 8 | (Main) | S008801 | 1 a lot | 1 |
| Reading Text |  |  |  | 2 some | 1 |
|  |  |  |  | 3 none | 0 |
|  |  |  |  | missing | 1 |
| Studied Givics | 12 | (Main and | P\& - 201 | 1 yes |  |
| in Ninth Grade |  | Intercorr.) |  | 2 no | 0 |
|  |  |  |  | 3 don't know | 0 |
|  |  |  |  | 0 | 0 |
| Studied Civics | 12 | (Main and | P800202 | 1 yes | 1 |
| in Tenth Grade |  | Intercorr.) |  | 2 no | 0 |
|  |  |  |  | 3 don* ${ }^{\text {c }}$ know | 0 |
|  |  |  |  | 0 | 0 |
| Studied Civics | 12 | (Main and | P800203 | 1 yes | 1 |
| in Eleventh Grade |  | Intercorr.) |  | 2 no | 0 |
|  |  |  |  | 3 don't know | 0 |
|  |  |  |  | 0 | 0 |
| Studied Civics | 12 | (Main and | P800204 | 1 yes, | 1 |
| in Twelfth Grade |  | Intercorr.) |  | 2 no | 0 |
|  |  |  |  | 3 don't know | 0 |
|  |  |  |  | missing | 0 |

[^106]Table C-6 (continued)
Contrast Codings for 1988 Civics Cross-sectional Conditioning Variables

| Conditioning Variable |  | Grades | Variable Name | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Studied Civics | 12 | (Main and | STCV-INC | ? | 1 |
| Incomplete Set of Answers |  | Intercorr.) |  | 0 | 0 |
| Years of Government Study You Have Had | 12 | (Main and intercorr.) | govt | 0 | 0 |
|  |  |  |  | . 25 | . 25 |
|  |  |  |  | . 5 | . 5 |
|  |  |  |  | 1.0 | 1.0 |
|  |  |  |  | 2.0 | 2.0 |
| Advanced Placement | 12 | (Main and Intercorr.) | P800401 | 1 yes | 1 |
|  |  |  |  | 2 no | 0 |
|  |  |  |  | missing | 0 |
| Number of Subjects Studied a Lot (out cf 10) | 12 | (Main and Intercorr.) | S̈T-ALOT | 1 | 1 |
|  |  |  |  | 0 | 0 |
| Average Level of Study for 10 Subjects | 12 | (Main and Intercorr.) | S'T-AVE | 1 | 1 |
|  |  |  |  | 0 | 0 |
|  |  |  |  |  |  |
| Level of Interest in Civics | 12 | (Main) | CIV-INT | 3 | 3 |
|  |  |  |  | 2 | 2 |
|  |  |  |  | 1 | 1 |
|  |  |  |  | 1 | 1 |
|  |  |  |  | 0 | 0 |
| Mock Election <br> Trials | 12 | (Main) | P801501 | 1 several times | 1 |
|  |  |  |  | 2 once or twice | 1 |
|  |  |  |  | 3 never | 0 |
|  |  |  |  | missing | 0 |
| Degree of Attention Government Pays | 12 | (Main) | govatte | 2 | 2 |
|  |  |  |  | 1 | 1 |
|  |  |  |  | 0 | 0 |

[^107]Table C-6 (continued)
Contrast Codings for lasu Civics Cross-sectional Conditioning Variables

| Conditioning Jariable |  | Grades | Variable Narqe | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Took Civics Class |  | (Main) | $\begin{aligned} & \text { HADCIV } \\ & \text { (P801801) } \end{aligned}$ | 1 yes | 1 |
|  |  |  |  | 2 no | 0 |
|  |  |  |  | missing | 0 |
| Amount of Civics Homework | 12 | (Main) | CVHWORK | 0 | 0 |
|  |  |  |  | . 5 | . 5 |
|  |  |  |  | 1 | 1 |
|  |  |  |  | 2 | 2 |
|  |  |  |  | 3 | 3 |
|  |  |  |  | 4 | 4 |
|  |  |  |  | 5 | 5 |
| Civics Grades in School | 12 | (Main) | CVGrades | 4.0 | 4.0 |
|  |  |  |  | 3.5 | 3.5 |
|  |  |  |  | 3.0 | 3.0 |
|  |  |  |  | 2.5 | 2.5 |
|  |  |  |  | 2.0 | $2 . C$ |
|  |  |  |  | 1.5 | 1.5 |
|  |  |  |  | 1.0 | 1.0 |
|  |  |  |  | . 5 | . 5 |
| Active in 4 Are: of Civics ( $1,2,5,8$ ) | 12 | (Main) | CVA-ACT | 1 | 1 |
|  |  |  |  | 0 | 0 |
| Active in 2 |  | (Main) | CVB-ACT | 1 | 1 |
| Areas of Civics $(3,10)$ |  |  |  | 0 | 0 |
| Active in 2 |  | (Main) | CVC-ACT | 1 | 1 |
| Areas of Civics $(4,9)$ |  |  |  | 0 | 0 |
| Active in 2 | 12 | (Main) | CVD-ACT | 1 | 1 |
| Areas of Civics |  |  |  | 0 | 0 |
| $(6,7)$ |  |  |  |  |  |

[^108]Table C-6 (continued)
Contrast Codings for 1988 Civics Cross-sectional Conditioning Variables

| Conditioning Variable |  | Grades | Variable Name |  | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Not Very Active | 12 | (Main) | CVD-NOT | 1 |  | 1 |
| in These 2 Areas |  |  |  | 0 |  | 0 |
| of Civics |  |  |  |  |  |  |
| At Least Some | 12 | (Main) | RDDIF | 1 |  | 1 |
| Reading or Missing |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

* Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

577

Table C-7
Contrast Codings for Civics Trend Conditioning Variables

| Conditioning Variable | Ages | Year | Variable Name | Variable Coding | Contrast Coding |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Gender | 13, 17 | 1976 | SEX | 1 Male | 0 |
|  |  |  |  | 2 Female | 1 |
|  |  | 1982 | SEX | see 1976-SEX |  |
|  |  | 1988 | DSEX | see 1976-SEX |  |
| Ethnicity | 13, 17 | 1976 | COLLRACE | 1 White | 000 |
|  |  |  |  | 2 Black | 100 |
|  |  |  |  | 3 Hispanic | 010 |
|  |  |  |  | 4 Other | 001 |
|  |  |  |  | BLK missing | 001 |
|  |  | 1982 | COLLRACE | see 1976-COLLRACE |  |
|  |  | 1988 | RACE | 1 White | 000 |
|  |  |  |  | 2 Black | 100 |
|  |  |  |  | 3 Hispanic | 010 |
|  |  |  |  | 4 Asian Am. | 001 |
|  |  |  |  | 5 Am . Ind. | 001 |
|  |  |  |  | 6 Unclass. | 001 |
|  |  |  |  | Blk,miss | 001 |
| STOC | 13, 17 | 1976 | STOC | 2 Low Metro | 00 |
|  |  |  |  | 3 High Metro | 10 |
|  |  |  |  | 1,4-7,miss | 01 |
|  |  | 1982 | STOC | see 1976-STOC |  |
|  |  | 1988 | STOC | see 1976-STOC |  |
| Region | 13, 17 | 1976 | REGOBE | 1 Northeast | 000 |
|  |  |  |  | 2 Southeast | 1.00 |
|  |  |  |  | 3 Central | 010 |
|  |  |  |  | 4 West | 001 |
|  |  | 1982 | REGOBE | see 1976-REGOBE |  |
|  |  | 1988 | REGION | see 1976-REGOBE |  |

[^109]Table C-7 (continued)
Contrast Codings for Civics Trend Conditioning Variables

| Conditioning Vaxiable | Ages | Year | Variable Name | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Parents' Ed. | 13, 17 | 1976 | PAREE | l < hs | 000 |
|  |  |  |  | 2 hs grad | 100 |
|  |  |  |  | 3 post-hs | 010 |
|  |  |  |  | Blk,miss | 001 |
| Parents' Ed. 2 | 13, 17 | 1982 | PPARED | $1<\mathrm{hs}$ | 0000 |
|  |  |  | (derived) | 2 hs grad | 1000 |
|  |  |  |  | 3 post-hs | 0100 |
|  |  |  |  | 4 col grad | 0010 |
|  |  |  |  | Blk,miss, don't know | 0001 |
|  |  | 1988 | PARED | $1<\mathrm{hs}$ | 0000 |
|  |  |  |  | 2 hs grad | 1000 |
|  |  |  |  | 3 post-hs | 0100 |
|  |  |  |  | 4 col grad | 0010 |
|  |  |  |  | Blk,miss, don't know | 0001 |
| Items in the Home | 13, 17 | 1976 | HOMEENV | $10-2$ jtems | 00 |
|  |  |  |  | 23 items | 10 |
|  |  |  |  | 34 items | 01 |
|  |  |  |  | Blk, miss, don't know | 00 |
|  |  | 1982 | HOMEENV | see 1976-HOMEENV |  |
|  |  | 1988 | HOMEEN2 | see 1976-HOMEENV |  |

[^110]Table C-7 (continued)
Contrast Codings for Civics Trend Conditioning Variables

| Conditioning Variable | Ages | Year | $\begin{gathered} \text { Variable } \\ \text { Name } \end{gathered}$ | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TV Watching | 13, 17 | 1982 | $\begin{aligned} & \text { not avail. } \\ & \text { E07.5301 } \end{aligned}$ | 1 none | 000 |
|  |  |  |  | 21 hr , less | 101 |
|  |  |  |  | 31 hr | 101 |
|  |  |  |  | 42 hrs | 204 |
|  |  |  |  | 53 hrs | 309 |
|  |  |  |  | 64 hrs | 416 |
|  |  |  |  | 75 hrs | 525 |
|  |  |  |  | 86 or more | 63 з |
|  |  |  |  | Blk,miss | $3 \underline{09}$ |
|  |  | 1988 | B001801 | 1 none | 000 |
|  |  |  |  | 21 hr , less | 101 |
|  |  |  |  | 32 hrs | 204 |
|  |  |  |  | 43 hrs | 309 |
|  |  |  |  | 54 hrs | 416 |
|  |  |  |  | 65 hrs | 525 |
|  |  |  |  | 76 or more | 636 |
|  |  |  |  | Blk,miss | 309 |
| Home Language Minority | 13 |  |  |  |  |
|  |  | 1982 | E075602 | 1 never |  |
|  |  |  |  | 2 sometimes | 1 |
|  |  |  |  | 3 often | 1 |
|  |  |  |  | Blk,miss | 0 |
|  |  | 1988 | B003201 | 1 never | 0 |
|  |  |  |  | 2 sometimes | 1 |
|  |  |  |  | 3 always | 1 |
|  |  |  |  | Blk,miss | 0 |
|  | 17 | 1976 | OTHLANG | 1 often | 1 |
|  |  |  |  | 2 sometimes | 1 |
|  |  |  |  | 3 never | 0 |
|  |  |  |  | Blk,miss | 0 |
|  |  | 1982 | E07560? | see 1976-OTHLANG |  |
|  |  | 1988 | B00320, | 1 never | 0 |
|  |  |  |  | 2 sometimes | 1 |
|  |  |  |  | 3 always | 1 |
|  |  |  |  | Blk,miss | 0 |

[^111]Table C. 7 (continued)
Contrast Codings for Civics Trend Conditioning Variables

| Conditioning Variable <br> Ages | Year | $\begin{gathered} \text { Variable } \\ \text { Name } \end{gathered}$ | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: |
| Homework 13, 17 | 1976 | not avail. |  |  |
|  | 1982 | E075801 | 1 don't have | 100 |
|  |  |  | 2 don't do | 010 |
|  |  |  | $3<1 \mathrm{hr}$ | 011 |
|  |  |  | $4 \mathrm{l}-2 \mathrm{hrs}$ | 012 |
|  |  |  | $5>2 \mathrm{hrs}$ | 013 |
|  |  |  | Blk,miss | 000 |
|  | 1988 | B003901 | 1 don't have | 100 |
|  |  |  | 2 den 't do | 010 |
|  |  |  | $31 / 2 \mathrm{hr}$ | 011 |
|  |  |  | 41 hr | 012 |
|  |  |  | 52 hrs | 012 |
|  |  |  | $6>2 \mathrm{hrs}$ | 013 |
|  |  |  | B] $k$, miss | 000 |
| \% White in School 13, 17 | 1976 | PCTWHITE | 1 none | 10 |
|  |  |  | $20-9 \%$ | 10 |
|  |  |  | 3 10-13\% | 10 |
|  |  |  | 4 20-29\% | 10 |
|  |  |  | 5 30-39\% | 10 |
|  |  |  | 6 40-49\% | 10 |
|  |  |  | 7 50-59\% | 01 |
|  |  |  | 8 60-69\% | 01 |
|  |  |  | 9 70-79\% | 01 |
|  |  |  | 10 80-89\% | 00 |
|  |  |  | 11 90-99\% | 00 |
|  |  |  | 12 100\% | 00 |
|  |  |  | Blk,miss | 00 |
|  | 1982 | PCTWHITE | $0-49$ white minor. | 10 |
|  |  |  | 50-79 integ. | 01 |
|  |  |  | 80-100 white | 00 |
|  |  |  | Elk, miss | 00 |
|  | 1988 | PCTWHT | see 1982-PCTWHITE |  |

[^112]Table C-7 (continued)
Contrast Codings for Civics Trend Conditioning Variables

| Conditioning Variable | Ages | Year | $\begin{gathered} \text { Variable } \\ \text { Name } \end{gathered}$ | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Grade | 13 | 1976 | COLLGRD | $1<$ modal gr | 00 |
|  |  |  |  | 27 th gr | 00 |
|  |  |  |  | 3 8th gr | 10 |
|  |  |  |  | $4>$ modal gr | 01 |
|  |  | 1982 | COLLGRD | see 1976-COLLGRD |  |
|  |  | 1988 | MODGRD | 1 < modal gr | 00 |
|  |  |  |  | 28 th gr | 10 |
|  |  |  |  | $3>$ modal gr | 01 |
|  | 17 | 1976 | COLLGRD | $1<$ modal gr | 00 |
|  |  |  |  | 2 10th gr | 00 |
|  |  |  |  | 3 llth gr | 10 |
|  |  |  |  | $4>$ modal gr | 01 |
|  |  | 1982 | COLLGRD | see 1976-COLLGRD |  |
|  |  | 1988 | MODGRD | 1 < modal gr | 00 |
|  |  |  |  | 2 llth gr | 10 |
|  |  |  |  | $3>$ modal gr | 01 |
| Public v. <br> Private School | 13, 17 | 1976 |  |  |  |
|  |  |  | PUBPRVSC | 1 public | 0 |
|  |  |  |  | 2 other | 1 |
|  |  |  |  | Blk,miss | 1 |
|  |  | 1988 | SCHTYPE | 1 public | 0 |
|  |  |  |  | 2 private | 1 |
|  |  |  |  | 3 Catholic | 1 |
|  |  |  |  | 4 B . Ind. | 1 |
|  |  |  |  | 5 D. Defense | 1 |
|  |  |  |  | Blk, niiss | 1 |

[^113]Table C-7 (continued)
Contrast Codings for Civics Trend Conditioning Variables

| Conditioning Variable | Ages | Year | Var:iable Name | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Grades in School | 13 | 1976 | $\begin{aligned} & \text { not avail. } \\ & \text { E075901 } \end{aligned}$ |  |  |
|  |  | 1982 |  | 1 A | 4.0 |
|  |  |  |  | $2 \mathrm{~A}-\mathrm{B}$ | 3.5 |
|  |  |  |  | 3 B | 3.0 |
|  |  |  |  | $4 \mathrm{~B}-\mathrm{C}$ | 2.5 |
|  |  |  |  | 5 C | 2.0 |
|  |  |  |  | $6 \mathrm{C}-\mathrm{D}$ | 1.5 |
|  |  |  |  | 7 D | 1.0 |
|  |  |  |  | $8<$ D | 0.5 |
|  |  |  |  | Blk, miss | 2.0 |
|  |  | 1988 | B005401 | see 1982-E075901 |  |
|  | 17 | 1976 | GRADES | 1 A | 4.0 |
|  |  |  |  | $2 \mathrm{~A}-\mathrm{B}$ | 3.5 |
|  |  |  |  | 3 B | 3.0 |
|  |  |  |  | $4 \mathrm{~B}-\mathrm{C}$ | 2.5 |
|  |  |  |  | 5 C | 2.0 |
|  |  |  |  | 6 C-D | 1.5 |
|  |  |  |  | 7 D | 1.0 |
|  |  |  |  | $8<$ D | 0.5 |
|  |  |  |  | Blk, miss | 2.0 |
|  |  | 1982 | E075901 | see 1976-GRADES |  |
|  |  | 1988 | B005401 | see 1976-GRADES |  |
| H.S. Program | 17 | 1976 | HSPROG |  | 00 |
|  |  |  |  | 2 col prep | 10 |
|  |  |  |  | 3 agriculture | 01 |
|  |  |  |  | 4 business | 01 |
|  |  |  |  | 5 distributive | 01 |
|  |  |  |  | 6 health | 01 |
|  |  |  |  | 7 home ec | 01 |
|  |  |  |  | 8 industrial | 01 |
|  |  |  |  | Blk,miss | 00 |
|  |  | 1982 | E076001 | 1 general | 00 |
|  |  |  |  | 2 col prep | 10 |
|  |  |  |  | 3 vocational | 01 |
|  |  |  |  | Blk,miss | 00 |
|  |  | 1988 | B005001 | see 1982-E076001 |  |

[^114]Table C-7 (continued)
Contrast Codings for Civics Trend Conditioning Variables

| Co:vitioning Tariable | Ages | Year | Variable Name | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Is:rues in courses | 17 | 1976 | E141801 | 1 true | 10 |
|  |  |  |  | 2 somewhat | 01 |
|  |  |  |  | 3 not true | 00 |
|  |  |  |  | Blk,miss | 01 |
|  |  | 1982 | not avail. |  |  |
|  |  | 1988 | P802501 | see 1976-E141801 |  |
| Politics in courses | 17 | 1976 | E141802 | 1 true | 10 |
|  |  |  |  | 2 somewhat | 01 |
|  |  |  |  | 3 not true | 00 |
|  |  |  |  | Blk,miss | 01 |
|  |  | 1982 | not avail. |  |  |
|  |  | 1988 | P802601 | see 1976-E141802 |  |
| Nothing new | 17 | 1976 | E141803 | 1 true | 10 |
|  |  |  |  | 2 somewhat | 01 |
|  |  |  |  | 3 not true | 00 |
|  |  |  |  | Blk,miss | 01 |
|  |  | 1982 | not avail. |  |  |
|  |  | 1988 | P802701 | see 1976-E141803 |  |
| Knowledge to Participate | 17 | 1976 | E141804 | 1 true | 10 |
|  |  |  |  | 2 somewhat | 01 |
|  |  |  |  | 3 not true | 00 |
|  |  |  |  | Blk,miss | 01 |
|  |  | 1982 | not avail. |  |  |
|  |  | 1988 | P802801 | see 1976-E1418C4 |  |
| National Discussions | 17 | 1976 | E141401 | 1 every day | 100 |
|  |  |  |  | 2 1-2/wk. | 010 |
|  |  |  |  | 3 3-4/month | $0 \cdot \mathrm{i}$ |
|  |  |  |  | 4 hardly ever | 000 |
|  |  |  |  | Blk,miss | 010 |
|  |  | 1.982 | not avail. |  |  |
|  |  | 1988 | P802901 | see 1976-E141401 |  |

[^115]Table C-7 (continued)
Contras: Codings fer Civics Trend Conditioning Variables

| Conditioning Variable | Ages | Year: | Variable Name | Variabie Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| International | 17 | 1976 | E141402 | 1 every day | 100 |
| Discussions |  |  |  | 2 1-2/wk. | 010 |
|  |  |  |  | 3 3-4/month | 001 |
|  |  |  |  | 4 hardly ever | 000 |
|  |  |  |  | Blk,miss | 010 |
|  |  | $\begin{aligned} & 1982 \\ & 1988 \end{aligned}$ | not avail. p8.33001 | see 1976-E141402 |  |

* Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated is one contrast.

Table C-8
Contrast Codings for 1988 U.S. History Cross-sectional Conditioning Variables

| Conditioning Variable | $\begin{gathered} \text { Age } \\ \text { Classes } \end{gathered}$ | Variable Name | Variable Con <br> Coding $\underline{\text { Co }}$ | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: |
| How often have social studies class | 9 | HIS TAKE | Never, hardly ever or missing <br> Less than unce a week Cnce or twice a week Three or four times a week Every day |  |
| Ever studied history of our country | 9 | STUD.HIS | No or missing Yes | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ |
| Studied early explorers | 9 | STUD.EXP | Not at all or missing Some <br> A lot | $\begin{array}{r} \mathrm{ng} \\ \begin{array}{l} 0 \\ 1 \\ 2 \end{array} \end{array}$ |
| Studied Insians | 9 | STUD.IND | Not at all or missing Some <br> A lot | $\begin{array}{r} \mathrm{ng} \\ \begin{array}{l} 0 \\ 1 \\ 2 \end{array} \end{array}$ |
| Studied pilgrims | 9 | STUD. PIL | Not at all or missing Some <br> A lot | $\begin{array}{r} \mathrm{ng} \begin{array}{l} 0 \\ 1 \\ 2 \end{array}, ~ \end{array}$ |
| Studied George Washington | 9 | STUD.GW | Not at all or missing Some <br> A lot | $\begin{array}{r} \mathrm{ng} \begin{array}{l} 0 \\ 1 \\ 2 \end{array}, ~ \end{array}$ |
| Studied pioneers | 9 | STUD. PIO | Not at all ar missing Some <br> A lot | $\begin{array}{r} \text { ng } \\ 1 \\ 2 \end{array}$ |
| Studied slavery | 9 | STUD.SLA | Not at all or missing ©ome <br> A lot | $\begin{array}{r} \text { ng } \begin{array}{r} 0 \\ 1 \\ 2 \end{array}, ~ \end{array}$ |
| Studied people who invent things and make nek discoveries | 9 | STUI). INV | Not at all or missing Some <br> A lot | $\begin{array}{r} \text { ng } 0 \\ 1 \\ 2 \end{array}$ |

[^116]Table C-8 (continued)
Contrast Codings for 1988 U.S. History Cross-sectional Conditioning Varishles

| Conditioning Variable | $\begin{gathered} \text { Age } \\ \text { Classes } \\ \hline \end{gathered}$ | Variable Name | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: |
| Study U.S. Eistory in grades 5, 6, 7, 8 | 13 | HIS TAKE | Not studied <br> Studied in 1 grade <br> Studied in 2 grades <br> Studied in 3 grades <br> Studied in 4 grades | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ |
| Studied early periods of U.S. history | 13 | EARLY H | Not at all Some <br> A lot | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ |
| Studied later periods of U.S. history | 13 | POST CH | Not at all <br> Some <br> A lot | $\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$ |
| Social studies teacher asks you to do things | 13 | TEACH H | Never <br> Few times a year Once or twice a mont Once or twice a week Almost every day | $\begin{array}{r} 0 \\ 1 \\ 1 \\ \text { th } 2 \\ k \quad 3 \\ 4 \end{array}$ |
| Difficulty reading social studies textbook | 13 | TEXTBOOK | None Some A lot | $\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$ |
| Study ,.3. history in grade 9, 10, 11, 12 | 17 | HIS TAKE | Not studied <br> Studied in 1 grade <br> Studied in 2 grades <br> Studied in 3 grades <br> Studied in 4 grades | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ |
| U.S. history coursework completed | 17 | HIS COUR | None <br> < half a year <br> Half a year <br> Half a year to 1 yea <br> One year <br> More than one year | $\begin{array}{r} \overline{00} \\ 25 \\ 50 \\ \text { ar } \quad 75 \\ 100 \\ 200 \end{array}$ |

Table C-8 (continued)
Contrast Codings for 1988 U.S. History Cross.sectional Conditioning Variables

| Conditioning Variable | $\begin{gathered} \text { Age } \\ \text { Classes } \\ \hline \end{gathered}$ | Variable Name | Variable Coding | Contrast Goding* |
| :---: | :---: | :---: | :---: | :---: |
| Studied early periods of U.S. history | 17 | AM HIST | Not at all | 0 |
|  |  |  | Some | 1 |
|  |  |  | A lot | 2 |
| Studicd later periods of U.S. history | 17 | WORLD H | Not at all | 0 |
|  |  |  | Some | 1 |
|  |  |  | A lot | 2 |
| Studied minorities and women | 17 | MIN/WOM | Not at all | 0 |
|  |  |  | Some | 1 |
|  |  |  | A lot | 2 |
| Like studying U.S. history | 17 | LIKE H | Never studied | 0 |
|  |  |  | Lik.e other subjects better | 1 |
|  |  |  | Interesting | 2 |
|  |  |  | One of favorites | 3 |
| Ever had U.S. history | 17 | HAD HIST | No | 0 |
|  |  |  | Yes | 1 |
| Time spent each week on U.S. history homework | 17 | HOMEWK H | None assigned | 0 |
|  |  |  | Haven't done it | 0 |
|  |  |  | Less than 1 hour | . 5 |
|  |  |  | 1 hour | 1 |
|  |  |  | 2 hours | 2 |
|  |  |  | 3 hours | 3 |
|  |  |  | 4 hours | 4 |
|  |  |  | 5 hours or more | 5 |
| Grades in U.S. history | 17 | grades H | Mostly A | 4.0 |
|  |  |  | Half A and helf B | 3.5 |
|  |  |  | Mostly B | 3.0 |
|  |  |  | Half B and half C | 2.5 |
|  |  |  | Mostly C | 2.0 |
|  |  |  | Half C and half D | 1.5 |
|  |  |  | Mostly D | 1.0 |
|  |  |  | Mostly below D | 0.0 |

[^117]Table C-8 (continued)
Contrast Codings for 1988 U.S. History Cross-secticnal Conditioning Variables

| Conditioning Variable | $\begin{gathered} \text { Age } \\ \text { Classes } \\ \hline \end{gathered}$ | Variable Vame | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: |
| Teacher asks you to do things in class | 17 | TEACH/H | Never | 0 |
|  |  |  | Few times a year | 1 |
|  |  |  | Once or twice a mont | th 2 |
|  |  |  | Once or twice a weak | k 3 |
|  |  |  | Almost every day | 4 |
| Difficult reading | 17 | TEXTBOOK | None | 0 |
| U.S. history textbook |  |  | Some | 1 |
|  |  |  | A lot | 2 |

* Multicolumn entries without overbars indicate multiple contrasts. Barred colusans treated as one contrast.

Table C-9
Contrast Codings for 1988 Geography Cross-sectional Conditioning Variables

| Conditioning Variable | $\begin{gathered} \text { Age } \\ \text { Classes } \end{gathered}$ | Variable Name | Variaule Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: | :---: |
| Take geography course in grades 9, 10, 11, 12 | 17 | GEO TAKE | Not take | 0 |
|  |  |  | Take in 1 grade | 1 |
|  |  |  | Take in 2 grades | 2 |
|  |  |  | Take in 3 grades | 3 |
|  |  |  | Take in 4 grades | 4 |
| Studied physical geography | 17 | PHYSICAL | Not at all | 0 |
|  |  |  | Very little | 1 |
|  |  |  | Some | 2 |
|  |  |  | A lot | 3 |
| Studied socia? geography | 17 | SOCIAL, | Not at all | 0 |
|  |  |  | Very little | 1 |
|  |  |  | Some | 2 |
|  |  |  | A lot | 3 |
| World history and geography coursework | 17 | W HIS/G | No, haven't taken | 0 |
|  |  |  | Yes | 1 |
| State/regional geography coursework | 17 | STAT/REG | No, haven't taken | 0 |
|  |  |  | Yes | 1 |
| U.S. geography coursework | 17 | US GEO | No, haven't taken | 0 |
|  |  |  | Yes | 1 |
| U.S. history and geography coursework | 17 | US H/G | No, haven't taken | 0 |
|  |  |  |  | Yesl |
| Physical geography soursework | 17 | PHY/GEO | No, haven't taken | 0 |
|  |  |  | Yes | 1 |
| Economic and political geography cnursework | 17 | ECON/P | No, haven't taken | 0 |
|  |  |  |  | Yesl |
| Human and cultural geography coursework | 17 | HIM/CULT | No, haven't taken | 0 |
|  |  |  | Yes | 1 |
| Urban geography coursework | 17 | URBAN G | No, huven't taken | 0 |
|  |  |  | Yes | 1 |

[^118]Table C-10
Contrast Codings for 1988 Mathematics Trend Conditioning Variables

| Conditioning Variable | $\begin{gathered} \text { Age } \\ \text { Classes } \\ \hline \end{gathered}$ | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: |
| Overall | All | --- | 1 |
| Gender | All | 1 Male | 0 |
|  |  | 2 Female | 1 |
| Observed Race | All | 1 White | 000 |
|  |  | 2 Black | 100 |
|  |  | 3 Hispanic | 010 |
|  |  | 4 Asian American | 001 |
|  |  | 5 American Indian | 000 |
|  |  | 6 Other | 000 |
|  |  | BLK Missing | 000 |
| STOC | All | 1,4-7 all except $2 \& 3$ | 00 |
|  |  | 2 low metro | 10 |
|  |  | 3 high metro | 01 |
| Region | All | 1 Northeast | 000 |
|  |  | 2 Southeast | 100 |
|  |  | 3 Central | 010 |
|  |  | 4 West | 001 |
| Parents' Education | All | 1 - High school | 0000 |
|  |  | 2 - High school | 1000 |
|  |  | $3>$ High school | 0100 |
|  |  | 4 Graduated College | 0010 |
|  |  | 5 Unknown, missing | 0001 |
| Modal grade | All | $1<$ modal grade | 10 |
|  |  | 2 - modal grade/missing | 00 |
|  |  | $3>$ modal grade | 01 |
| Items in the Home | All | 1 0-2 items | 00 |
|  |  | 23 items | 10 |
|  |  | 34 items | 01 |

[^119]Table C-10 (continued)
Contrast Codings for 1988 Mathematics Trend Conditioning Variables


[^120]
## Table C-10 (continued)

Contrast Codings for 1988 Mathematics Trend Conditioning Variables

| Conditioning Variable | $\begin{gathered} \text { Age } \\ \text { Classes } \end{gathered}$ | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: |
| TV Watching | All | 1-3 0-2 hours | 100 |
|  |  | 4-6 3-5 hours | 010 |
|  |  | $76+$ hours | 001 |
|  |  | missing | 000 |
| Homework | 13.17 | 1 None assigned | 100 |
|  |  | $2 \mathrm{Dj} \mathrm{dn}^{\prime} \mathrm{t}$ do | 010 |
|  |  | $31 / 2$ hour or less | 012 |
|  |  | 41 hour | 013 |
|  |  | 52 hours | 014 |
|  |  | 6 More than 2 hours | 000 |
|  |  | missing | 000 |
| Language in the Home | 9 | 1 Never | 00 |
|  |  | 2 Sometimes | 10 |
|  |  | 3 Always | 01 |
|  | 13,17 | 1 Never | 00 |
|  |  | 2 Occasionally | 01 |
|  |  | 3 About half the time | 01 |
|  |  | 4 Most of the time | 10 |
|  |  | 5 Always | 10 |
| Observed Race x Language in the Home | All | 1 White, Often | 000000 |
|  |  | 2 White, Sometimes | 000000 |
|  |  | 3 White, Never | 000000 |
|  |  | 4 Black,Often | 100000 |
|  |  | 5 Black, Sometimes | 010000 |
|  |  | 6 Black, Never | 000000 |
|  |  | 7 Hispanic, Often | 001000 |
|  |  | 8 Hispanic, Some | 000100 |
|  |  | 9 Hispanic, Never | 000000 |
|  |  | 10 Asian Am., Often | 000010 |
|  |  | 11 Asian Am., Some | 000001 |
|  |  | 12 Asian Am., Never | 000000 |

[^121]Table C-10 (continued)
Contrast Codings for 1988 Mathematics Trend Conditioning Variables

| Conditioning Variable | $\begin{gathered} \text { Age } \\ \text { Classes } \end{gathered}$ | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: |
| NMATH | 17 | 3. Pre-Algebra | 10000 |
|  |  | 2 Algebra | 01000 |
|  |  | 3 Geometry | 00100 |
|  |  | 4 Algebra 2 | 00010 |
|  |  | 5 Calculus | 00001 |
|  |  | 6 Something Else | 00000 |
| Computer Prog. | 17 | 1 Taken | 1 |
| Class |  | 2 Not Taken | 0 |
| Grades | 13,17 | 1 A | $\overline{4.0}$ |
|  |  | $2 \mathrm{~A}-\mathrm{B}$ | 3.5 |
|  |  | 3 B | 3.0 |
|  |  | $4 \mathrm{~B}-\mathrm{C}$ | 2.5 |
|  |  | 5 C | 2.0 |
|  |  | $6 \mathrm{C}-\mathrm{D}$ | 1.5 |
|  |  | 7 D | 1.0 |
|  |  | 8 < D | 0.5 |
|  |  | Missing | 2.0 |
| Type of Math Class | 13 | 1 None | 000 |
|  |  | 2 Regular Math | 100 |
|  |  | 3 Pre-Algebra | 010 |
|  |  | 4 Algebra | 001 |
|  |  | 5 Other | 001 |
|  |  | Missing | 000 |
| tre You Studying | 9,13 | 1 Yes | 1 |
| Computers |  | 2 No | 0 |
| High Schocl Program | 17 | 1 General | 00 |
|  |  | 2 College Preparatory | 10 |
|  |  | 3 Vocational,Technical | 01 |
|  |  | missing | 00 |

[^122]Contrast Codings for 19 s8 Mr thematics Trend Conlitioning Variables

| Conditioning Variable | $\begin{gathered} \text { Age } \\ \text { Classes } \end{gathered}$ | Varfable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: |
| Derived Race | All | 1 White | 000 |
|  |  | 2 Black | 100 |
|  |  | 3 Hispanic | 010 |
|  |  | 4 Asian American | 001 |
|  |  | 5 Other | 000 |
|  |  | missing | 000 |

* Multicolumn entries without overbars indicate multipie contrasts. Barred columns treated as one contrast.

Table C-11
Contrast Codings for 1988 Science Trend Conditioning Variables

| Conditioning Variable | $\begin{gathered} \text { Age } \\ \text { Classes } \end{gathered}$ | Variable Coding | Contrast Coding* |
| :---: | :---: | :---: | :---: |
| Overall | All | --- | 1 |
| Gender | All | 1 Male | 0 |
|  |  | 2 Female | 1 |
| Observed Race | All | 1 White | 000 |
|  |  | 2 Black | 100 |
|  |  | 3 Hispanic | 010 |
|  |  | 4 Asian American | 001 |
|  |  | 5 American Indian | 000 |
|  |  | 6 Other | 000 |
|  |  | BLK Missing | 000 |
| STOC | All | 1,4-7 all except $2 \& 3$ | 00 |
|  |  | 2 low metro | 10 |
|  |  | 3 high metro | 01 |
| Region | All | 1 Northeast | 000 |
|  |  | 2 Southeast | 100 |
|  |  | 3 Central | 010 |
|  |  | 4 West | 001 |
| Parents' Erucation | All | $1<$ High school | 0000 |
|  |  | 2 - High school | 1000 |
|  |  | $3>$ High school | 0100 |
|  |  | 4 Graduated College | 0010 |
|  |  | 5 Unknown, missing | 0001 |
| hodal grade | All | 1 < modal grade | 10 |
|  |  | 2 - modal grade/missing | 00 |
|  |  | $3>$ modal grade | 01 |
| Items in the Home | All | $10-2$ items | 00 |
|  |  | 23 items | 10 |
|  |  | 34 items | 01 |
| School Type | All | 1 Public | 0 |
|  |  | 2 Private | 1 |
|  |  | 3 Catholic | 1 |
|  |  | 4 Bureau Indian Affairs | 1 |
|  |  | 5 Department of Defense | 1 |

[^123]Tables C-12 through C-43
ESTIMATED EFFECTS FOR 1988 NAEP CONDITIONING VARIABLES

Table C-12
Estimated Effects for Reading Cross-sectional Conditioning Variables 1988 Focused-BIB Sample, Grade 4/Age 9

|  | Variable | Estimated Effect | Description |
| :---: | :---: | :---: | :---: |
| 1 | OVERALL | -3.493459 | OVERALL CONSTANT 'l' FOR EVERYONE |
| 2 | GENDER2 | 0.088505 | SEX (FEMALE) |
| 3 | ETHNIC2 | -0.293405 | OBSERVED ETHNICITY (BLACK) |
| 4 | ETHNIC3 | -0.316179 | OBSERVED ETHNICITY (HISPANIC) |
| 5 | ETHNIC4 | 0.010243 | OBSERVED ETHNICITY (ASIAN) |
| 6 | STOC2 | 0.293781 | SIZE AND TYPE CF COMMUNITY (HIGH METRO) |
| 7 | STOC3 | 0.096133 | SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) |
| 8 | REGION2 | 0.075012 | REGION (SOUTHEAST) |
| 9 | REGION3 | 0.009300 | REGION (CENTRAL) |
| 10 | REGION4 | 0.027525 | REGION (WEST) |
| 11 | PARED2 | 0.344202 | PARENTS EDUCATION (HIGH SCHOOL GRAD) |
| 12 | PARED3 | 0.509880 | PARENTS EDUCATION (POST HIGH SCHOOL) |
| 13 | PARED4 | 0.438445 | Parents Education (COLLEGE GRad) |
| 14 | PARED | 0.314739 | PARENTS EDUCATION (MISSING, I DON'T KNOW) |
| 15 | HOMEITM3 | 0.111460 | ARTICLES IN HOME (YES TO 3) |
| 16 | HOMEITM4 | 0.161661 | ARTICLES IN HOME (YES TO 4) |
| 17 | TV. 1 | 0.209353 | TV WATCHING |
| 18 | TV. 2 | -0.034422 | TV WATCHING |
| 19 | HOMELNG1 | -0.020347 | OTHER LANGUAGE AT HOME (SOMETIMES, ALWAYS) |
| 20 | HW-NO | 0.220639 | HOMEWORK (NONE ASSIGNED) |
| 21 | HW-YES | 0.222398 | HOMEWORK (YES - SOME AMOUNT) |
| 22 | HW-2345 | 0.006786 | HOMEWORK AMOUNT (LINEAR) |
| 23 | \%LUNCH 1 | -0.001664 | PERCENT IN LUNCH PROGRAM |
| 24 | \%LIJNCH 2 | -0.123354 | MISSING LUNCH PROGRAM |
| 25 | \%WHITE 1 | -0.054569 | WHITE MINORITY |
| 26 | \%WHITE 2 | -0.031799 | INTEGRATED |
| 27 | AGE/GRDl | -0.604877 | MODAL AGE, < MODAL GRADE |
| 28 | AGE/GRD2 | 0.010017 | MODAL AGE, MODAL GRADE, MISSING |
| 29 | AGE/GRD3 | 0.544105 | MODAL AGE, > MODAL GRADE |
| 30 | AGE/GRD4 | -0.193332 | > MODAL AGE, MODAL GRADE |
| 31 | SCH.TYPE | 0.182076 | PUBLIC V. PRIVATE SCHOOLS |
| 32 | H/HOMEWK | -0.106614 | HELP WITH HOMEWORK (EVERY DAY, TWICE A WEEK) |
| 33 | PRESCH | 0.173482 | WENT TO PRESCHOOL |
| 34 | PAR/HOME | 0.018582 | SINGLE/MULTIPLE PARENT (MULTIPLE) |
| 35 | MOTH/H: M | 0.268381 | MOTHER AT HOME (YES) |
| 36 | MOTH/WRK | -0.065688 | MOTHER WORK OUTSIDE HOME (YES) |
| 37 | GRWN HOM | 0.098832 | GROWNUP AT HOME RIGHT AFTER SCHOOL |
| 38 | PAGE/RD1 | 0.129134 | PAGES A DAY READ (6 AND UP) |
| 39 | PAGE/RD2 | -0.000352 | Pages a day rend (ll and up) |
| 40 | RDGCOMP1 | 0.0953 - | READING COMPOSITE \# 1 |
| 41 | RDGCOMP2 | 0.060951 | READING COMPOSITE \# 1 |
| (con | nued) |  |  |

Table C-12 (continued)
Estimated Effects for Reading Cross-sectional Conditioning Variables 1988 Focused-BIB Sample, Grade 4/Age 9

|  | Estimated <br> Effect |  |  |
| :--- | :---: | ---: | :--- |
|  | Variable | Description |  |
| 42 | RDGBKGD1 | 0.110859 | READING BACKGROUND $\# 1$ |
| 43 | RDGBKGD2 | 0.005445 | READING BACKGROUND $\# 2$ |
| 44 | RDGBKGD3 | 0.016781 | READING BACKGROUND $\# 3$ |
| 45 | RDGBKGD4 | 0.097556 | READING BACKGROUND $\# 4$ |
| 46 | RDGBKGD5 | -0.072348 | READING BACKGROUND $\# 5$ |
| 47 | RDGBKGD6 | 0.009887 | READING BACKGROUND $\# 6$ |
| 48 | RDGBKGD7 | -0.033549 | READING BACKGROUND $\# 7$ |
| 49 | RDGBKGD8 | 0.065660 | READING BACKGROUND $\# 8$ |
| 50 | RDGBKGD9 | 0.27 .768 | READING BACKGROUND $\# 9$ |
| 51 | RDGBKG10 | 0.026865 | READING BACKGROUND $\# 10$ |

Table C-13

Estimated Effects for Reading Cross-sectional Conditioning Variables 1988 Intercorrelation Sample, Grade 4/Agc 9

|  | Variable | Estimated Effect | Description |
| :---: | :---: | :---: | :---: |
| 1 | OVERALL | -1.703461 | OVERALL CONSTANT 'l' FOR EVERYONE |
| 2 | GENDER2 | 0.296941 | SEX (FEMALE) |
| 3 | ETHNIC2 | -0.349340 | OBSERVED ETHNICITY (BLACK) |
| 4 | ETHNIC3 | -0.361704 | OBSERVED ETHNICITY (HISPANIC) |
| 5 | ETHNIC4 | 0.232422 | OBSERVED ETHNICITY (ASIAN) |
| 6 | STOC2 | 0.519909 | SIZE AND TYPE OF COMMUNITY (HIGH METRO) |
| 7 | ST0C3 | 0.168985 | SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) |
| 8 | REGION2 | 0.176519 | REGION (SOUTHEAST) |
| 9 | REGION3 | 0.096705 | REGION (CENTRAL) |
| 10 | REGION4 | 0.053068 | REGION (WEST) |
| 11 | PARED2 | 0.108159 | PARENTS EDUCATION (HIGH SCHOOL GRAD) |
| 12 | PARED3 | 0.440773 | PARENTS EDUCATION (POST HIGH SCHOOL) |
| 13 | PARED 4 | 0.407230 | PARENTS EDUCATION (COLLEGE GRAD) |
| 14 | PARED | 0.081511 | PARENTS EDUCATION (MISSİNG, I DON'T KNOW) |
| 15 | HOMEITM3 | 0.090329 | ARTICLES IN HOME (YES TO 3) |
| 16 | HOMEITM4 | 0.164800 | ARTICLES IN HOME (YES TO 4) |
| 17 | TV. 1 | 0.306408 | TV WATCHING |
| 18 | TV. 2 | -0.045694 | TV WATCHING |
| 19 | HOMELNG1 | -0.006770 | OTHER LANGUAGE AT . ME (SOMETIMES, ALWA ${ }^{\text {S }}$ ) |
| 20 | HW-NO | -0.17¢979 | HOMEWORK (NONE ASSIGNED) |
| 21 | HW-YES | -0.187228 | HOMEWORK (YES - SOME AMOUNT) |
| 22 | HW-2345 | -0.004841 | HOMEWORK AMOUNT (LINEAR) |
| 23 | \%LUNCH 1 | -0.003672 | PERCENT IN LUNCH PROGRAM |
| 24 | \%LUNCH 2 | -0.112552 | MISSING LUNCH PROGRAM |
| 25 | zwhite 1 | -0.096829 | WHITE MINORITY |
| 26 | xWHITE 2 | -0.104274 | INTEGRATED |
| 27 | AGE/GRD1 | -0.636146 | MODAL AGE, < MODAL GRADE |
| 28 | AGE/GRD2 | 0.015431 | MODAL AGE, MODAL GRADE, MISSING |
| 29 | AGE/GRD3 | 0.196052 | MODAL AGE, > MODAL GRADE |
| 30 | AGE/GRD4 | -0.188559 | > MODAL AGE, MODAL GRADE |
| 31 | SCH.TYPE | 0.041692 | PUBLIC V. PRIVATE SCHOOLS |
| 32 | H/HOMEWK | -0.260.51.6 | HELP WITH HOMEWORK (EVERY DAY, TWICE A WEEく) |
| 33 | PRESCH | $0.20 ? 281$ | WENT TO PRESCHOOL |
| 34 | PAR/HOME | 0.040124 | SINGLE/MULTIPLE PARENT (MULTIPLE) |
| 35 | MOTH/HOM | 0.303563 | MOTHER AT HOME (YES) |
| 36 | MOTH/WRK | 0.028529 | MOTHER WORK OUTSIDE HOME (YES) |
| 37 | GRWN HOM | 0.088326 | GROWNUP AT I' ${ }^{\text {E }}$ RIGHT AFTER SCHOOL |
| 38 | PAGE/RD1 | 0.119129 | PAGES A DAY a 210 d (6 AND UP) |
| 39 | PAGE/RD2 | 0.010113 | PAGES A DAY READ (11 AND UP) |

Table C-14
Estimated Effects for Reading Cross-sectional Conditioning Variables 1988 Focused-BIB SampJe, Grade 8/Age 13

|  | Variable | Estimat Effect | Description |
| :---: | :---: | :---: | :---: |
| 1 | OVEKALL | -2.878516 | OVERALL CONSTANT 'l' FOR EVERYONE |
| 2 | GENDER2 | 0.095517 | SEX (FEMALE) |
| 3 | ETHNIC2 | -0.200724 | OBSERVED ETHNICITY (BLACK) |
| 4 | ETHNIC3 | -0.205606 | OBSERVED ETHNICITY (HISPANIC) |
| 5 | ETHNIC4 | 0.130494 | OBSERVED ETHNICITY (ASTAN) |
| 6 | STOC2 | 0.072850 | SIZE AND TYPE OF COMMUNITY (HIGH METRO) |
| 7 | STOC3 | -0.016063 | SIZE AND TYEE OF COMMUNITY (NOT HIGH OR LOW) |
| 8 | REGION2 | -0.020760 | REGION (SOUTHEAST) |
| 9 | REGION3 | -0.017065 | REGION (CENTRAL) |
| 10 | REGION4 | -0.031544 | REGION (WEST) |
| 11 | PARED2 | 0.055548 | PARENTS EDUCATION (HIGH SCHOOL GRAD) |
| 12 | PARED3 | 0.208053 | PARENTS EDUCATION (POST HIGH SCHOOL) |
| 13 | PARED4 | 0.191380 | PARENTS EDUCATION (COLLEGE GRAD) |
| 14 | PARED | -0.024154 | PARENTS EDUCATION (MISSING, I DON'T KNOW) |
| 15 | H0MEITM3 | 0.045925 | ARTICLES IN HOME (YES TO 3) |
| 16 | HOMEITM4 | 0.073831 | ARTICLES IN HOME (YES TO 4) |
| 17 | TV. 1 | 0.039022 | TV WATCHING |
| 18 | TV. 2 | -0.006148 | TV NATCHING |
| 19 | HOMELNGI | -0.024874 | CTHER LANGUAGE AT HOME (SOMETIMES, ALWAYS) |
| 20 | HW-NO | 0.423507 | HOMEVORK (NONE ASSIGNED) |
| 21 | HW-YES | 0.519192 | HOMEWORK (YES - SOME AMOUNT) |
| 22 | HW-2345 | -0.017066 | HOMEWORK AMOUNT (LINEAR) |
| 23 | \%LUNCH 1 | -0.000706 | PERCENT IN LUNCH PROGRAM |
| 24 | \%LUNCH 2 | -0.088738 | MISSING LUNCH PROGRAM |
| 25 | \%WHITE 1 | -0.047834 | WHI'TE MINORITY |
| 26 | \%WHITE 2 | -0.090714 | INTEGRATED |
| 27 | AGE/GRD1. | -0.494470 | MODAL AGE, < MODAL GRADE |
| 28 | AGE/GRD2 | -0.170739 | MODAL AGE, MODAL GRADE, MISSING |
| 29 | AGE/GRD3 | 0.067865 | MODAL AGE, > MODAL GRADE |
| 30 | AGE/GRD4 | -0.290966 | > MODAL AGE, MODAL GRADE |
| 31 | SCH.TYPE | 0.179425 | PUBLIC V. PRIVATE SCHOOLS |
| 32 | H/HOMEWK | -0.109597 | HRLP WITH HOMEWORK (EVERY DAY, TWICE A WEEK) |
| 33 | PAR/HOME | 0.005510 | SINGLE/MULTIPLE PARENT (MULTIPLE) |
| 34 | MOTH/HOM | 0.134401 | MOTHEK AT HOME (YES) |
| 35 | MOTH/WRK | -0.054176 | MOTHER WORK OUTSIDE HOME (YES) |
| 36 | PAGE/RDI | 0.126464 | PAGES A DAY READ (6 AND UP) |
| 37 | PAGE/RD2 | 0.027989 | Pages a day read ( 11 An! d UP) |
| 38 | GRadrate | 0.269446 | DC YOU EXPECT TO GRADUATE FROM HIGH SCHOOL |
| 39 | DAYSMISS | 0.010742 | DAYS OF SCHOOL MISSEL LAST MONTH |
| 40 | GRADES | 0.243183 | GRADES IN SCHOOL |
| 41 | RDGCOMP1 | 0.016368 | READING COMPOSITE \# 1 |
| (continued) |  |  |  |

Table C-14 (continued)
Estimated Effects for Reading Cross-sectional Conditioning Variables 1988 Focused-BIB Sample, Grade 8/Age 13

|  | Variable | Estimate Effect |  | Description |
| :---: | :---: | :---: | :---: | :---: |
| 42 | RDGCOMP2 | -0.031322 | READING | COMPOSITE \# 2 |
| 43 | RDGCOMP3 | -0.026681 | READING | COMPOSITE \# |
| 44 | RDGCOMP4 | 0.062159 | READING | COMPOSITE \# 4 |
| 45 | RDGBKGDI | 0.032512 | READING | BACKGROUND \# |
| 46 | RDGBKGD2 | 0.017270 | READING | BACKGROUND \# 2 |
| 47 | RDGBKGD3 | -0.002779 | READING | BACKGROIND \# 3 |
| 48 | RDGBKGD4 | -0.041347 | READING | BACKGROUND \# 4 |
| 49 | RDGBKGD5 | -0.062938 | READING | BACKGROUND \# 5 |
| 50 | RDGBKGD6 | 0.013374 | READING | BACKGROUND \# 6 |
| 51 | RDGBKGD7 | -0.012108 | READING | BACKGROUND \# 7 |
| 52 | RDGBKGD? | 0.036475 | READING | BACKGROUND \# 8 |
| 53 | RDGBKGD9 | 0.067985 | :ADING | BACKGROUND |
| 54 | RDGBKG10 | 0.005173 | READING | BACKGROUND \# 10 |
| 55 | RDGBKG11 | 0.271575 | READING | BACKGROUND \# 11 |
| 56 | RDGBKG12 | 0.172633 | READING | BAGKGROUND \# 12 |
| 57 | RDGBKG13 | -0.037839 | READING | BACKGROUND \# 13 |
| 58 | RDGBKG14 | -0.006027 | READING | BACKGROUND \# 14 |
| 50 | RDGBKG15 | 0.017113 | READING | BACKGROUND \# 15 |
| 60 | RDGBKG16 | 0.049804 | READING | BACKGROUND \# 16 |
| 61 | RDGBKG17 | -0.007475 | READING | BACKGROUND \# 17 |
| 62 | RDGBKG18 | -0.014529 | READING | BAUKGROUND \# 18 |
| 63 | RDGBKG19 | 6.028883 | READING | BACKGROUND \# 19 |
| 64 | RDGBKG20 | 0.101803 | READING | BACKGROUND \# 20 |

Table C-15
Estimated Effocts, for Reading Cross-sectional Conditioning Variables 1988 Intercorrelation Sample, Grade 8/Age 13

|  | Variable | Estimated Effect | Description |
| :---: | :---: | :---: | :---: |
| 1 | OVERALL | -2.030369 | OVERALL CONSTANT ' 1 ' FOR EVERYONE |
| 2 | GENDER2 | 0.166260 | SEX (FEMALE) |
| 3 | ETINIC2 | -0.198242 | OBSERVED ETHNICITY (BLACK) |
| 4 | EtHNIC3 | -0.195727 | OBSERVED ETHNICITY (HISPANIC) |
| 5 | ETHNIC4 | -0.066718 | OBSERVED ETHNICITY (ASIAN) |
| 6 | STOC2 | 0.159133 | SIZE AND TYPE OF COMMUNITY (HİGH METRO) |
| 7 | STOC3 | 0.131332 | SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) |
| 8 | REGION2 | 0.004577 | REGION (SOJJTHEAST) |
| 9 | REGION3 | 0.070446 | REGION (CENTRAL) |
| 10 | REGION4 | -0.012584 | REGION (WEST) |
| 11 | PARED2 | -0.030636 | PARENTS EDUCATION (HIGH SCHOOL GRAD) |
| 12 | PARED3 | 0.080334 | PARENTS EDUCATION (POST HIGH SCHOOL) |
| 13 | Pared4 | 0.059461 | PARENTS EDUCATION (COLLEGE GRAD) |
| 14 | PARED | -0.214610 | PARENTS EDUCATION (MISSING, I DON - KNOW) |
| 15 | HOMEITM3 | 0.059626 | ARTICLES IN HOME (YES TO 3) |
| 16 | HOMEITM4 | 0.158479 | ARTICLES IN HOME (YES TO 4) |
| 17 | TV. 1 | 0.027980 | TV WATCHING |
| 18 | TV. 2 | -0.010843 | TV Watching |
| 19 | HOMELNG1 | 0.011643 | OTHER LANGUAGE AT HOME (SOMETIMES, ALWA |
| 20 | HW-NO | 0.199523 | HOMEWORK (NONE ASSIGNED) |
| 21 | HW-YES | 0.443435 | HOMEWORK (YES - SOME AMOUNT) |
| 22 | HW-2345 | 0.003335 | HOMEWORK AMOUNT (LINEAR) |
| 23 | \%LUNCH 1 | -0.000250 | PERCENT IN LUNCH PROGRAM |
| 24 | zluncir 2 | 0.03 .4631 | MISSING LUNCH PROGRAM |
| 25 | Kh:HITE 1 | 0.018448 | WHITE MINORITY |
| 26 | \%WHITE 2 | -0.056145 | INTEGRATED |
| 27 | AGE/GRD1 | -0.155339 | MODAL AGE, < MODAL GRADE |
| 28 | AGE/GRD2 | 0.140843 | MODAL AGE, MODAL GRADE, MISSING |
| 29 | AGE/GRD3 | 0.085695 | MODAL AGE, > MODAL GRADE |
| 30 | AGE/GRD4 | 0.016198 | > MODAL AGE, MODAL GRADE |
| 31 | SCH.TYPE | 0.219716 | PUBLIC V. PRIVATE SCHOOLS |
| 32 | H/HOMEWK | -0.110421 | HELP WITH HOMEWORK (EVERY DAY, TWICE A WEEK) |
| 33 | PAR/LOME | -0.073100 | SINGLE/MULTIPLE PARENT (MULTIPLE) |
| 34 | MOTH/HOM | 0.123323 | MOTHER A ${ }^{\text {T }}$ HOME (YES) |
| 35 | MOTH/WRK | -0.046198 | MOTHER WORK OUTSIDE HOME (YES) |
| 36 | PAGE/RDI | 0.101266 | PAGES A DAY READ (6 AND UP) |
| 37 | PAGE/RD2 | -0.020843 | PAGES A DAY READ (11 AND UP) |
| 38 | GRADRATE | 0.351427 | DO YOU EXPECT TO GRADUATE FROM HIGH SCHOOL |
| 39 | DAYSMISS | 0.054705 | DAYS OF SCHOOL MISSED LAST MONTH |
| 40 | GRADES | 0.330826 | GRADES IN SCHOOL |

Table C-16
Estimated Effecta for Reading Cross-sectional Con'itioning Variables 198: Focused-BIB Sample, Grade 12/Age 17

## Variable

Estimated Effect

## Descriptjon

1
OVERALL
$-1.588959$
GENDER2 0.062483
ETHNIC2
ETHNIC3
ETHNIC4
STOC2
STOC3
REGION2
-0.265308
-0.163774
-0.043188
0.125134
0.090530
0.074697
0.067739

REGION4
0.090882

PARED2
-0.057941
PARED3 0.018846
PARED4 0.005209
PARED_ -0.133514
HOMEITM3 0.119471
HOMEITM4 0.109873
TV. 10.069582
TV. $2-0.013791$
HOMELNG1 -0.063237
HW-NO $\quad-0.180651$
HW-YFS $\quad-0.035056$
HW-2345 -0.010146
KLUNCH 10.002396
KLUNCH $2-0.018666$
\%WHITE 10.01429
ZWHITE 20.014251
AGE/GRDI -0.329255
AGE/GRD2 -0.207815
AGE/GRD4 -0.337198
SCH.TYPE 0.019471
H/HOMEWK -0.180211
PAR/HOK:C $\quad-0.018235$
MOTH/HOM 0.035154
MOTH/WRK 0.000284
PAGE/RD1 0.082686
PAGE/RD2 0.019§41
DAYSMISS 0.041734
GRADES 0.233978
HS PGM2 0.090736
HS PGM3 $\quad 0.094364$
POSTSEC2 -0.00797

OVERALL CONSTANT ' 1 ' FOR EVERYONE
SEX (FEMALE)
OBSERVED ETHNICITY (BLACK)
OBSERVED ETHNICITY (HISPANIC)
OBSER.VED ETHNICITY (ASI__)
SIZE AND TYPE OF COMMUNITY (HIUH METRO)
SIZE AND TYPE OF COMMUNITY (NOT HTGH OR LUW)
REGION (SOUTHEAST)
REGION (CENTRAI.)
REGION (WEST)
PARENTS EDUCATION (HIGH SCHOOL GRAD)
PARENTS EDUCAIION (POST HIGH SCHOOL)
PaRENTS EDUCATiON (COLLEGE GKAD)
rarents education (MISSING, I DON'T KNOW)
ARTICLES IN HOME (YES TO 3)
ARTICLES IN HOME (YES TO 4)
TV WATCHING
TV Watching
OTHER LANGUAGE AT HOME (SOME"IMES, ALWAYS)
HOMEWORK (NONE ASSI JNED)
HOMEWORK (YES - SOME AMOUNT)
HOMEWORK AMOUNT (LINEAR)
PERCENT IN LUNCH PROGRAM
MISSING LUNCH PROGRAM
WHITE MINORITY
INTEGRATED
MODAL AGE, < MODAL GRADE
MODAL AGE, MODAL GRADE, MISSInG
> MODAL AGE, MODAL GRADE
PUBLIC V. PRIVATE SCHOOLS
HELP WITH HOMEWORK (EVERY DAY, TWT.CE A WTEK)
SINGLE/MULTIPLE PAPENT (MULTIPLE)
MOTHER AT HOME (YES)
MOTHER WORK OUTSIDE HOME (YES)
PAGES A DAY READ (6 AND UP)
Pages a day read (ll and UP)
DAYS OF SCHUOL MISSED LAST MC. IH
GRADES IN SCHOOL
HIGH SCHOOL PROGRAM (COLLEGE PREPARATORY) HIGH SCHOOL PROGRAM (VOCATIONAL, TECHNICAL) POST-SECONOARY PLANS (TWO-YEAR COLLEGE)

Estimated Effects for Reading Cross-sectional Conditioning Variables 1988 Focused-BIB Sample, Grade 12/Age 17

|  | Variable | Estimated Effect | Description |
| :---: | :---: | :---: | :---: |
| 42 | POSTSEC3 | 0.136958 | POST-SECONDARY PLANS (FOUR-YEAP COLLEGE) |
| 43 | WORKHOUR | -0.001018 | HOURS OF OUTSIDE WORK |
| 44 | ENG. 23 | 0.053846 | TYPE OF ENGLISH CLASS(ADV. PLACEMENT\&COLLEGE) |
| 45 | ENGLISH5 | -0. 2.24120 | TYPE OF ENGLISH CLASS(REMEDIAL) |
| 46 | RDGCOMP1 | -0.001806 | READING COMPOSITE \# 1 |
| 47 | RDGCOMP2 | -0.017579 | READING COMFOSITE \# 2 |
| 48 | RDGCOMP3 | -0.039289 | READING COMPOSITE \# 3 |
| 49 | RDGCOMP4 | 0.071240 | READING COMPOSITE ${ }^{\text {\# }} 4$ |
| 50 | RDGC0MP5 | 0.001928 | READING COMPOSITE \# 5 |
| 51 | RDGCOMP6 | -0.047195 | READING COMPOSITE \# 6 |
| 52 | RDGCOMP7 | -0.032501 | READING COMPOSITE \# 7 |
| 53 | RDGBKGDI | 0.007427 | READING BACKGROUND \# l |
| 54 | RDGBKGD2 | 0.020779 | READING BACKGROUND \# 2 |
| 55 | RDGBKGD3 | -0.002559 | READING BACKGROUND \# 3 |
| 56 | RDGBKGD4 | -0.031797 | READING BACKGROUND \# 4 |
| 57 | RDGBKGD5 | -0.021215 | READING BACKGROUND \# 5 |
| 58 | RDGBKGD6 | -0.006863 | READING BACKGROUND \# 6 |
| 59 | RDGBKGD7 | -0.002056 | READING BACKGROUND \# 7 |
| 60 | RDGBKGD8 | 0.002351 | READING BACKGROUND \# 8 |
| 61 | RDGBKGD9 | 0.088956 | READING BACKGROUND \# 9 |
| 62 | RDGBKG10 | 0.043146 | READING BACKGROUND \# 10 |
| 63 | RDGBKGll | -0.064605 | READING BACKGRJUND \# 11 |
| 64 | RDGBKG12 | -0.040126 | READING BACKGROUND \# 12 |
| 65 | RDGBKG13 | 0.003461 | READING BACKGROUND \# 13 |
| 66 | RDGBKG14 | 0.195865 | READING BACKGROUND \# 14 |
| 67 | RDGBKG15 | 0.142466 | READING BACKGROUND \#15 |
| 68 | RDGBKG16 | -0.006831 | READING BACKGROUND \# 16 |
| 69 | RDGBKG17 | 0.031799 | READING BACKGROUND $/ 17$ |
| 70 | RDGBKG18 | -0.050291 | REALING BACKGRernd \# 18 |
| 71 | RDGBKG19 | -0.022255 | READING BACKGROUND \# 19 |
| 72 | RDGBKG20 | 0.058058 | READING BACKGROOTM \# 20 |
| 73 | RDGBKGll | 0.011322 | READING BACKGROUn, \# 21 |
| 74 | RDGBKG12 | -0.027553 | READING BACKGROUND \# 22 |
| 75 | RDGBKG13 | 0.084234 | Reading background \# 23 |
| 76 | RDGBKG14 | -0.024406 | READING BACKGROUND \# 24 |
| 77 | RDGBKG15 | 0.009928 | READING BACKGROUND \# 25 |
| 78 | RDGBKG16 | 0.008416 | READING BACKGRCUND \# 26 |
| 79 | RDGBKG17 | -0.050294 | READING BACKGROUND \# 27 |
| 80 | RDGBKG18 | 0.046429 | READING BACKGROUND \# 28 |
| 81 | RDGBKG19 | 0.000222 | READING BACKGROUND \# 29 |
| 82 | RDGBKG20 | 0.005741 | READING BACKGROUND \# 30 |
| 83 | RDGBKG20 | 0.051695 | READING BACKGROUND \# 31 |
| 84 | RDGBKG20 | 0.095686 | READING BACKGROUND \# 32 |

Table C-17
Estimated Effects for Reading Cross-sectional Conditioning Variables 1988 Intercorrelation Sample, Grade 12/Age 17

|  | Variable | Estimated Effect | Description |
| :---: | :---: | :---: | :---: |
| 1 | OVERALL | -0.285641 | OVERALL CONSTANT 'l' FOR EVERYONE |
| 2 | GENDER2 | 0.162409 | SEX (FEMALE) |
| 3 | ETHNIC2 | -0.251546 | OBSERVED ETHNICITY (BLACK) |
| 4 | ETHNIC3 | -0.329229 | OBE ${ }^{\text {- }}$ 'ED ETHNICITY (HISPANIC) |
| 5 | ETHNIC4 | -0.261376 | 0 - ED ETYNICITY (ASIAN) |
| 6 | STOC2 | 0.074295 | SI2¢ AND TYPE OF COMMUNITY (HIGH METRO) |
| 7 | ST0C3 | 0.041690 | SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) |
| 8 | REGION2 | 0.064445 | REGION (SOUTHEAST) |
| 9 | REGION3 | 0.165534 | REGION (CENTR:L) |
| 10 | REGION4 | 0.082071 | REGION (WEST) |
| 11 | PARED2 | -0.046125 | PARENTS EDUCAIION (HIGH SCHOOL GRAD) |
| 12 | PARED3 | -0.076116 | PARENTS EDUCATION (POST HIGH SCHOOL) |
| 13 | Pared 4 | -0.022725 | Parents education (COLLEGE GRAD) |
| 14 | PARED | -0.279192 | PARENTS EDUCATION (MISSING, I DON'T KNOW) |
| 15 | HOMEITM3 | 0.132520 | ARTICLES IN HOME (YES TO 3) |
| 16 | HOMEITM4 | 0.215761 | ARTICLES IN HOME (YES TO 4) |
| 17 | TV. 1 | 0.056234 | TV Watching |
| 18 | TV. 2 | -0.011638 | TV Watching |
| 19 | HOMELNG1 | -0.004110 | OTHER LANGUAGE AT HOME (SOMETIMES, ALWAYS) |
| 20 | HW-NO | -0.377706 | HOMEWORK (NONE ASSIGNED) |
| 21 | HW-YES | -0.186437 | HOMEWORK (YES - SOME AMOUNT) |
| 22 | HW-2345 | 0.045292 | HOMEWORK AMOUNT (LINEAR) |
| 23 | \%LUNCH 1 | 0.000698 | PERCENT IN LUNCH PROGRAM |
| 24 | \%LUNCH 2 | -0.054536 | MISSING LUNCH PROGRAM |
| 25 | zWHITE 1 | -0.102933 | WHITE MINORITY |
| 26 | zWHITE 2 | 0.040726 | INTEGRATED |
| 27 | AGE/GRD1. | -0.457217 | MODAL AGE, < MODAL GRADE |
| 28 | AGE/GRD2. | -0.249898 | MODAL AGE, MODAL GRADE, MISSING |
| 29 | AGE/GRD4 | -0.502886 | > MODAL AGE, MODAL GRADE |
| 30 | SCH.TYPE | -0.044550 | PUBLIC V. PRIVATE SCHOOLS |
| 31 | H/HOMEWK | -0.220694 | HELP WITH HOMEWORK (EVERY DAY, TWICE A WEEK) |
| 32 | PAR/HOME | -0.041477 | SINGLE/MULTIPLE PARENT (MULTIPLE) |
| 33 | MOTH/HOM | 0.010448 | MOTHER AT HOME (YES) |
| 34 | MOTH/WRK | 0.001454 | MOTHER WORK OUTSIDE HOME (YES) |
| 35 | PAGE/RD1 | 0.217577 | PAGES A DAY READ (6 AND UP) |
| 36 | PAGE/RD2 | -0.051548 | PAGES A DAY READ (1l AND UP) |
| 37 | DAYSMISS | -0.027542 | DAYS OF SCHOOL MISSED LAST MONTH |
| 38 | GRADES | 0.283600 | GRADES IN SCHOOL |
| 39 | HS PGM2 | 0.133174 | HIGH SCHOOL PROGRAM (COLLEGE PREPARATORY) |
| 40 | HS PGM3 | 0.015758 | HIGH SCHOOL PROGRAM , VOCATIONAL, TECHNICAL) |
| 41 | POSTSEC2 | 0.012074 | POST-SECONDARY PLANS (TWO-YEAR COLLEGE) |
| (continued) |  |  |  |

Table C-17 (continued)

\author{

Estimated Effects for Reading Cross-sectional Conditioning Variables 1988 Intercorrelation Sample, Grade 12/Age 17 <br> Variable Estimated | Effect |
| :---: |
| Description | <br> POSTSEC3 0.181729 WORKHOUR -0.001030 <br> ENG. $23 \quad 0.103382$ <br> ENGLISH5 <br> $-0.112947$ <br> POST-SECONDARY PLANS (FOUR-YEAR COLLEGE) HOURS OF OUTSIDE WORK TYPE OF ENGLISH CLASS(ADV. PLACEMENT\&COLLEGE) TYPE OF ENGLISH CLASS(REMEDIAL)

}

Table C-18
Estimated Effects for Reading Cross-sectional Conditioning Variables 1988 Grade 4 Students with Surveyed Teachers

|  | Variable | Estimated Effect | Description |
| :---: | :---: | :---: | :---: |
| 1 | OVERALL | -1.643733 | OVERALL CONSTANT 'l' FOR EVERYONE |
| 2 | GENDER2 | 0.054165 | SEX (FEMALE) |
| 3 | ETHNIC2 | -0.170767 | OBSERVED ETHNICITY (BLACK) |
| 4 | ETHNIC3 | -0.164307 | OBSERVED ETHNICITY (HISPANIC) |
| 5 | ETHNIC4 | -0.065474 | UBSERVED ETHNICITY (ASIAN) |
| 6 | STOC2 | 0.254828 | SIZE AND TYPE OF COMMUNITY (HIGH METRO) |
| 7 | STOC3 | 0.097182 | SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) |
| 8 | REGION2 | 0.113317 | REGION (SOUTHEAST) |
| 9 | REGION3 | $0 . \wedge 30617$ | REGION (CENTRAL) |
| 10 | REGION4 | 0.030780 | REGION (WEST) |
| 11 | PARED2 | 0.229261 | PARENTS EDUCATION (HIGH SCHOOL GRAD) |
| 12 | PARED3 | 0.295141 | PARENTS EDUCAT'ION (POST HIGH SCHOOL) |
| 13 | PARED4 | 0.266411 | PARENTS EDUCATION (COLLEGE GRAD) |
| 14 | PARED | 0.210889 | PARENTS EDUCATION (MISSING, I DON'T KE:UW) |
| 15 | HOMEITM3 | 0.056898 | ARTICLES IN HOME (YES TO 3) |
| 16 | HOMEITM4 | 0.043555 | ARTICLES IN HOME (YES TO 4) |
| 17 | TV. 1 | 0.122396 | TV WATCHING |
| 18 | TV. 2 | -0.019522 | TV WATCHING |
| 19 | HOMELNG1 | -0.039185 | OTHER LANGUAGE AT HOME (SOMETIMES, ALWAYS) |
| 20 | HW-NO | 0.356544 | HOMEWORK (NONE ASSIGNED) |
| 21 | HW-YES | 0.330480 | HOMEWORK (YES - SOME AMOUNT) |
| 22 | HH-2345 | 0.012380 | HOMEWORK AMOUNT (LINEAR) |
| 23 | \%LUNCH 1 | -0.001171 | PERCENT IN LUNCH PROGRAM |
| 24 | XLUNCH 2 | -0.170076 | MISSING LUNCH PROGRAM |
| 25 | \%WHITE 1 | -0.013090 | WHITE MINORITY |
| 26 | \%WHITE 2 | -0.038655 | INTEGRATED |
| 27 | MA, MG | -0.149529 | MODAL AGE, MODAL GRADE, MISSING |
| 28 | >MA, MG | -0.221906 | > MODAL AGE, MODAL GRADE |
| 29 | SCH.TYPE | 0.108642 | PUBLIC V. PRIVATE SCHOOLS |
| 30 | H/HOMEWK | -0.033086 | HELP WITH HOMEWORK (EVERY DA.Y, TWICE A WEEK) |
| 31 | PRESCH | 0.078302 | WENT TO PRESCHOOL |
| 32 | PAR/HOME | -0.000269 | SINGLė/MULTIPLE PARENT (MULTI?LE) |
| 33 | MOTH/HOM | 0.152510 | MOTHER AT HOME (YES) |
| 34 | MOTH/WRK | -0.028558 | MOTHER WORK OUTSIDE HOME (YES) |
| 35 | GRWN HOM | 0.062530 | GROWNUP AT HOME RIGHT AFTER SCiOOL |
| 36 | PASE/RDI | 0.089515 | PAGES A DAY READ (6 AND UP) |
| 37 | PAGE/RD2 | -0.018468 | PAGES A DAY REID (1l AND UP) |
| 38 | kDGCOMP1 | 0.066655 | READING COMPOSITE \# 1 |
| 39 | RDGCOMP2 | -0.003565 | REATING COMPOSITE \# l |
| 40 | RDGBKGD1 | 0.056316 | READING BA.CKGROUND \# l |
| 41 | RDGBKGD2 | -0.010363 | READING BhCKGROUND \# 2 |
| (continued) |  |  |  |

## Table C-18 (continued)

## Estimated Effects for Reading Cross-sections.l Conditioning Variables 1988 Grade 4 students with Surveyed Teachers

|  | Variable | Estimated Effect | Description |
| :---: | :---: | :---: | :---: |
| 42 | RDGBKGD3 | 0.011394 | READING dACKGROUND 非 3 |
| 43 | RDGBKGD4 | 0.033141 | READING BACKGROUND \# 4 |
| 44 | RDGBKGD5 | -0.048777 | READING BACKGROUND \# 5 |
| 45 | RDGBKGD6 | 0.006944 | READING BACKGROUND \# 6 |
| 46 | RDGBKGD7 | -0.021022 | READING BACKGROUND \# 7 |
| 47 | RDGBKGD8 | 0.021402 | READING BACKGROUND 非 8 |
| 48 | RDGBKGD9 | 0.138259 | READING BACKGROUND \# ${ }^{\text {a }}$ |
| 49 | RDGBKG10 | 0.019127 | READING BACKGROUND \# 10 |
| 50 | TQS1 | -0.366611 | READING LEVEL OF STUDENT |
| 51 | TQS3 | 0.183620 | HIGH, AVERAGE,LOW READING LEVELS |
| 52 | TQS3 | -0.113201 | HIGH,AVERAGE, LOW READINGG LEVELS (1, 2,3 ) |
| 5 | TQS4 | 0.045659 | HELP STUDENT WITH READING ALOUD |
| 54 | TQS5 | -0.040390 | HELP STUDENT WITH COMPREHENSIVE SKILLS |
| 55 | TQS6 | 0.024487 | HELP STUDEN ${ }^{\text {T }}$ WITH WORD-ATTACK SKILLS |
| 56 | TQS7 | 0.004351 | HELP STUDENT WITH VOCABULARY |
| 57 | TQS10 | 0.256632 | DOES STUDENT RECEIVE REMEDIAL READING PROG |
| 58 | TQCl | -0.016712 | ARE STUDENTS ASSIGNED TO CLASS BY ABILITY |
| 59 | TQC2 | -0.042102 | READING ABILITY LEVEL OF STUDENT İi CLASS |
| 60 | TQC3 | -0.011451 | TIME SPENT ON TYPICAL DAY FOR DIRECT INSTRUCT. |
| 61 | TQC4AYES | -0.069730 | HAVE READING INSTRUCTION - INDIVIDUAL |
| 62 | TQCAAY? | -0.007559 | HAVE READiNG INSTRUC*ION - INDIVIDUAL( $1,2,3,4$ ) |
| 63 | TQC4BI_S | -0.042395 | HAVE READING INSTRUCTION - SMALL GROUP |
| 64 | TQC4BY2 | 0.021101 | HAVE READING INSTRUCTION - SM. GROUP (1,2,3,4) |
| 65 | TQC4CYFS | 0.022854 | HAVE READING INSTRUCTION - WHOLE CLASS |
| 66 | TQ-4CY2 | 0.015939 | HAVE READING INSTRUCTION - WH. CLA SS $(1,2,3,4)$ |
| 67 | TQC6 | -0.023527 | ARE STUDENTS ASSIGNED TO GROUPS BY ABILITY |
| 68 | TQC7-YES | -0.048101 | USE SAME READING BONK FOP ALL IN CLASS |
| 69 | TQC7-2 | 0.022808 | USE DIFEERENT LEVELS WITHIN SAME BASAL. |
| 70 | TQC7-3 | 0.089372 | USE DIFFERENT BASAL SERIES |
| 71 | TQC8A-8E | 0.003570 | NUMBER OF RESOURCES |
| 72 | TQC10 | 0.014164 | HOW OFTEN - READ ALOUD TO STUDENTS |
| 73 | TQCll | 0.000255 | HOW DFTEN - HAVE STUDENTS MEET IN SMALL GROUPS |
| 74 | TQC12 | -0.004808 | HOW OFTEN - HAVE STUD. WRITE ABOUT SOMETHING |
| 75 | TQCl3 | 0.029973 | HOW OFTEN - HAVE STUDENT: COMPLETE WORKBOOKS |
| 76 | TQC14 | 0.010835 | HOW OFTEN - HAVE STUD. READ BOOKS THEY CHOOSE |
| 77 | TQC15 | 0.018556 | HOW OFTEN - HAVE STUD. READ INFORM. MATERIAL |
| 78 | TQCl6 | -0.030612 | HOW OFTEN - TAKE CLASS TO LIBRARY |
| 79 | TQTB9 | 0.009389 | HIGHEST ACADEMIC DEGREE HELD |
| 80 | TQTB12BE | 0.035126 | N'IMBER OF SPECIAL TRAININGS |
| 81 | TQTB23 | -0.001884 | ABILITY TO GET DESIKED INSTRUCTIONAL MATERIALS |
| 82 | TQTB24 | -0.008206 | IF rujud start Over, WOULD BECONE A TEACHFR |

Table C-19
Estimated Effects for Reading Trend Conditioning Variables 1988 Bridge to 1984, Age 9

|  | Variable | Estimated Effect | Description |
| :---: | :---: | :---: | :---: |
| 1 | OVERALL | -1.105701 | OVERALL CONSTANT '1' FOR EVERYONE |
| 2 | GENDER2 | 0.155957 | SEX (FEMALE\& MISSING) |
| 3 | ETHNIC2 | -0.410887 | ETHNICITY (BLACK) |
| 4 | ETHNIC3 | -0.297601 | ETHNICITY (HISPANIC) |
| 5 | ETHNIC4 | 0.289799 | EIHNICITY (ASIAN) |
| 6 | STOC2 | 0.175011 | SIZE AND TYPE OF COMMUNITY (HIGH METRO) |
| 7 | STOC3 | 0.063150 | SIZE AND TYPE OF COMMUNITY (NOT HIGH OR ! OW ) |
| 8 | REGION2 | 0.018628 | REGION (SOUTHEAST) |
| 9 | REGION3 | 0.100021 | REGION (CENTRAL) |
| 10 | REGION4 | -0.098282 | REGION (WEST) |
| 11 | PARED2 | 0.202365 | PARENTS EDUCATION (AIGH SCHOOL GRAD) |
| 12 | Paren 3 | 0.194730 | PARENTS EDUCATION (POST HIGH SCHOOL) |
| 13 | Pared4 | 0.277028 | PARENTS EDUCATION (COLLEGE GRAD) |
| 14 | PARED_ | 0.114303 | PARENTS EDUCATION (MISSING, I DON'T KNOW) |
| 15 | ITEMS | 0.075757 | ITEMS IN HOME |
| 16 | ITEMS2 | 0.221712 | ITEMS IN HOME (BLANK MISSING) |
| 17 | TV | -0.051474 | HOURS TV WATCHING (LINEAR) |
| 18 | TV2 | -0.244725 | HOURS TV WATCHING (MISSING) |
| 19 | HW-iES | -0.022698 | HOMEWORK (DON'T HAVE ANY \& SOME AMOUNT) |
| 20 | HW | -0.086636 | HOMEWORK (MISSING) |
| 21 | LM BY E3 | -0.092054 | LaNGUAGE MINORITY BY ETHNICITY (SPAN. \& OTHERS) |
| 22 | LM | -0.342136 | LANGUAGE MINORITY BY ETHNICITY (MISSING) |
| 23 | PAGE1234 | 0.124241 | PAGES READ (MORE THAN 5) |
| 24 | PAGE | -0.305198 | PAGES READ(MISSING) |
| 25 | LUNCHX | -0.189146 | PERCENT IN LUNCH PROGRAM (F3.2) |
| 26 | LUNCH | 0.041344 | LUNCH PROGRAM (MISSING) |
| 27 | XWHITE49 | -0.009154 |  |
| 28 | \%WHITE79 | 0.058382 | PERCENT WHITE IN SCHOOL (50-79\% INTEGRATED) |
| 29 | \%WHITE00 | 0.026256 | PERCENT WHITE IN SCHOOL (80 100\% PREDOMINANTLY) |
| 30 | COURSES 7 | 0.028015 | COURSES TAKEN(1.7) F4.1. |
| 31 | COURSES | -0.017418 | COURSES TAKEN(MISSING) |
| 32 | $\triangle M A, \triangle M G$ | -0.542511 | MODAL AGE, LESS than modal grade |
| 33 | MA, MG | -0.025866 | MODAL AGE, MODAL GRADE, MISSING |
| 34 | KiA, $>$ MG | 0.571595 | MODAL AGE, GREATER THAN MODAL GRADE |
| 35 | >MA,MG | -0.284144 | GREATER THAN MODAL ACE, MODAL GRADE |

Table C-20

## Estimated Effects for Reading Trend Conditioning Variables 1988 Bridge to 1984, Age 13

## Estimated Effect

-0.514684
OVERALI
GENDER2
ETHNIC2
ETHNIC3
ETHNIC4
STOC2
STOC3
238
REGION2
0.069277

REGION3
0.001563

REGION4 0.020983

PARED2
0.048948

PARED3 0.214287
PARED4
0.205732

PARED_ $\quad 0.016082$
ITEMS 0.057393
ITEMS2 0.209762
TV
TV2
-0.038498
-0.365324
HW-YES 0.030688
HW
-0.1777569
LA BY E3 -0.087368
LM 0.034672
PACE1234 0.125767
PAGE $\quad-0.056604$
LUNCH\% 0.114286
LUNCH 0.123994
ZWHITE49 0.089640
zWHITE79 0.224434
\%WHITEOO 0.138460 COURSES $7 \quad 0.018064$ COURSES -0.001403 $\triangle M A, \triangle M G \quad-0.368692$ MA, MG $\quad-0.020205$ MA, $>$ MG 0.083748
MA, MG $\quad-0.211022$

## Description

OVERALL CONSTANT 'l' FOR EVERYONE
SEX (FEMALE\& MISSING)
ETHNICITY (BLACK)
ETHNICITY (HISPANIC)
ETHNICITY (ASIAN)
SIZE AND TYPE OF COMMUNITY (HIGH METRO)
S:ZE AND TYPE OF GOMMUNITY (NOT HIGH OR LOW)
REGION (SOUTHEAST)
REGION (CENTRAL)
REGION (WEST)
PARENTS EDUCATION (HIGH SCHOOL GRAD)
PARENTS EDUCATION (POST HIGH SCHOOL)
PARENTS EDUCATION (COLLEGE GRAD)
PARENTS EDUCATION (MISSING, I DON'T KNOW)
ITEMS IN HOME
ITEMS IN HOME (BLANK MISSING)
HOURS TV WATCHING (LINEAR)
HOURS TV WATCHING (MISSING)
HOMEWORK (DON'T HAVE AITY \& SOME AMOUNT)
HOMEWORK (MISSING)
IANGUAGE MINORITY BY ENHRICITY (SPAN. \& OTHERS)
LANGUAGE MINORITY BY ETHNICITY (MISSING)
PAGES READ(MORE THAN 5)
PAGES READ(MISSING)
PERCENT IN LUNCH PROGRAM (F3.2)
LUNCH PROGRAM (MISSING)
PERCENT WHITE IN SCHOOL ( $0-49 \%$ WHITE MINORITI)
PERCENT WHITE IN SuHOOL (50-79\% INTEGRATED)
PERCENT WHITE IN SCHOOL (80-100\% PREDOMINANTLY)
COURSES TAKEN(1-7) F4.1
COURSES TAKEN(MISSING)
MODAL AGE, LESS THAN MODAL GRADE
MODAL AGE, MODAL GRADE, MISSING
MODAL AGE, GREATER THAN MODAL GRADE
GREATER THAN MODAL AGE, MODAL GRADE

Table C-21
Estimated Effects for Rea.ing Trend Conditioning Variables 1988 Bridge to 1984 , Age 17

| Variable | Estimated Effect | Description |
| :---: | :---: | :---: |
| OVERALL | 0.127898 | OVERALL CONSTANT ' 1' FOR EVERYONE |
| ferale | 0.078578 | SEX (FEMALE\& MISSINs) |
| STOC2 | -0.309676 | SIZE AND TYPE OF COMMUNITY (HIGH METRO) |
| STOC3 | -0.144500 | SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) |
| REGIUN2 | 0.008773 | REGION (SOUTHEAST) |
| REGION3 | 0.291371 | REGION (CENTRAL) |
| REGION4 | 0.194298 | REGION (WEST) |
| PARED2 | -0.020116 | PARENTS EDUCATION (HIGH SCHOOL GRAD) |
| Pared3 | 0.011057 | PARENTS EDUCATION (POST HIGH SCHOOL) |
| PARED4 | -0.023586 | PARENTS EDUCATION (COLLEGE GRAD) |
| PARED | 0.063957 | PARENTS EDUCATION (MISSING, I DON'T KNOW) |
| ITEMS-YES | 0.253708 | ITEMS IN HOME |
| ITEMS | 0.262798 | ITEMS IN HOME (BLANK MISSING) |
| TV | -0.086053 | HOURS TV WATCHING (LINEAR) |
| TV2 | 0.083831 | HOURS TV WATCHING (MISSING) |
| HW-YES | 0.075871 | HOMEWORK (DON'T HAVE ANY \& SOME AMOUNT) |
| HW | -0.044334 | HOMEWORK (MESSING) |
| LM23 | -0.683796 | LANGUAGE MINORITY BY ETHNICITY (SPAN. \& OTHERS) |
| LM | 0.077812 | LANGUAGE MTNORITY BY ETHNICITY (MISSING) |
| PAGE1234 | -0.279886 | PAGES READ(MORE THAN 5) |
| PAGERD | -0.301479 | PAGES READ(MISSING) |
| LUNCH\% | -0.550248 | PERCENT IN LUNCH PROGRAM (F3.2) |
| LUNCH | 0.229743 | LUNCH PROGRAM (MISSING) |
| \%WHITE49 | 0.518987 | PERCENT WHITE IN SCHOOL ( $0-49 \%$ WHITE MINORITY) |
| \%WHITE 79 | -0.003205 | PERCENT WHITE IN SCHOOL (50-79\% INTEGRATED) |
| \%WHITE00 | -0.029302 | PERCENT WHITE IN SCHOOL (80-100\% PREDOMINANTLY) |
| ETHNIC2 | -0.052682 | ETHNICITY (BLACK) |
| ETHNIC3 | -0.033477 | ETHNICITY (HISPANIC) |
| ETHNIC4 | -0.069511 | ETHNICITY (ASIAN) |
| $\triangle M A, \triangle M G$ | -0.538537 | MODAL AGE, LESS THAN MODAL GRADE |
| MA, MG | -0.113926 | MODAL AGE, MODAL GRADE, MISSING |
| MA, $>$ MG | 0.065530 | MODAL AGE, GREATER THAN MODAL GRADE |
| >MA,MG | -0.458032 | GREATER THAN MODAL AGE, MODAL GRADE |

Table C-22
Estimated Effects for Civics Cross-sectional Conditioning Variables 1988 Focused-BIB Sample, Grade 4/Age 9

|  | Variable | Estimated Effect | Description |
| :---: | :---: | :---: | :---: |
| 1 | OVERALL | -0.862717 | OVERALL CONSTANT ' 1 ' FOR EVERYONE |
| 2 | GENDER-F | -0.023548 | SEX (FEmALE) |
| 3 | ETHNIC-B | -0.212695 | OBSERVED ETHNICITY (BLACK) |
| 4 | ETHNIC-H | -0.250943 | OBSERVED ETHNICITY (HISPANIC) |
| 5 | ETHNIC-A | -0.151950 | OBSERVED ETHNICITY (ASIAN AMERICAN) |
| 6 | STOC-H | 0.223446 | SIZE AND TYPE OF COMMUNITY (HIGH METRO) |
| 7 | STOC-X | 0.097596 | SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) |
| 8 | REG-SE | 0.045772 | REGION (SOUTHEAST) |
| 9 | REG-C | 0.024092 | REGION (CENTRAL) |
| 10 | REG-W | -0.040014 | REGION (WEST) |
| 11 | PAREDHS | 0.010546 | Parents Education (high school grad) |
| 12 | PAREDHS+ | 0.090901 | PARENTS EDUCA. ${ }^{\text {- }}$ ON (POST HIGH SCHOOL) |
| 13 | PAREDC | 0.108382 | Parents education (COLLEGE GRaduate) |
| 14 | PAREDM | -0.089029 | PARENTS EDUCATION (MISSING, I DON'T KNOW) |
| 15 | ITEMS-3 | 0.110087 | 3 ITEMS IN THE HOME |
| 16 | ITEMS-4 | 0.180746 | 4 ITEMS IN THE HOME |
| 17 | TVWATCH | 0.118004 | NO. HOURS OF TV WATCHED PER DAY |
| 18 | TVWATCH2 | -0.018143 | NO. HOURS SQUARED OF TV WATCHED PER DAY |
| 19 | HOMELANG | 0.044591 | MINORITY HOME LANGUAGE SPOKEN |
| 20 | HOMEWRK- | -0.348922 | DON'T HAVE HOMEWORK |
| 21 | HOMEWRKO | -0.367229 | DON'T DO HOMEWORK |
| 22 | HOMEWORK | -0.010127 | AMOUNT OF HOMEWORK DONE |
| 23 | PCTLUNCH | -0.001857 | PERCENT IN LUNCH PROGRAM |
| 24 | NOLUNCH | -0.049798 | DON'T HAVE LUNCH PROGRAM OR MISSING |
| 25 | PCTWHLOW | -0.062140 | PCT WHITE IN SCHOOL 0-49 |
| 26 | PCTWHMED | 0.019981 | PCT WHITE IN SCHOOL 50-79 |
| 27 | -MA: 4 MG | -0.657937 | at modal age; below modal grade |
| $2{ }^{\text {c }}$ | -MA:-MG | -0.206925 | at mbdal age; at modal grade |
| 2. | -MA: $>M G$ | 0.389979 | at modal age; abOve modal grade |
| 30 | >MA:-MG | -0.305617 | AbOVE MODAL AGE; at modal grade |
| 31 | SCH-PRIV | 0.089136 | SCHOOL OTHER THAN PUBLIC |
| 32 | HOMEHELP | -0.110131 | USUALLY GET HELP AT HOME WITH HCMEWORK |
| 33 | PRESCH | 0.065690 | WENT TO PRESCHOOL |
| 34 | HOMEPARS | 0.066022 | FATHER AND MOTHER BOTH AT HOME |
| 35 | HOMEMOM | 0.219030 | MOTHER LIVES AT HOME |
| 36 | MOMWORK | 0.036292 | MOTHER WORKS OUTSIDE OF HOME |
| 37 | HOMEGRO | 0.037314 | GROWNUP AT HOME RIGHT AFTER SCHOOL |
| 38 | RD06+PP | 0.034761 | READ 6+ PAGES PER DAY FOR SCHOOL |
| 39 | RDIl + PP | 0.065288 | READ 1l+ PAGES PER DAY FOR SCHOOL |
| 40 | SSEVERY | 0.101641 | SOCIAL STUDIES CLASS EVERY DAY |
| 41 | SS3-4 | 0.163122 | SOCIAL Studies class 3-4 TIMES PER WEEK |

(continued)

Table C-22 (convinued)

| Variable | Estimated Effect | Description |
| :---: | :---: | :---: |
| SSI-2 | 0.093823 | SOCIAL STUDIES CLASS 1-2 TIMES PER WEEK |
| SS<1 | 0.038207 | SOCIAL STUDIES CLASS < 1 TIME PER WEEK |
| STGOV | 0.012140 | STUDIED GOVERTMENT |
| STGOV-X | -0.192139 | STUDIED GOVERNMENT RESP. MISSING |
| ST-ALOT | -0.019732 | NUMBER OF SUBJECTS STUDIED A LOT (OUT OF 6) |
| STLAW-L | -0.044790 | STUDY LAWS A LOT GR SOME |
| STCRT-L | -0.026685 | STUDY JUDGES \& COURTS A LOT OR SOME |
| STPRES-L | -0.003562 | STUDY PRES. \& LEADERS A LST OR SOME |
| STVOT-L | 0.059727 | STUDY VOTING \& ELECTIONS A LOT OR SOME |
| STCOMM-L | 0081548 | STUDY COMMUNITY A LOT OR SOME |
| STRGHT-L | 0.092128 | SIUDY RIGHTS \& RESPONSIBILITIES A LUT OR SOME |
| CE-EVERY | -0.050833 | DISCUSS CURRENT EVENTS AUIOST EVERY DAY |
| CE1-2 | 0.049644 | DISCUSS CURRENT EVENTS l- 2 TIMES A WEEK |
| $C E<1$ | 0.073888 | DISCUSS CURRENT EVENTS 1-2 TIMES A MONTH |
| CE<<l | -0.022439 | DISCUSS CURRENT EVENTS FEW TIMES A YEAR |

Table C-23
Estimated Effects for Civics Cross-sectional Conditioning Variables 1988 Intercorrelation Sample, Grade 4/Age 9

|  | Variable | Estimated Eflect | Description |
| :---: | :---: | :---: | :---: |
| 1 | OVERALL | -2.423182 | OVERALL CONSTANT 'l' FOR EVERYONE |
| 2 | GENDER-F | -0.029573 | SEX (FEMALE) |
| 3 | ETHNIC-B | -0.231977 | OBSERVED ETHNICITY (BLACK) |
| 4 | ETHNIC-H | -0.251819 | OBSERVED ETHNICITY (HISPANIC) |
| 5 | ETHNIC-A | 0.068154 | OBSERVED ETHNICITY (ASIAN AMERICAN) |
| 6 | STOC-H | 0.265959 | SIZE AND TYPE OF COMMUNITY (HIGH METRO) |
| 7 | STOC-X | 0.110538 | SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) |
| 8 | REG-SE | 0.110236 | REGION (SOUTHEAST) |
| 9 | REG-C | 0.090622 | REGION (CENTRAL) |
| 10 | REG-W | -0.003717 | REGION (WEST) |
| 11 | PAREDHS | 0.156360 | PARENTS EDUCATION (HIGH SCHOOL GRAD) |
| 12 | PAREDHS + | 0.298932 | PARENTS EDUCATION (POST HIGH SCHOOL) |
| 13 | PAREDC | 0.272740 | Parents education (COLLEGE GRaduate) |
| 14 | PAREDM | 0.049526 | PARENTS EDUCATION (MISSING, I DON'T KNOW) |
| 15 | ITEMS-3 | 0.052185 | 3 ITEMS IN THE HOME |
| 16 | ITEMS-4 | 0.141589 | 4 ITEMS IN THE HOME |
| 17 | TVWATCH | 0.277411 | NO. HOURS OF TV WATCHED PER DAY |
| 18 | TVWATCH2 | -0.037488 | NO. HOURS SQUARED OF TV WATCHED PER DAY |
| 19 | HOMELANG | -0.021578 | MINORITY HOME LANGUAGE SPOKEN |
| 20 | HOMEWRK- | 0.312557 | DON'T HAVE HOMEWORK |
| 21 | HOMEWRKO | 0.308734 | DON'T DO HOMEWORK |
| 22 | HOMEWORK | -0.010786 | AMOUNT OF HOMEWORK DONE |
| 23 | PCTLUNCH | -0.002942 | PERCENT IN LUNCH PROGRAM |
| 24 | NOLUNCH | -0.108688 | DON'T HAVE LUNCH PROGRAM OR MISSING |
| 25 | PCTHHLOW | -0.094621 | PCT WHITE IN SCHOOL 0.49 |
| 26 | PCTWHMED | -0.015439 | PCT WHITE IN SCHOOL 50-79 |
| 27 | -MA: $\triangle M G$ | -0.017183 | AT MODAL AGE; BELOW MODAL GRADE |
| 28 | - $:: \times$ MG | 0.421162 | at modal age; at modal grade |
| 29 | - A $:$ PMG | 0.458405 | at modal age; above modal grade |
| 30 | >MA:-MG | 0.351086 | above modal age ; at modal grade |
| 31 | SCH-PRIV | 0.001673 | SCHOOL OTHER THAN PUBLIC |
| 32 | HOMEHELP | -0.104533 | USUALLY GET HELP AT hOME WITH HOMEWORK |
| 33 | PRESCH | 0.104314 | WENT TO PRESCHOOL |
| 34 | HOMEPARS | 0.033862 | FATHER AND MOTHER BOTH AT HOME |
| 35 | HOMEMOM | 0.110458 | MOTHER LIVES AT HOME |
| 36 | MOMWORK | 0.011762 | MOTHER WORKS OUTSIDE OF HOME |
| 37 | Y0MEGRO | 0.058718 | grownup at home right after school |
| 38 | RD06+PP | 0.070232 | READ 6+ PAGES PER DAY FOR SCHOOL |
| 39 | RD11+PP | 0.030869 | READ 11+ PAGES PER DAY FOR SCHOOL |
| 40 | SSEVERY | 0.146238 | SOCIAL STUDIES CLASS EVERY DAY |
| 41 | SS3-4 | 0.201378 | SOCIAL STUDIES CLASS 3-4 TIMES PER WEEK |
| (continued) |  |  |  |

Table C-23 (continued)
Estimated Effects for Civics Cross-sectional Conditioning Variables 1988 Intercorrelation Sample, Grade 4/Age 9

| 42 | SSI-2 | 0.232414 | SOCIAL STUDIES CLAS 1-2 TIMES PER WEEK |
| :--- | :--- | ---: | :--- |
| 43 | SS<l | 0.060544 | SOCIAL STUDIES CLASS < 1 TIME . PER WEEK |
| 44 | STGOV | 0.033795 | STUDIED GOVERNMENT |
| 45 | STGOV-X | -0.500008 | STUDIED GOVERNMENT RESP. MISSING |
| 46 | STLAW-L | 0.068436 | STUDY LAWS A LOT OR SOME |
| 47 | SIRRES-L | U.007628 | STUDY PRES. \& LEADERS A LOT OR SOME |
| 48 | STCOMM-L | -0.074725 | STUDY COMMUNITY A LOT OR SOME |

Table C-24
Estimated Effects for Civics Cross-sectional Conditioning Var: ables 1988 Focused-BIB Sample, Grade 8/Age 13

|  | Variable | Estimated Effect |
| :---: | :---: | :---: |
| 1 | OVERALL | -1.613136 |
| 2 | GENDER-F | -0.077074 |
| 3 | ETHNIC-E | -0.138794 |
| 4 | ETHNIS-H | -0.183800 |
| 5 | ETHNIC-A | -0.101094 |
| 6 | STOC-H | 0.114793 |
| 7 | STOC-X | 0.061629 |
| 8 | REG-SE | 0.025581 |
| 9 | REG-C | 0.071906 |
| 10 | REG-W | 0.014446 |
| 11 | PAREDHS | 0.015981 |
| 12 | PAREDHS + | 0.125404 |
| 13 | PAREDC | 0.154213 |
| 14 | PAREDM | -n.081084 |
| 15 | ITEMS-3 | 0.032833 |
| 16 | ITEMS-4 | 0.101106 |
| 17 | TVWATCH | 0.046246 |
| 18 | TVWATCH2 | -0.008183 |
| 19 | HOMELANG | 0.007020 |
| 20 | HOMEWRK- | -0.061921 |
| 21 | HOMEWRKO | 0.026918 |
| 22 | HOMEWORK | 0.007356 |
| 23 | FCTIUNCH | -0.001397 |
| 24 | NOLUNSH | -0.090389 |
| 25 | PCTWHLOW | -0.022594 |
| 26 | PCTWHMED | -0.041061 |
| 27 | -MA: $\triangle M G$ | -0.179729 |
| 28 | -MA:-MG | 0.032173 |
| 29 | -MA: $>$ MG | 0.407612 |
| 30 | >MA:-MG | -0.124894 |
| 31 | SCH-PRIV | 0.061854 |
| 32 | HOMEHELP | -0.088763 |
| 33 | HOMEPARS | 0.014917 |
| 34 | HOMEMOM | 0.158676 |
| 35 | MOMWORK | 0.00681. |
| 36 | RD06+PP | 0.105422 |
| 37 | $\mathrm{RD} .11+\mathrm{PP}$ | -0.01.1569 |
| : 8 | GRADEXP | 0.207459 |
| 39 | NOMISS | 0.307670 |
| 40 | GRADES | 0.196147 |
| 41 | STCV-INC | -0.049973 |
| (continuea) |  |  |

## Description

OVERALL CONSTANT 'l' FOR EVERYONE
SEX (FEMALE)
OBSERVED ETHNICITY (BLACK)
OBSERVED ETHNICITY (HISPANIC)
OBSERVED ETHNICITY (ASIAN AMERICAN)
SIZE AND TYPE OF COMMUNIT: (HIGH METRO)
SIZE AND TYPE OF COMRUNITY (NOT HIGH OR LWW)
REGION (SOUTHEAST)
REGION (CENTRAL)
REGION (WEST)
PARENTS EDUCATION (HIGH SCHOOL GRAD)
PARENTS EDUCATION (POST HIGH SCHOOL)
PARENTS EDUCATION (COLLEGE GRADUATE)
PARENTS EDUCATION (MISSING, I DON'T KNOW)
3 ITEMS IN THE HOME
4 ITEMS IN THE HOME
NO. HOURS OF TV WATCHED F :R DAY
NO. HOURS SQUARED OF TV WATCHED PER DAY
MINORITY HOME LANGUAGE SPOKEN
DON'T HAVE HOMEWORK
DON'T DO HOMEWORK
AMOUNT OF HOMEWORK DONE
PERCENT IN LUNCH PROGRAM
DON'T HAVE LUNCH F'ROGRAM OR MISSING
PCT WHITE IN SCHOOL 0-49
PCT WHITE IN SCHOOL 50-79
AT MODAL AGE; BELOW MODAL GRADE
AT MODAL AGE; AT MODAL GRADE
AT MODAL AGE; ABOVE MODAL GRADE
ABOVE MODAL . $\operatorname{lgE}$; AT MODAL GRADE
SCHOOL OTHER THAN PUBLIC
USUALLY GET HELP AT HOME WITH HOMEWORK
FATHER AND MOTHER BOTH AT HUME
MOTHER LI?ES AT HOME
MOTHER WORKS OUTSIDE OF HOME
READ $6+$ PAGES PER DAY FOR SCHOOL
READ 1l+ PAGES PER DAY FOR SCHOOL
EXPECT TO GRADUATE FROM HIGY SCHOOL
DID NOT MISS MUCH SCHOOL LAST $\operatorname{IONTH}$
GKADES IN SCHOOL
STUDIED CIVICS - INCOMPLETr SET OF ANSWERS

Table C-24 (continued)
Estimated Effects for Civics Cross-sectional Conditzoning Variables 1988 Focused-BIB Sample Grade 8/Age '3

Variable
S'rCIV5
STCIV6
STCIV7
STCIV8
ST-ALOT
STCON-L
STCONG-L
STLATI-L
STCRT-L
STPRES-L
STPOL-L
STSLG-L
STDG-L
STOG-L
STRGHT-L
CVA-ACI
CVB:ACT
CVC-ACT
CVD-ACT
CVD-NOT

RDDIF -0.227011

## Description

STUDIED CIVICS IN 5TH GRADE STUDIED CIVICS IN 6TH GRADE STUDIED CIVICS IN 7TH GRADE STUDIED CIVICS IN 8TH $\Gamma$ 'ADE NUMBER OF SUBJECTS ST,: 1 ED A LOT (OUT OF IU) SIUDIED U.S. CONSTITUTION A LOT OR SOME STUDIED CONGRESS A LOT OR SOME STUDIED LAWS A LOT OR SOME STUDIED COURTS A LOT OR SOME STUDIED PRESIDENT A LOT OR SOME STUDIED POLI'TICAL PARTIES A LOT OR SOME STUDIED STATE/LOCAL GOVS. A LOT OR SOME STUDIED DEMOCRATIC GOVS. A LOT OR SOME STUDIED OTHER GOVS. A LOT OR SOME STUDIED RIGHTS \& RESPONSIB. A LOT CP SOME ACTIVE IN 4 AREAS OF CIVICS ( $1,2,5,8$ ) ACTIVE IN 2 areas of civics $(3,10)$ ACTIVE IN 2 areas of CIVICS ( $4, y$ ) ACTIVE IN 2 areas of civ.cs ( 6 7) NOT VERY ACTIVE IN THESE 2 areas or civics at least some difficulty in reading or missing

Table C-25
Estimated Effects for Civics Cross-sectional Conditioning Variables 1988 Intercorrelation Sample, Grade 8/Age 13

|  | Variable | Estimeted Effect |
| :---: | :---: | :---: |
| 1 | OVERALL | -1.224095 |
| 2 | GENDER-F | -0.118153 |
| 3 | ETHNIC-B | -0.135472 |
| 4 | ETHNIC-H | -0.193761 |
| 5 | ETHNIC-ín | 0.027554 |
| 6 | STOC-H | 0.080959 |
| 7 | STOC-X | 0.046864 |
| 8 | REG-SE | -0.001454 |
| 9 | REG-C | -0.001889 |
| 10 | REG-W | -0.055975 |
| 11 | PAREDHS | 0.030488 |
| 12 | PAREDHS; | 0.128680 |
| 13 | Paredc | 0.151727 |
| 14 | PAREDM | -0.068832 |
| 15 | ITEMS-3 | 0.122664 |
| 16 | ITEMS-4 | 0.173642 |
| 17 | TVWATCH | 0.020052 |
| 18 | TVWATCH2 | -0.006978 |
| 19 | HOMELANG | -0.046921 |
| 20 | HOMEWRK- | 0.094715 |
| 21 | HOMEWRKO | 0.205456 |
| 22 | HOMEWORK | 0.040729 |
| 23 | PCTLUNCH | -0.001694 |
| 24 | NOLUNCH | -0.048478 |
| 25 | PCTWHLOW | 0.019132 |
| 26 | PCTWHMED | -0.017506 |
| 27 | -MA: <MG | -0.307013 |
| 28 | -MA:-MG | -0.008815 |
| 29 | -MA: $>M G$ | 0.332372 |
| 30 | >MA:-MG | -T. 127282 |
| 31 | SCH-PRIV | J. 160774 |
| 32 | HOMEHELP | -0.134069 |
| 33 | HOMEPARS | -0.009036 |
| 34 | HOMEMOM | $0.1231 ، 4$ |
| 35 | MOMWORK | -0.022786 |
| 36 | RD06+PP | 0.096868 |
| 37 | RDil+PP | 0.028811 |
| 38 | GRADEXP | 0.034207 |
| 39 | NOMISS | 0.018810 |
| 40 | GRADES | 0.283918 |
| 41 | STCV-INC | -0.061693 |
| (continued) |  |  |

## Description

OVERALL CONSTANT 'l' FOR EVERYONE SEX (FEMALE)
OBSERVED ETHNICITY (BLACK)
OBSERVED ETHNICITY (HISPANIC)
OBSERVED ETHINICITY (ASIAN AMERICAN)
SIZE AND TYPE OF COMMUNITY (HIGH METRO)
SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW)
REGION (SOUTHEAST)
REGION (CENTRAL)
REGION (WEST)
PARENTS EDUCATION (HIGH SCHOOL GRAD)
Parents egucation (post high school)
farents education (COLLEGE GRADUATE)
PARENTS EDUCATION (MISSING, I DON'T KNOW)
3 ITEMS IN THE HOME
4 ITEMS IN THE HOME
NO. HOURS OF TV WATCHED PER DAY
NO. HOURS SQUARED OF TV WATCHED PER DAY
MINORITY HOME LANGUAGE SPOKEN
DON'T HAVE HOMEWORK
DON'T DO HOMEWORK
AMOUNT OF HOMEWORK DONE
PERCENT IN LUHCH PROGRAM
DON'T HAVE LUNCH PROGRAM OR MISSING
PCT WHITE IN SCHOOL $0-49$
PCT WHITE IN SCHOOL 50-79
at MODAL AGE; BELOW MODAL GRADE
at modal age; at modal grade
at modal age; ab' e modal grade
above modal age; at mgdal grade
SCHOOL OTHER THAN PUBLIC
USUALLY GET HELP AT HOME WITH HOMEWORK
FATHER AND MOTHER BOTH AT HOME
MOTHER LIVES AT HOME
MOTHER WORKS OUTSIDE OF HOME
READ 6+ PAGES PER DAY FOR SCHOOL
READ $11+$ PAGES PER DAY FOR SCHOOL
EXPECT TO GRADUATE FROM HIGH SCHOOL
DID NOT MISS MUCH SCHOOL LAST MONTH
GRADES IN SCHOOL
STUDIED CIVICS - INCOMPLETE SET OF ANSWERS

Table C-25 (continued)
Estimated Effects for Civics Cross-sectional Conditionirg Variables
1988 Intercorrelation Sample, Grade $8 /$ Age 13 1988 Intercorrelation Sample, Grade 8/Age 13


Table C-26
Estimated Effects for Civics Cross-sectional Conditioning Variables 1988 Focused-BIB Sample, Grade 12/Age 17

|  | Variable | Estimated Effect | Description |
| :---: | :---: | :---: | :---: |
| 1 | OVERALL | -1.329683 | OVERALL CONSTANT ' 1 ' FOR EVERYGNE |
| 2 | GENDER-F | -0.161951 | SEX (FEMALE) |
| 3 | ETHNIC-B | -0.225/27 | OBSERVED ETHNICITY (BLACK) |
| 4 | ETHNIC-H | -0.123448 | OBSERVED ETHNICITY (HISPANIC) |
| 5 | ETHNIC-A | 0.037675 | OBSERVED ETHNICITY (ASIAN AMERICAN) |
| 6 | STCC-H | 0.175198 | SIZE AND TYPE OF COMMUNITY (HIGH METRO) |
| 7 | STOC-X | 0.061377 | SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) |
|  | REG-SE | -0.004221 | REGION (SOUTHEAST) |
| 9 | REG-C | 0.061998 | REGION (CENTRAL) |
| 10 | REG-W | -0.018295 | REGION (WEST) |
| 11 | PAREDHS | 0.024432 | PARENTS EDUCATION (HIGH SCHOOL GRAD) |
| 12 | PAREDHS+ | 0.150551 | PARENTS EDUCATION (POST HIGH SCHOOL) |
| 13 | PAREDC | 0.129662 | PARENTS EDUCATION (COLLEGE GRADUATE) |
| 14 | PARF.DM | -0.029806 | PARENTS EDUCATION (MISSING, I DON'T KNOW) |
| 15 | ITEMS-3 | 0.144291 | 3 Items in the home |
| 16 | ITEMS-4 | 0.150336 | 4 ITEMS IN THE HOME |
| 17 | TVWATCH | 0.062647 | NO. HOURS OF TV WATCHED PEL. DAY |
| 18 | TVWATCH2 | -0.012239 | NO. HOURS SQUARED OF TV WATCHED PER DAY |
| 19 | homelang | -0.078055 | MINORITY HOME LANGUAGE SPOKEN |
| 20 | HOMEWRK- | -0.007298 | DON'T HAVE HOMEWORK |
| 21 | HOMEWRKO | 0.089084 | DON'T DO HOMEWORK |
| 22 | HOMEWORK | -0.001492 | AMOUNT OF HOMEWORK DONE |
| 23 | PCTLUNCK | 0.000302 | PERCENT IN LUNCH PROGRaM |
| 24 | NOLUNCH | -0.004135 | DON'T HAVE LUNCH PROGRAM OR MISSING |
| 25 | PCTWHLOW | -0.011627 | PCT WHITE IN SCHOOL 0.49 |
| 26 | PCTWHMED | 0.012093 | PCT WHITE IN SCHOOL 50.79 |
| 27 | -MA : <MG | -0.089241 | at modal age; below modal grade |
| 28 | -MA:-MG | -0.017791 | AT MODAL AGE; AT MODAL GRADE |
| 29 | >MA:-MG | -0 066792 | ABOVE MODAL AGE; AT MODAL GRADE |
| 30 | SCH-PRIV | -0.027147 | SCHOOL OTHER THAN PUBLIC |
| 31 | HOMEHELP | -0.185448 | USUALLY GET HETP AT HUME WITH HOMEWORK |
| 32 | HOMEPARS | -0.002427 | FATHER AND MOTHER BOTH AT HOME |
| 33 | HOMEMOM | 0.132333 | MOTHER LIVES AT HOME |
| 34 | MOMWORK | 0.023772 | MOTHER WORKS OUTSIDE OF HOME |
| 35 | RD06+PP | 0.059618 | READ 6+ PAGES PER DAY FOR SCHOOL |
| 36 | $\mathrm{RDLl}+\mathrm{PP}$ | 0.008460 | READ 11+ PAGES PER DAY FOR SCHOOL |
| 37 | NOMISS | 0.022331 | DID NCT MTS MUCH SCHOOL LAST MONTAi |
| 38 | GRADES | 0.120805 | GRADES IN SCHOOL |
| 39 | COLLPREP | 0.117544 | COLLEGE PREP. PROGRAM |
| 40 | VOCTECH | -0.057613 | VOCATIONAL/TECH. PROGRAM |
| 41 | PLAN2YR | 0.016887 | PLAN TO GO TO 2-YEAR COLLEGE |
| (continued) |  |  |  |

Table C-26 (continued)
Estimated Effents for Civics Crrss-sectional Conditioning Variabies 1988 Focused-BIB Sample, Grade 12/Age 17

|  | Variable | Estimated Effect | Description |
| :---: | :---: | :---: | :---: |
| 42 | PLAN4YR | 0.151381 | PLAN TO GO TO 4-YEAR COLLEGE |
| 43 | WORKHRS | -0.001538 | NO. HOURS OF OUTSIDE WORK |
| 44 | ENG:AP | 0.097595 | TAKING A.P./COLL. PREP. ENGLISH CLASS |
| 45 | ENG-REM | -0.195803 | TAKING REMEDIAL ENGLISH CLASS |
| 46 | STCV-INC | -0.148636 | STUDIED CIVICS - INCOMPLETE SET OF ANSWERS |
| 47 | STCV9 | -0.063248 | STUDIED CIVICS IN 9TH GRADE |
| 48 | STCV10 | -0.089337 | STUDIED CIVICS IN 10TH GRADE |
| 49 | STCV11 | -0.071126 | STUDIED CIVICS IN IlTH GRADE |
| 50 | STCV12 | 0.037421 | STUDIED CIVICS IN 12TH GRADE |
| 51 | GOVT | 0.044203 | HOW MANY YEARS OF GOV'T STUDY HAVE YOU HAD |
| 52 | AP | -0.109859 | ADVANCED PLACEMENT YES |
| 53 | ST-ALOT | 0.000510 | NUMBER OF SUBJECTS STUDIED A LOT (OUT OF 10) |
| 54 | ST-AVE | 0.364440 | AVERAGE LEVEL OF STUDY FOR THESE TEN |
| 55 | CIV-INT | 0.067754 | IEVEL OF INTEREST IN CIVICS |
| 56 | MOCK-SOM | 0.083116 | MOCK ELECTIGNS, TRIALS, ONCE TO SEVERAL TIMES |
| 57 | GOVATTN | 0.110814 | DEGREE OF ATTENTN GOVT. PAYS (AVE. OF 2 ITEMS) |
| 58 | HADCIV | -0.025435 | YES, HAVE HAD A CIVICS CLASS |
| 59 | CVHWORK | 0.032976 | AMOUNT OF CIVICS HOMEWORK |
| 60 | CVGRADES | 0.121410 | CIVICS GRADES IN SCHOOL |
| 61 | CVA-ACT | -0.045429 | ACTIVE IN 4 AREAS OF CIVICS ( $1,2,5,8$ ) |
| 62 | CVB-ACT | -0.069698 | ACTIVE IN 2 AREAS OF CIVICS ( 3,10 ) |
| 63 | CVC-ACT | 0.089997 | ACTIVE IN 2 AREAS OF CIVICS ( 4,9 ) |
| 64 | CVD-ACT | -0.193582 | ACTIVE IN 2 ARFAS OF CIVICS (6, 7) |
| 65 | CVD-NOT | 0.071695 | NOT VERY ACTIVE IN THESE 2 AREAS OF CIVICS |
| 66 | RDDIF | -0.170134 | AT LEAST SOME DIFFICULTY IN READING OR MISSING |

Table C-27
Estimated Effects for Civics Cross sectional Conditioning Variables 1988 Intercorrelation Sample, Grade 12/Age 17

|  | Variable | Estimated Effect | Description |
| :---: | :---: | :---: | :---: |
| 1 | OVERALL | -0.911554 | OVERALL CONSTANT '1' FOR EVERYONE |
| 2 | GENDER-F | -0.155584 | SEX (FEMALE) |
| 3 | ETHNIC-B | -0.265358 | OBSERVED ETHNICITY (BLACK) |
| 4 | ETHNIC-H | -0.301223 | OBSERVED ETHNICITY (HISPANIC) |
| 5 | ETHNIC-A | -0.583830 | OBSERVED ETHNICITY (ASIAN AMERICAN) |
| 6 | STOC-H | 0.097614 | SIZE AND TYPE OF COMMUNTTY (HIGH METRO) |
| 7 | STOC-X | 0.067059 | SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) |
| 8 | REG-SE | 0.091114 | REGION (SOUTHEAST) |
| 9 | REG-C | 0.021948 | REGION (CENTRAL) |
| 10 | REG-W | 0.006807 | REGION (HEST) |
| 11 | PAREDHS | -0.134283 | PARENTS EDUCATION (HIGH SCHOOL GRAD) |
| 12 | PAREDHS+ | -0.069501 | PARENTS EDUCATION (POST HIGH SCHOOL) |
| 13 | PAREDC | -0.015859 | Parents education (COLLEGE GRaduate) |
| 14 | PAREDM | -0.136091 | PARENTS EDUCATION (MISSING, I DON'T KNOW) |
| 15 | ITEMS-3 | 0.0724 .1 | 3 ITEMS IN THE HOME |
| 16 | ITEMS 4 | 0.104143 | 4 ITEMS IN THE HOME |
| 17 | TVWATCH | 0.140501 | NO. HOURS OF TV WATCHED PER DAY |
| 18 | TVWATCH2 | -0.021632 | NO. HOURS SQUARED OF TV WATCHED PER DAY |
| '9 | HOMELANG | 0.097374 | MINORITY HOME LANGUAGE SPOKEN |
| 20 | HOMEWRK- | 0.148167 | DON' T HAVE HOMEWORK |
| 21 | HOMEWRKO | 0.185228 | DON'T DO HOMEWORK |
| 22 | HOMEWORK | 0.066495 | AMOUNT OF HOMEWORK DONE |
| 23 | PCTLUNCH | 0.003626 | PERCENT ${ }^{\text {「T }}$ LUNCH PROGRAM |
| 24 | NOLUNCH | 0.021832 | DON'T Henw LUNCH PROGRAM OR MISSING |
| 25 | PCTWHLOW | -0.145977 | PCT WHITE IN SCHOOL 0-49 |
| 26 | PCTWHMED | -0.011403 | PCT WHITE IN SCHOOL 50-79 |
| 27 | -MA: 4 MG | -0.038936 | at modal age; below modal grade |
| 28 | -MA:-MG | 0.138253 | at modal age; at modal grade |
| 29 | >MA:-MG | 0.098470 | above nodal age; at modal grade |
| 30 | SCH-PRIV | 0.081950 | SCHOOL OTHER THAN PUBLIC |
| 31 | HOMEHELP | -0.183083 | USUALLY GET HELP AT HOME WITH HOMEWORK |
| 32 | HOMEPARS | 0.071978 | FATHER AND MOTHER BOTH AT HOME |
| 33 | HOMEMOM | 0.081156 | MOTHER LIVES AT HOME |
| 34 | MOMWORK | 0.026910 | MOTHER WORKS OUTSIDE OF HOME |
| 35 | RD05+PP | 0.145215 | READ 6+ PAGES PER DAY FOR SCHOOL |
| 36 | RDll + PP | -0.066205 | READ ll+ PAGES PER DAY FOR SCHOOL |
| 37 | NOMISS | 0.040696 | DID NOT MISS MUCH SCHOOL LAST MONTH |
| 38 | g'ades | 0.234408 | GRADES IN SCHOOL |
| 39 | CCLLPREP | 0.118036 | COLLEGE :REP. PROGRAM |
| 40 | VOCTECH | -0.054741 | VOCATIONAL/TECH. PROGRAM |
| 41 | PLAN2YR | 0.059541 | PLAN TO GO TO 2-YEAR COI' EGE |

Table C-27 (continued)
Estimated Efiects for Civics Cross-sectional Conditioning Variables i988 Intercorrelation Sample, Grade 12/Age 17

Estimated
Variable Effect
0.165027

PLAN4YR -0.002365 WORKHRS 0.147936 ENG-REM -0.085238 STCV-INC
-0. 292528 0.012856 STCV10 -0.268831 STCV11 -0.083368 STCV12 0.102932 GOVT
AP 0.064298 -0.070794
ST-ALOT
0.018307
$-0.000833$

## Descriplion

PLAN TO GO TO 4 -YEAR COLLEGE HO. HOURS OF OUTSIDE WORK TAKING A.P./COLL. PREP. ENGLISH CLASS taking remedial english class STUDIED CIVICS - I:ICOMPLETE SET OF ANSWERS STUDIED CIVICS IN 9TH GRADE STUDIED CIVICS IN 10TH GRADE STUDIED CIVICS IN 11TH GRADE STUDIED CIVICS IN 12TH GRADE HOW MANY YEARS OF GOV'T STUDY HAVE YOU HAD ADVANCED PLACEMENT YES number of subjects studied a lot (OUT OF 10) average level of study for these ten

Table C-28
Escimated Effects for Civics Trend Conittioning Variables 1988 Trend Sample, Age 13

| Variable | Escimated Effect | Description |
| :---: | :---: | :---: |
| OVERALL | -1.833217 | OVERALL CONSTANT ' 1 ' FOR EVERYONE |
| GENL SR-F | -0.274014 | SEX (FEMALE) |
| ETHNIC-B | -0.245560 | OBSERVED ETHNICITY (BLACK) |
| ETHNIC-H | -0.193642 | OBSERVED ETHNICITY (HISFANIC) |
| ETHNIC-O | 0.022923 | OBSERVED ETHNICITY (OTHER) |
| STOC-H | 0.251747 | SIIEE Aidd type of community (high metro) |
| STOC-: | 0.228720 | SIZE AND TYPE OF COMMUNITY (HOT HIGH OR LOW) |
| REG-SE | 0.024840 | REGION (SOUTHEAST) |
| REG-C | 0.065093 | REGION (CENTRAL) |
| REG-W | -0.209815 | REGION (WEST) |
| PAREDHS | -0.016727 | PARENTS EDUCATION (HIGH SCH:DOL GRAD) |
| PAREDHS+ | 0.163282 | FARENTS EDUCATION (POST HIGH SCHOOL) |
| PAREDC | 0.287076 | PARENTS EDUCATION (COLLEGE GRADUATE) |
| PAREDM | -0.279247 | PARENTS EDUCATION (MTSSING, I DON'T KNOW) |
| ITEMS-3 | 0.093471 | 3 ITEMS IN THE Home |
| ITEMS-4 | 0.197622 | 4 ITEMS IN THE HOME |
| TVWATCH | 0.081961 | NO. HOURS OF TV HATCHED PER DAY |
| TVWATCH2 | -0.016805 | NO. HOURS SQUARED OF TV WATCHED PER DAY |
| HOMELANG | -0.054940 | MINORITY HOME LANGUAGE SYOKEN |
| HOMEWRY - | -0.290030 | DCN'T HAVE HOMEWORK |
| HOMEWRKJ | -0.013951 | DON'T DO HOMEWORK |
| HOMEWORK | 0.049850 | AMOUNT OF HOMEWORK DONE |
| PCTWHLOW | -0.192148 | PCT WHITE IN SCHOOL 0 -49 |
| PCTWHMED | 0.157684 | PCT WHITE IN SCHOOL 50-79 |
| - MODALG | 0.575586 | GRADE IN SCHOOL IS MODAL GRADF |
| > MODALG | 1.748053 | GRADE IN SCHOOL IS GREATER THAN MODAL CRADE |
| SCH-PRIV | 0.213468 | SCHOOL OTHER THAN PUBLIC |
| GRADES | 0.426167 | GRADES IN SCHOOL (4-POINT SCALE) |

Table C-29
Estimated Effects for Civics Trend Conditioning Variables 1982 Trend Sample, Age 13

|  | Variable | Estimated Effect | Tescription |
| :---: | :---: | :---: | :---: |
| 1 | OVERALI. | -1. 264436 | OVERALL CONSTANT 'l' FOR EVERYONE |
| 2 | GENDER-F | -0.3212.34 | SEX (FEMALE) |
| 3 | ETHNIC-B | -0.533501 | Or SERVED ETHNICITY (BLACK) |
| 4 | ETHNIC-H | -0.215298 | OBSERVED ETHNICITY (HISPANIC) |
| 5 | ETHNIC-0 | -0.108223 | OBSERVED ETHNICITY (OTHER) |
| 6 | STOC-H | 0.247733 | SIZE AND TYPE OF COMMUNITY (HIGH METRO) |
| 7 | STOC-X | -0.027729 | SIZE AND TYPE OF COMIUNITY (NOT HIG.4 OR LOW) |
| 8 | REG-SE | -.. 065470 | REGION (SOUTHEAST) |
| 9 | REG-C | -0.012846 | REGION (CENTRAL) |
| 10 | REG-W | -0.045416 | REGION (WEST) |
| 11 | PAREDHS | 0.225191 | PARENTS EDUCATION (HIGH SCHOOL GRAD) |
| 12 | PAREDHS+ | 0.409932 | PARENTS EDUCATION (POST HIGH SCHOOL) |
| 13 | PAREDC | 0.466953 | PARENTS EDUCATION (COLLEGE GRADUATE) |
| 14 | PAREDM | -0.052883 | PARENTS EDUCATION (MISSING, I DON'T KNOW) |
| 15 | ITEMS - 3 | 0.138441 | 3 ITEMS IN THE HOME |
| 16 | ITEMS-4 | 0.274918 | 4 ITEMS IN THE HOME |
| 17 | TVWATCH | 0.004248 | NO. HOURS OF TV WATCHED PER DAY |
| 18 | TVWATCH2 | -0.002819 | NO. HOURS SQUARED OF TV WATCHED PER DAY |
| 19 | HOMELANG | 0.097368 | MINORITY HOME LANGUAGE SPOKEN |
| 20 | HOMEWRK- | -0.311352 | DON'T HAVE HOMEWORK |
| 21 | HOMEWRKO | -0.207615 | DON'T DO HOMEWORK |
| 22 | HOMEWORK | 0.005725 | AMOUNT OF HOMEWORK DONE |
| 23 | PCTWHLOW | -0.299501 | PCT WHI'E IN SCHOOL 0-49 |
| 24 | PCTWHMED | -0.036163 | PCT WHITE IN SCHOOL 50-79 |
| 25 | - MODALG | 0.463258 | GRADE iN SCHOOL IS MCJAL GRADE |
| 26 | > MODALG | 1.302472 | GRADE IN SCHOOL IS GREATER THAN MODAL GRADE |
| 27 | SCH-PRIV | 0.183278 | SCHOOL OTHER THAN PUBLIC |
| 28 | GRADES | 0.339169 | GRADES IN SCHOOL (4-POINT SCALE) |

Tsble C-30

Estimated Effects for Civics Trend Conditioning Variables 1976 Trend Sample, Age 13

|  | Variable | Estimated Effect | Description |
| :---: | :---: | :---: | :---: |
| 1 | OVERALL. | -0.865586 | OJERALL CONSTANT '1' FOR EVERYUNL |
| 2 | GENDER-F | -0.180073 | SEX (FEMALE) |
| 3 | ETHNIC-B | -0.612380 | OBSERVED ETHNICITY (BLACK) |
| 4 | ETHNIC-K | -0.553508 | OBSERVED ETHNICITY (HISPANIC) |
| 5 | ETHNIC-0 | -0.394742 | OBSERVED ETHNICITY (OTHER) |
| 6 | STOC-H | 0.426680 | SIZE AND TYPE OF COMMUNITY (HIGH METRO) |
| 7 | STOC-X | 0.019128 | SIZE AND TYPE OF COMMTNYTY (NOT HIGH OR LOW) |
| 8 | REG-SE | 0.010113 | REGION (SOUTHEAST) |
| 9 | REG-C | 0.139607 | REGION (CENTRAL) |
| 10 | REG-W | -0.032758 | REGION (WEST) |
| 11 | PAREDHS | 0.235653 | PARENTS EDUCATION (HIGH SCHOOL GRAD) |
| i2 | PAREDHS + | 0.560744 | PARENTS EDUCATION (POST HIGH SCHOOL) |
| 13 | PARELM | -0.C03951 | PARENTS EDUCATION (MISSING, i DON' T KNOW) |
| 14 | ITEMS-3 | 0.105100 | 3 ITEMS IN THE HOME |
| 15 | ITEMS-4 | 0.413272 | 4 ITEMS IN THE HOME |
| 16 | PCTWHLOW | -0.040969 | PCT WHITE IN SCHOOL 0-49 |
| 17 | PCTWHMED | 0.023708 | PCT WHITE IN SCHOOL 50-79 |
| 18 | - MODALG | 0.584018 | GRADE IN SCHOOL IS MODAL GRADE |
| 19 | > MODALG | 0.918076 | GRADE IN SCHOOL IS GREATER THAN MODAL GRADE |

Tabie C-31
Estimated Effects for Civics Trend onditioning Variables i988 Trend Sample, Age 17

|  | Variable | Estimated Effect | Description |
| :---: | :---: | :---: | :---: |
| 1 | OVERALL | 2.537850 | OVERALL CONSTANT ' 1 ' FOR EVERYONE |
| 2 | GENDER-F | -0.354324 | SEX (FEMALE) |
| 3 | ETHNIC-B | -0.371432 | OBSERVED ET"* ICITY (BLACK) |
| 4 | ETHNIC-H | -0.072776 | OBSERVED ETY LCITY (HISPANIC) |
| 5 | ETHNIC-0 | -0.156620 | OBSERVED ETHNICITY (OTHER) |
| 6 | STOC-H | 0.217207 | SIZE AND TYPE OF COMMUNITY (HIGH METRO) |
| 7 | STOC-X | 0.187236 | SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) |
| 8 | REG-SE | 0.083641 | REGION (SOUTHEAST) |
| 9 | REG-C | -0.002988 | REGION (CENTRAL) |
| 10 | REG-W | -0.226426 | REGION (WEST) |
| 11 | PAREDHS | 0.092559 | PARENTS EDUCATION (HIGH SCHOOL GRAD) |
| 12 | PAREDHS+ | 0.315752 | PARENTS EDUCATION (POST HICH SCHOOL) |
| 13 | PAREDC | 0.377825 | PARENTS EDr .TION (COLLEGE GRADUATE) |
| 14 | PAREDM | -0.029314 | PARENTS EDUCATION (MISSING, I DON'T KNOW) |
| 15 | ITEMS-3 | 0.093015 | 3 ITEMS IN THE HOME |
| 16 | ITEMS-4 | 0.108895 | 4 ITEMS IN THE HOME |
| 17 | TVWATCH | J. 015740 | NO. HOURS OF TV WATCHED PER DAY |
| 18 | TVWATCH2 | -0.004894 | NO. HOURS SQUARED OF TV Watched fer day |
| 19 | HOMELANG | -0.103856 | MINORITY HOME LANGUAGE SPOKEN |
| 20 | HOMEWRK- | -0.189856 | DON'T HAVE HOMEWORK |
| ? 1 | HOMEWRKO | 0.229131 | DON'T DO HOMEWORK |
| 22 | HOMEWORK | -0.094754 | AMOUNT OF HOMEWORK DONE |
| 23 | PCTWHLOW | 0.035583 | PCT WHITE IN SCHOOL 0-49 |
| 24 | PCTWHMED | -0.013220 | LCT WHITE IN SCHOOL 50-79 |
| 25 | - MODALG | 0.406556 | GRade in School is modal grade |
| 26 | > MODALG | 0.550452 | grade in School is greater than modal grade |
| 27 | SCH-PRIV | -0.002692 | SCHOOL OTHER THAN PUBLIC |
| 28 | GRades | 0.407650 | GRADES IN SCHOOL (4-POINT SCALE) |
| 29 | HSPGM-C | 0.355545 | HIGH SCH PROGRAM COLLEGE PREP |
| 30 | HSPGM-V | -0.148816 | HIGH SCH PROGRAM VOCAT'L GR OTHER NOIVGENERAL |
| 31 | ISS-YES | 0.150710 | discuss issues in courses |
| 32 | ISS-SOMX | 0.141650 | discuss issues in courses Some hat or missing |
| 33 | POL-YES | 0.394967 | discus POLITICS IN COURSES |
| 34 | POL-SOMX | 0.259171 | discuss Pol. İ. COURSES SOMEWHAT OR MISSING |
| 35 | NONEW-Y | 0.017690 | NOTHING NEW DISCUSSED IN COURSES - TRUE |
| 36 | NONEW-SX | -0.005086 | NOTH. NEW DISC. IN CRSES - SOMEWHAT OR MISSING |
| 37 | KNOW-YES | -0.015209 | kNOWLEDGE TO Participate - true |
| 38 | KNOW-SX | -0.009888 | KNOWLEDGE TO PARTICIPATE - SOMEWHAT OR MISSING |
| 39 | NATL-D | 0.134013 | NATIONAL DISCUSSIONS ALMOST EVERY DAY |
| 40 | NATL-C | -0.03676? | NAT'L DISCUSSIONS 1-2 TIMES A WEEK OR MISSING |
| 41 | NATL-B | -0.050476 | NATIONAL DISCUSSIONS 3-4 TIMES A MONTH |
| (continued) |  |  |  |

Table C-31 (continued)
Estimated Effects for Civics Trend Conditioning Variables 1988 Trend Sample, Age 17

|  | Variable | Estimat Effect | Description |
| :---: | :---: | :---: | :---: |
| 42 | INTL-D | 0.221026 | INTERNATIONAL DISCUSSIONS ALHOST EVERY DAY |
| 43 | INTL-C | 0.152830 | INT'L DISCUSSIONS 1-2 TIMES A WEEK OR MISSING |
| 44 | INTL-B | 0.181321 | INTERNATIONAL DISCUSSIONS 3-4 TIMES A MONTH |

Table C-32
Estimated Effects for Civics Trenr. Conditic aing Variables 1982 Trend Sample, Age 17

| Variable | Estimated Effect | Description |
| :---: | :---: | :---: |
| OVERALL | -1.361751 | OVERALL CONSTANT 'l' FOR EVERYONE |
| GENDER-F | -0.425031 | SEX (FEMALE) |
| ETHNIC-B | -0.470033 | OBSERVED ETHNICITY (BLACK) |
| ETHNIC-H | -0.296556 | OBSERVED ETHNICITY (HISPANIC) |
| ETHNIC-0 | -0.421034 | OBSERVED ETHNICITY (OTHER) |
| STOC-H | 0.446878 | SIZE AND TYPE OF COMMUNITY (HIGH METRO) |
| STOC-X | 0.203226 | SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) |
| REG-SE | 0.034580 | REGION (SOUTHEAST) |
| REG-C | 0.050915 | REGION (CENTRAL) |
| REG-W | -0.013089 | REGION (WEST) |
| PAREDHS | 0.116176 | PARENTS EDUCATION (HIGH SCHOOL GRAD) |
| PAREDHS+ | 0.267456 | PARENTS EDUCATION (POST HIGH SCHOUL) |
| PAREDC | 0.283755 | Parents Education (COLLEGE GRaduate) |
| PAREDM | -0.334944 | PARENTS EDUCATION (MISSING, I DON'T KNOW) |
| ITEMS-3 | 0.165990 | 3 ITEMS IN THE HOME |
| ITEMS-4 | 0.275573 | 4 ITEMS IN THE HOME |
| TVWATCH | 0.018188 | NO. HOURS OF TV WATCHED PER DAY |
| TVWATCH2 | -0.008675 | NO. HOURS SQUARED OF TV WATCHED PER DAY |
| HOMELANG | -0.135970 | MINORITY HOME LANGUAGE SPOKEN |
| HOMEWRK- | -0.302385 | DON'T HAVE HOMEWORK |
| HOMEWRKO | -0.090445 | DON'T DO HOMEWORK |
| HOMEWORK | 0.004198 | AMOUNT OF HOMEWORK DONE |
| PCTWHLOW | -0.090147 | PCT WHITE IN SCHOOL $0-49$ |
| PCTWHMED | -0.044514 | PCT WHITE IN SCHOOL 50-79 |
| - MODALG | 0.497047 | GRADE IN SCHOOL IS MODAL GRADE |
| > MODALG | 0.662263 | GRADE IN SCHOOL İ GREATER THAN MODAL GRADE |
| SCH-PRIV | -0.140064 | SCHOOL OTHER THAN PUBLIC |
| GRADES | 0.283818 | GRADES IN SCHOOL (4-POINT SCALE) |
| HSPGM-C | 0.403098 | HIGH SCH PROGRAM COLLEGE PREP |
| HSPGM-V | -0.009976 | HIGH SCH PROGRAM VOCAT'L OR OTHER NONGENERAL |

Table C-33
Estimated Effects for Civics Trend Conditioning Variables 1976 Trend Sample, Age 17

|  | Variable | Estimate Effect | Description |
| :---: | :---: | :---: | :---: |
|  | OVERALL | -1.564018 | OVERALL CONSTANT ' 1 ' FOR EVEIRYONE |
| $\cdots$ | GENDER-F | -0.439323 | SEX (FEMALE) |
| 3 | ETHNIC-B | -0.375957 | OBSEKVED ETHNICITY (BLACK) |
| 4 | ETHNIC-H | -0.411097 | OBSERVED ETHNICITY (HISPANIC) |
| 5 | ETHNIC-0 | -0.351636 | OBSERVED ETHNICITY (OTHER) |
| 6 | ST0C-H | 0.1931 .89 | SIZE AND TYPE OF COMMUNITY (HIGH METRO) |
| 7 | STOC-X | 0.033124 | SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) |
| 8 | REG-SE | -0.062455 | REGION (SOUTHEAST) |
| 9 | REG-C | 0.059840 | REGION (CENTRAL) |
| 10 | REG-W | -0.024240 | REGION (WEST) |
| 11 | PAREDHS | -0.005646 | PARENTS EDUCATION (HIGH SCHOOL GRAD) |
| 12 | PAREDHS+ | 0.215860 | PARENTS EDUCATION (POST HIGH SCHOOL) |
| 13 | PAREDM | -0.015286 | PARENTS EDUCATION (MISSII: , I DON'T KNOW) |
| 14 | ITEMS-3 | 0.226880 | 3 ITEMS IN THE HOME |
| 15 | ITEMS-4 | 0.358708 | 4 ITEMS IN THE HOME |
| 16 | TVWATCH | 0.003012 | NO. HOURS OF TV WATCHED PER DAY |
| 17 | TVWATCH2 | -0.604743 | NO. HOURS SQUARED OF TV WATCHED PER DAY |
| 18 | HOMELANG | -0.087508 | MINORITY HOME LANGCAGE SPOKEN |
| 19 | HOMEWRK- | -0.543340 | DON'T HAVE HOMFWORK |
| 20 | HOMEWRKO | -0.333045 | DON'T DO HOMEWORK |
| 21 | HOMEWORK | 0.046222 | AMOUNT OF HOMEWORK DONE |
| 22 | PCTWHLOW | -0.092577 | PCT WHITE IN SCHOOL 0-49 |
| 23 | PCTWHMED | -0.005133 | PCT WHITE IN SCHOOL 50-79 |
| 24 | - MODALG | 0.402627 | GRADE IN SCHOOL IS MODAL GRADE |
| 25 | > MODALG | 0.624665 | GRADE IN SCHOOL IS GREATER THAN MODAL GRADE |
| 26 | GRADES | 0.424681 | GRADES IN UCHOOL (4-POINT SCALE) |
| 27 | HSPGM-C | 0.270935 | HIGH SCH PROGRAM CGLLEGE PKEP |
| 28 | HSPGM-V | - . 201353 | HIGH SCH PROGRAM VOCAT'L OR OTHER NONGENERAL |
| 29 | ISS-YES | -0.022428 | DISCUSS ISSUES IN COURSES |
| 30 | ISS-SOMX | 0.010048 | DISCUSS ISSUES IN COURSES SOMEWHAT OR MISSING |
| 31 | POL-YES | 0.140908 | UISCUSS POLITICS IN COURSES |
| 32 | POL-SOMX | 0.086860 | DISCUSS POLITICS IN CRSES SOMEWHAT OR MISSING |
| 33 | NOI 'WW-Y | 0.021515 | NOTHING NEW DISCUSSED IN COURSES - TRUE |
| 34 | NONEW-SX | 0.066948 | NOTH. NEW DISC. IN CRSES - SOMEWHAT OR MISSING |
| 35 | KNOW-YES | -0.184577 | KNOWLEDGE TO PARTICIPATE - TRUE |
| 36 | KNOW-SX | -0.027103 | KNOWLEDGE TO PARTICIPATE - SOMEWHAT OR MISSING |
| 37 | NATL-D | 0.212025 | NATIONAL DISCUSSIONS ALMOST EVERY DAY |
| 38 | NATL-C | 067067 | NAT'L DISCUSSIONS 1-2 TIMES A WEEK OR MISSING |
| 39 | NATL-B | 0.105106 | NATIONAL DISCUSSIONS 3-4 TIMES A MONTH |
| 40 | INTL-D | 0.054382 | INTERNATIONAL DISCUSSIONS ALMOST EVERY DAY |
| 41 | INTL-C | 0.032460 | 'NT'L DISCUSSIONS 1-? TIMES A WEEK OR MISSING |
| 42 | INTL-B | 0.091534 | INTERNATIONAL DISCUSS;ONS 3-4 TIMES A MONTH |

Table C-34
Estimated Effects for U.S. History Cross-sectional Conditioning Variables 1988 Focused-BIB and Intercorrelation Samples, Grade 4/Age 9

| 1 | OVERALL | -1.082049 | OVERALL CONSTANT '1' FOR EVERYONE |
| :---: | :---: | :---: | :---: |
| 2 | GENDER2 | -0.092760 | SEX (FEMALE) |
| 3 | ETHNIC2 | -0.311443 | OBSERVED ETHNICITY (BIACK) |
| 4 | Ethnic3 | -0.302839 | OBSERVED ETHNICITY (HISPANIC) |
| 5 | ETHNIC4 | 0.084755 | OBSERVED ETHNICITY (ASIAN) |
| 6 | STOC2 | 0.256330 | SIZE AND TYPE OF COMMUNITY (HIGH METRO) |
| 7 | St'0c3 | 0.099060 | SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) |
| 8 | REGION2 | 0.060228 | REGION (SOUTHEAST) |
| 9 | REGION3 | 0.015842 | REGION (CEMTRAL) |
| 10 | REGION4 | -0.054248 | REGION (WEST) |
| 11 | PARED2 | 0.070426 | PARENTS EDUCATION (HIGH SCHOOL GRAD) |
| 12 | PARED3 | 0.235145 | PaRENTS EDUCATION (POST HIGH SCHOOL) |
| 13 | PARI | 0.296709 | Parents education (COLLEGE GRad) |
| 14 | PARL. | 0.079094 | PARENTS EDUCATION (MISSING, I DUN'T KINOW) |
| 15 | HOMEITM3 | 0.086135 | ARTICLES IN HOME (YES TO ${ }^{1}$ |
| 16 | HOMEITM4 | 0.183931 | ARTICLES IN HOME (YES TO 4) |
| 17 | TV. 1 | 0.164997 | TV WATCHING |
| 18 | TV. 2 | -0.243077 | TV Watching |
| 19 | HOMELNG1 | 0.001665 | OTHER LANGUAGE AT HOME (SOMETIMES, ALWAYS) |
| 20 | HW-NO | -0.050667 | HOMEWORK (NONE ASSIGNED) |
| 21 | HW-YES | -0.021858 | HOMEWORK (YES - SOME AMOUNT) |
| 22 | HW-2345 | -0.008786 | HOMEWORK AMOUNT (LINEAR) |
| 23 | ZLUNCH 1 | -0.014315 | PERCENT IN PROGRAM |
| 24 | KLUNCH 2 | -0.158767 | BLANK |
| 25 | zWHITE 1 | -0.121124 | WHITE MINORITY |
| 26 | zWHITE 2 | -0.039429 | INTEGP.ITED |
| 27 | AGE/GRDI | -0.562740 | MODAL AGE, < MODAL GRADE |
| 28 | AGE/GRD2 | -0.076542 | MODAL AGE, MODAL GRADE, MISSING |
| 29 | AGE/GRD3 | 0.338196 | MODAL AGE, > MODSL GRADE |
| 30 | AGE/GRD4 | -0.190299 | > MODAL AGE, MODAi. GRADE |
| 31 | SCH.TYPE | 0.113039 | PUBLIC V. PRIVATE ' CH רOL̇ |
| 32 | H/HOMEWK | -0.106155 | HELP WITH HOMEWODK ( $\because$ VERY DAY, TWICE A WEEK) |
| 33 | PRESCH | 0.138178 | WENT TO PRESCHOOL |
| 34 | PAR/HOME | 0.029196 | SINGLE/MULTIPLE PARENT (MULT:IPLE) |
| 35 | MOTH/HOM | 0.125032 | MOTHER AT HOME (YES) |
| 36 | MOTH/WRK | -0.018852 | MOTHER WORK OUTSIDE HOME (YES) |
| 37 | GRWN HOM | 0.062107 | GR'IWNUP AT HOME RIGHT AFTER SCHOOL |
| 38 | PAGE/RDI | 0.053224 | PAGES A DAY READ ( 6 i J UP) |
| 39 | PAGE/RD2 | 0.047888 | Pages a day read (ll and up) |
| 40 | HIS TAKE | -0.015240 | HOW OFTEN DO YOU HAVE A SOCIAL STUDIES CLASS |
| 41 | -TUD.HIS | 0.068609 | STUDIED THE HISTORY OF OUR COUNTRY |
| (continued) |  |  |  |

## Table C-34 (continued)

Estimated Effects for U.S. History Cross-sectional Conditioning Variables 1988 Focused-BIB and Intercorrelation Samples, Grade 4/Age 9

|  | Variable | Estimated <br> Effect | Description |
| :--- | :--- | ---: | :--- |
| 42 | STUD.EXP | 0.044026 |  |
| 43 | STUD.IND | -0.002413 | STUDIED ABOUT THE EARLY EXPLORERS |
| 44 | STUD.PIL | -0.001754 | STUDIED ABOUT THE AMERICAN INDIANS ABOUT THE PILGRIMS |
| 45 | STUD.GW | -0.045748 | STUDIED ABOUT GEORUE WASHINGTON |
| 46 | STUD.PIO | 0.031049 | STUDIED ABOUT THE PIONEERS |
| 47 | ZTUD.SLA | -0.011 .719 | STUDIED ABOUT SLAVERY |
| 48 | STUS.INV | -0.029672 | STUDIED ABOUT PEOPLE WH: INVENTED THINGS |

Table C-35
Estimated Effects for U.S. History Cross-se.tional Conditioning Variables 1988 Focused-BIB and Intercorrelation こamples, Grade 8/Age 13

|  | Variable | Estimated Effect | Description |
| :---: | :---: | :---: | :---: |
| 1 | OVERALL | -0.833818 | OVERALL CONSTANT ' $\because$ ' FOR EVERYONE |
| 2 | GENDER2 | -0.150065 | SEX (F'MALE) |
| 3 | ETHNIC2 | -0.175538 | OBSERVED ETHNICITY (BLACK) |
| 4 | ETHNIC3 | -0.235940 | OBSERVED ETHNICITY (HISPANIC) |
| 5 | ETHNIC4 | -0.047478 | OBSERVED ETHNICITY (ASIAN) |
| 6 | ST0c2 | 0.086050 | SIZE AND TYPE OF COMMUNITY (HIGH METRO) |
| 7 | STOC3 | 0.044790 | SIZE AND TYPE OF COMMNITY (NOT HIGH OR LOW) |
| 8 | REGION2 | -0.068347 | REGION (SOUTHEAST) |
| 9 | REGION3 | 0.008025 | REGION (CENTRAL) |
| 10 | REGION4 | -0.025248 | REGION (WEST) |
| 11 | PARED2 | 0.046675 | PARENTS EDUCATION (HIGH SCHOOL GRAD) |
| 12 | PARED3 | 0.163076 | PARENTS EDUCATION (POST HIGH SCHOOL) |
| 13 | PARED4 | 0.162114 | PARENTS EDUCATION (COLLEGE GRAD) |
| 14 | PARED | -0.040112 | PARENTS EdUCATION (KISSING, I DON'T KNOW) |
| 15 | HOMEITM3 | 0.073651 | ARTICLES IN HOME (YES TO 3) |
| 16 | HOMEITM4 | 0.139044 | ARTICLES IN HOME (YES TO 4) |
| 17 | TV. 1 | 0.063579 | TV WATCHING |
| 18 | TV. 2 | -0.107249 | TV Watching |
| 19 | HOMELNG1 | -0.015749 | OTHER LANGUAGE AT HOME (SOMETIMES, ALWAYS) |
| 20 | HW-NO | 0.0554 | HOMEWORK (NONE ASSIGNED) |
| 21 | HW-YES | 0.253431 | HOMEWORK (YES - SOME AMOUNT) |
| 22 | HW-2345 | 0.023776 | HOMEHORK AMOUNT (LINEAR) |
| 23 | KLUNCH 1 | -0.011917 | PERCENT IN PROGRaM |
| 24 | ZLUNCH 2 | -0.020277 | BLANK |
| 25 | \%WHITE 1 | -0.024245 | E.IITE MINORITY |
| 26 | zWHITE 2 | 0.007425 | INTEGRATED |
| 27 | AGE/GRD1 | -0.387768 | MODAL AGE, < MODAL GRADE, |
| 28 | AGE/GRD2 | -0.124035 | MODAL AGE, MODAL GRADE, MISSING |
| 29 | AGE/GRD? | 0.170160 | MODAL AGE, > MODAL GRADE |
| 30 | A.GE/GRD4 | -0.208910 | > MODAL AGE, MODAL GRADE |
| 31 | SCL. TYPE | 0.056116 | PUBLIC V. PRI'JATE SCHOOLS |
| 32 | H/5, MEHK | -0.142969 | HELP WITH HOMEWORK (EVERY DAY, TWICE A WEEK) |
| 33 | PAR/HOME | 0.004462 | SINGLE/MULTIPLE PARENT (MULTIPLE) |
| 34 | M07H/HOM | 0.075370 | MOTHER AT HOME (YES) |
| 35 | MOTH/WRK | -0.022306 | MOTHER WORK OUTSIDE HOME (YES) |
| 36 | PAGE/RD1 | 0.078121 | PAGES A DAY READ (6 AND UP) |
| 37 | FigE/RD2 | -0.007233 | Pages a day read (11 AND UP) |
| 38 | GRAD HS | 0.262266 | DO YOU EXPECT TO GRADUATE HIGH SCHOOL |
| 39 | DAYS/MIS | 0.054914 | DAYS OF SCHOOL MISSED LAST MONTH (NONE) |
| 40 | GRADES | 0.221464 | GRADES IN SCHOOL |
| 41 | HIS TAKE | -0.003141 | HISTORY COURSES TAKEN IN GRADES 5-8 |
| (continued) |  |  |  |

# Estimated Effects for U.S. History Cross-sectional Cor. 'tioning Varial,les 1988 Focused-BIB and Intercorrelation Sarples, Grade 8/Age 13 

42
43
44
45

Estimated Effect
0.338573
-0.174067
-0.150:こ9
-0.077157

## Description

STUDIED EARLY US HISTORY STUDIED POST CIVIL HAR THINGS TEACHER ASKS FOR SOCIAL STUDIES CLASS dIFFICULTY READING US HISTORY TEXTBCOK

Table C-36
Estimated Effects for U.S. History Cross-sectional Conditioning Variables 1988 Focused-BIL and Intercorrelation Samples, Grade 12/Age 17

| 1 | OV' ${ }^{\text {a }}$ ALL | -0.535861 | OVERALL CONSTANT 'l' FOR EVERVONE |
| :---: | :---: | :---: | :---: |
| 2 | GENDER2 | -0.171101 | SEX (FEMALE) |
| 3 | Ethnic2 | -0.277811 | OBSERI D ETHNICITY (BLACK) |
| 4 | ETHNIC3 | -0.249072 | OBSERVED ETHNICITY (HISPANIC) |
| 5 | ETHNIC4 | -0.145208 | OBSERVED E.HNICITY (ASJAN) |
| 6 | STOC2 | 0.181126 | SIZE AND TYPE OF COMMUNITY (HIGH METRO) |
| 7 | STOC3 | 0.086993 | SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) |
| 8 | REGION2 | -0.030869 | REGION (SOUTHEAST) |
| 9 | REGION3 | 0.029813 | REGION (CENTRAL) |
| 10 | REGION4 | 0.015950 | REGION (WEST) |
| 11 | PARED2 | 0.048557 | PARENTS EDUG..IION (HIGH SCHOOL GRAD) |
| 12 | FARED3 | 0.125807 | PARENTS EDUCAIION (POST HIGH SCHOOL) |
| 13 | PARED4 | 0.147278 | PARENTS EDUCATION (COLLEGE GRAD) |
| 14 | PAFED | C. 093690 | PARENTS EDUCATION (MISSING, I DON'T KNON) |
| 15 | HC 'EITM3 | 0.058395 | ARTICLES I: HOME (YES T0 3) |
| 16 | H0: EITM4 | $0.108: 75$ | ARTICLES IN HOME (YES T0 4) |
| 17 | TV. 1 | 0.048061 | TV WATCHING |
| 18 | TV. 2 | -0.006601 | TV Watching |
| 19 | HOMELNG1 | -0.027066 | OTHER LANGUAGE AT HOME (SOMETIMES, ALWAYS) |
| 20 | HW-NO | 0.311514 | HOMEWORK (NONE ASSIGNED) |
| 21 | HW-YES | 0.438620 | HOMEWORK (YES - SOME AMOUNT) |
| 22 | HW-2345 | -0.013176 | HOMEWORK AMOUNT (LINEAR) |
| 23 | \%LUNCH 1 | -0.C饣0294 | PERCENT IN PROGRam |
| 24 | \%LUNCH 2 | 0.006432 | BLANK |
| 2' | \%WHITE 1 | -0.057512 | WHITE MINORITY |
| 26 | zKHITE 2 | -0.022398 | INTEGRATED |
| 27 | AGE/GRDI | -0.191419 | MODAL AGE, < MODAL GRADE |
| 28 | 1GE/GRD2 | -0.067168 | MODAL AGE, MODAL GRADE, MISSING |
| 29 | AGE/GRD4 | -0.122420 | > MODAL AGE, MODAL GRADE |
| 30 | SCH.TYPE | -0.062657 | PUBLIC V. PRIVATE SCHOOLS |
| 31 | H/HOMEWK | -0. 190038 | HELP WITH HOMEWORK (EVERY DAY, TWICE A WEEK) |
| 32 | PPR/HOME | 0.005518 | SINGLE/MULTIPLE PARENT (MULTIPLE) |
| 33 | MOTH/HOM | 0.165298 | MOTHER AT HOME (YES) |
| 34 | MOTH/WRK | -0.008933 | MOTHER WORK OUTSIDE HOME (YES) |
| 35 | PAGE/RDI | 0.069346 | PAGES A DAY READ (6 AND UP) |
| 36 | PADE/RD2 | 0.059610 | PAGES A DAY READ ( 11 AND UP) |
| 37 | DeixS/MIS | 0.037586 | DAYS OF SCHOOL MISSED LAST MONTH (NONE) |
| 38 | GRADES | 0.148587 | GRADES IN SCKiOOL |
| 39 | HS PROGI | 0.157191 | COLLEGE |
| 40 | HS PROG2 | -0.049570 | VOCATIONAL, T'ECHNICAL |
| 41 | POST S 1 | 0.041032 | TWO-YEAR COLLEGE |

Table C-36 (continued)
Estimated Effects for U.S. History Czos.s-sectional Conditioning Variables 1988 Focused-BIB and Intercorrelation Samples, Grade 12/Age 17
Variable Estimated Effect Description

POST S 2 HRS WORK ENG CL 1 ENG CL 2 HIS TAKE Hİ COUR AP HIST AM HIST: WORLD H MTN/WOM LIKE H had hist HOMEWK H $0.02309_{1}$ GRADES H 0.071975 TEACH/H -0.104300
$-0.080254$

FOUR-YEAR COLLEGE
HOURS OF OUISIDE WORK
TYPE OF ENGLISH CLASS ADVANCED/COLLEGE TYPE OF ENGLISH CLASS REMEDIAL HISTGRY COURSES TAREN IN GRADES 9-12 US HISTORY COURSE COMPLE: TAKEN ADVANCED PLACEMENT AMERICAN HISTORY STUDIED AMEKICAN HISTORY STULIED WORLD HISTORY STUDIED HISTORY OF MINORITIES AN, WOMEN DO YOU LIKE STUDYING US HISTORY EVER HAD A US HISTORY CLASS TIME SPENT EACH WEEK ON US HIST. AOMEWCRK grades you have gotten on us history THINGS TEACHER ASKS FOR US HISTORY CLASS D FFYCULTY READING US HISTORY TEXTBOOK

Table C-37
Estimated Effects for Geography Cross-sectional Conditioning Variables 1988 Focused-BIB and Incercorrelation Samples, Grade 12/Age 17

|  | Variable | Estimated Effect | Description |
| :---: | :---: | :---: | :---: |
| 1 | OVERALL | -0.332830 | OVERALL CONSTANT ' 1 ' FOR EVERYONE |
| 2 | GENDER2 | -0.420687 | SEX (FEMALE) |
| 3 | ETHNIC2 | -0.685879 | OBSERVED ETHNICITY (BLACK) |
| 4 | ETHNIC3 | -0.418485 | OBSERVED ETHNICITY (HISPANIC) |
| 5 | ETHNIC4 | -0.184878 | OBSERVED ETHNICITY (ASIAN) |
| 6 | ST0C2 | 0.269361 | SILE AND TYPE OF COMMUNITY (HIGH METRO) |
| 7 | SİOC3 | 0.169736 | SIZE AND TYPE OF COMMUNITY (NOT HIGH OR LOW) |
| 8 | REGION2 | -0.011230 | REGIOII (SOUTHEAST) |
| 9 | REGION3 | 0.024789 | REGION (CENTRAL) |
| 1.0 | REGION4 | 0.047082 | REGION (WEST) |
| 11 | PARED2 | 0.113712 | PARENTS EDUCATION (HIGH SCHOOL GRAD) |
| 12 | PARED3 | 0.279869 | PARENTS EDUCATION (POST HIGH SCHOOL) |
| 13 | PARED4 | 0.287398 | PARENTS EDUCATION (COLLEGE GRAD) |
| 14 | PARED | -n. 158917 | PARENTS EDUCATION (MISSING, I DON'T KNOW) |
| 15 | HOMEITM3 | v. 217676 | ARTICLES IN HOME (YES TO 3) |
| 16 | HOMEITM4 | 0.196076 | ARTICLES IN HOME (YES TO 4) |
| 17 | TV. 1 | 0.042435 | TV WATCHING |
| 18 | TV. 2 | -0.087285 | TV WATCHING |
| 19 | HOMELNG1 | 0.021254 | OTHER LANGUAGE AT HOME (SOMETIMES, AIWAYS) |
| 20 | HW-NO | -C. 659565 | HOMEWORK (NONE ASSIGNED) |
| 21 | HW-YES | - 0.460317 | HOMEWORK (YES - SOME AMOUNT) |
| 22 | HW-2345 | 0.024182 | HOMEWORK AMOUNT (LINEAR) |
| 23 | ZLUNCH 1 | 0.000708 | PERCENT IN PROGRAM |
| 24 | ZLUNCH 2 | -0.089351 | BLANK |
| 25 | zWHITE 1 | -0.107201 | WHITE MINORITY |
| 26 | zWHITE 2 | -0.068820 | INTEGRATED |
| 27 | AGE/GRDI | -0.415062 | MODAL AGE, < MODAL GRADE |
| 28 | AGE/GRD2 | -0.251628 | MODAL ACS. MUDAL GRADE, MISSING |
| 29 | AGE/GRD4 | -0.282149 |  |
| 30 | SCH. TYPE | -0.138944 | PUBLIC V. DRIVATE SCHOOLS |
| 31 | H/HOMEWK | -0.245424 | HELP WITH HOMEWORK (EVERY DAY, TWICE A WEEE.) |
| 32 | PAR/HOME | -0.014887 | SİGLE/KJLTIPLE PARENT (MULTIPLE) |
| 33 | MOTH/HOM | 0.119619 | MOTHER AT HOME (YES) |
| 34 | MOTH/WRK | -0.027926 | MOTHER WORK OUTSIDE HOME (YES) |
| 35 | PAGE/RDI | 0.631073 | PAGES A DAY READ (6 AND J.') |
| ? 6 | PAGE/RD2 | 0.091392 | PAGES A DAY READ (ll and up) |
| 37 | DAYS/MIS | 0.055005 | DAYS OF SCJOOL MISSED LAST MONTH (NONE) |
| 38 | GRADES | 0.213982 | GRADES IN SCHOOL |
| 39 | HS PROGl | 0.212703 | COLLPGE |
| 40 | H3 PROG2 | 0.057015 | VOCATIONAL, TECHNICAI, |
| 41 | POST S 1 | 0.042615 | TWO-YEAR COLLEGE |

Table C-37 (continued)
Estimated Effects for Geography Cross-sestional Conditioring Variables 1.988 Focused-BIB and Intercorrelation Samples srade 12/Age 17
 Effect

## Description

POST S 2 HRS WORK -0.002 i ENG CL 1 0.114luj ENG CL $2-0.303248$ GEO TAKE 0.004362 W GEO -0.073306 W HIS/G $\quad-0.105087$ STAT/REG 0.105754 US GEO -0.1.40865 US H/G 0.180866 PHY/GEO $\quad-0.082555$ ECON/P $\quad-0.048159$ HUM/CULT 0.190482 URBAN G $\quad-0.144868$ PHYSICAL 0.083896 -SOCIAL $\quad 0.089169$

FOUR-YEAR COLLEGE HOURS OF OUTSIDE WORK TYPE OF ENGLISH CLASS ADVANCED/COLLEGE type of english class remedial GEOGRAPHY COURSES TAKEN IN GRADES 9-12 WORLD GEOGRAPHY COURSE COMPLETE WORLD HISTORY/GEO COURSE COMPLETE STATE/REGIONAL COURSE COMPLETE UNITED STAES COURSE COMPLETE UNITED SATES HIST/GEO COURSE COMPLETE PHYSICAL GEC/EARTH SCIENCE COURSE COMPLETE ECONOMIC AND POLITICAL COURSE COMPLETE HIMMAN AND CULTURAL COURSE COMPLETE URBAN COURSE COMPLETE SUM OF PHYSICAL GEO TOPICS STUDIED SUM $9 F$ SOCIAL GEO TUPICS STUDIED

Table C-38
Estimated Effects for Mathematics Tiend Conditioning Variables 1988 Bridge to 1986, Age 9

|  | Variable | Estimated Effect | Description |
| :---: | :---: | :---: | :---: |
| 1 | OVERALL | -0.279547 | OVESALL CONSTANT ' 1 ' FOR EVERYONE |
| 2 | GENDER2 | -0.047747 | GENDER (FEMALE) |
| 3 | ETHNIC2 | -0.706632 | OESERVED ETHNICITY (BLACK) |
| 4 | ETHNIC3 | 0.209298 | OBSERVED ETHNICETY (HISPANIC) |
| 5 | ETHNIC4 | 0.762678 | OBSERVED ETHNICITY (ASIAN) |
| 6 | STOC3 | 0.186615 | SIZE AND TYPE OF COMMUNITY (HIGH METRO) |
| 7 | STOCl | 0.087756 | SIZE AND IYPE OF COMMUN.TY (NOT HI\&NOT LO) |
| 8 | REGION2 | 0.007280 | REGION (SOUTHEAST) |
| 9 | REGION3 | 0.123942 | REGION (CENTRAL) |
| 10 | REGJON4 | -0.035032 | REGION (WEST) |
| 11 | PARED2 | 0.251057 | PARENTS EDUCATION (HIGH SCHOOL GRAD) |
| 12 | PARED3 | 0.223869 | PARENTS EJUCATION (POST HIGH SCHOCL) |
| 13 | PARED4 | 0.454556 | PARENTS EDUCATION (COLLEGE GRAD) |
| 14 | PARED | 0.136615 | PARENTS EDUC.ITION (MISSING, I DON'T KNOW) |
| 15 | ¢MODAL GRADE | -0.728308 | MODAL GRADE (LESS THAN MODAL GRADE) |
| 16 | >MODAL GRADE | 0.631198 | MODAL GRADE (GREATER THAN MODAL GRADE) |
| 17 | ITEMS2 | 0.239816 | Items in the home (yes to 3) |
| 18 | ITEMS3 | 0.367498 | ITEMS IN THE HOME (YES TO ALL 4) |
| 19 | E2 X *EX | 0.087308 | ETHNICITY BY GEND ${ }^{\text {r }}$ ( (RLACK, FEMALE) |
| 20 | E3 X SEX | -0.066049 | ETHPICITY BY GENDL (HISPANIC, FEMALE) |
| 21 | E4 X SEX | -0.231095 | ETHNICITY BY GENDER (ASIAN AMERICAN, FEMALE) |
| 22 | E2 X PE2 | 2. 063586 | ETHNICITY BY PARENT'S ED (BLACK, HS GRAD) |
| 23 | E2 X PE3 | J. 375105 | ETHNICITY BY PARENT'S ED (BLACK, POST HS) |
| 24 | E2 X PE4 | 0.039552 | ETHHICITY BY PARENT'S ED (BLACK, COLIFCE) |
| 25 | E2 $\times$ PE | 0.191412 | ETHHICITY BY PARENT'S ED (BLACK, UNKNOWN) |
| 26 | E3 X PE2 | -0.354255 | ETHNICITY BY PARENT'S ED (HISPANIC, HS GR.D) |
| 27 | E3 X PE3 | 0.237226 | ETHNICITY BY PARENT'S ED (HISPANZC POST HS) |
| 28 | E'3 X PE, 4 | -0.256883 | ETHNICITY BY PARENT'S ED (HISPANIC, COLLEGE) |
| 20 | E3 $\times$ PE | -0.246003 | ETHNICITY BY PARENT'S ED (HISPANIC, UNKNOWN) |
| 30 | E4 X PE2 | -1. 034833 | ETHNICITY BY PARENT'S ED (ASIAN AM, HS GRAD) |
| 31 | E4 X PE3 | -0.690193 | ETHNICITY BY PARENT'S ED (ASIAN AM, POST HS) |
| 32 | E4 X PE4 | -0.786758 | ETHNICITY BY PARENT'S CD (ASIAN AM, COLLEGE) |
| 33 | E4 X PE | -0.518339 | ETHNICITY BY PARENT'S ED (ASIAN AM, UNKNOWN) |
| 34 | SCH TYP ${ }^{2}$ | 0.158816 | SCHOOL TYPE (NOT PUBLIC) |
| 35 | SCH TYP |  | SCHOOL TYPE (MISSING) |
| 36 | TV). | 0.278883 | 0-2 HOURS OF TV WATCHING |
| 37 | TV2 | 0.434684 | 3-5 HOURS OF TV WATCHINS |
| 38 | TV3 | 0.259356 | $6+$ HOURS OF TV WATCHING |
| 39 | LANGHOM3 | -0.283533 | LaNGUAGE IN HOME OTHER THAN ENG ' (ALWAYS) |
| 40 | LANGHOM2 | 0.088718 | LANGUAGE IN HOME OTHER THAN ENG.? SOMETIMES |
| 41 | E2 X Lu' | 0.143997 | ETHNICITY BY LANGUAGE IN HOME (BLACK, OFTEN) |
|  | d) |  |  |

Frultem Provinat by Enc

Table C-38 (continued)

## Estimated Effects for Mathematics Trend "'onditioning Variables 1988 Bridge to 1986, Age 9

## Estimated

## Variable

## Description

E3 X LHl
E3 X LH2
E4 X LHI
E4 X LH2
TIME ASS
STUDYCMP DRACE2
DRACE 3
DRACE4
0.080093
0.390581
-0.117348
0.411 .867
0.238582
$-0.057134$
-0.069875
$-0.341651$
0.185246

ETHNICITY BY LANG IN HOME (BLACK, SOMETIMES) ETHNICITY BY LANGUAGE IN HOME (HISPANIC,OFTEN) ETHNICTTY BY LANG IN HOME (HISPANIC, SOMETIMES) ETHNICITY BY LANGUAGE IN HOME (ASIAN AM,OFTEN) ETHNICITY BY LANG IN HOME (ASIAN AM,SOMETIMES) TIME OF ASSM'T(APPLICABLE FOR Y17, N/AY19) ARE YOU STUDYING COMPUTERS? B004501 (YES) DERIVED RACE/ETHNJCITY (BLACK) DERIVED RACF./ETHNICITY (HISPANIC) DERIVED RACE/ETHNICITY (ASIAN AMERICAN)

Table C-39
Estimated Effects for Mathematics Trend Conditioning Variables 1988 Bridge to 1986, Age 13

|  | Variable | Estimated Effect | Description |
| :---: | :---: | :---: | :---: |
| 1 | OVERALL | -1.504811 | OVERALL CONSTANT 'l' FOR EVERYONE |
| 2 | GENDER2 | -0.228401 | GENDER (FEMALE) |
| 3 | ETHNIC2 | -0.242682 | OBSERVED ETHNICITY (BLACK) |
| 4 | ETHNIC3 | 0.086195 | OBSER JED ETHNICIIT (HISPANIC) |
| 5 | ETHNIC4 | 0.378006 | ORSERVED ETHNICITY (ASIAN) |
| 6 | STJC3 | 0.534516 | SIZE AND TYPE OF COMMUNITY (HIGH METRO) |
| 7 | STOCl | 0.298905 | SIZE AND TYPE OF COMMUNITY (NOT HI\&NOT: I. 0 ) |
| 8 | REGION2 | -0.121025 | REGION (SOUTHEAST) |
| 9 | REGION3 | -0.063070 | REGION (CENTRAL) |
| 30 | REGION4 | -0.107134 | REGION (WEST) |
| 11 | Pared2 | 0.140058 | PARENTE EDUCATION (HIGH SCHOOL GRAD) |
| 12 | PARED3 | 0.197777 | PARENTS EDUCATION (POST HIGH SCHOOL) |
| 13 | PARED4 | 0.278975 | PARENTS EDUCATION (COLLEGE GRAD) |
| 14 | PARED | 0.021061 | PARENTS EDUCATION (MISSING, I DON'T KNOW) |
| 15 | <MODAL GRADE | -0.480949 | MODAL GRADE (LESS THAN MODAL GRADE) |
| 16 | >MODAL GRADE | 0.541153 | MODAL GRADE (GREATER THAN MODAL GRADE) |
| 17 | ITEHS2 | 0.122176 | ITEMS IN THE HOMĖ (YES TO 3) |
| 18 | ITEMS3 | 0.177230 | ITEMS IN THE HOME (YES TO ALL 4) |
| 19 | E2 X SEX | 0.020985 | ETHNICITY BY GENDER (BLACK, FEMALE) |
| 20 | E3 X SEX | 0.099927 | ETHNICIT: BY GENDER (HISPANIC, FEMALE) |
| 21 | E4 X SEX | -0.0ヶ,259 | ETHNICITY BY GENDER (ASIAN AMERICAN, FEMALE) |
| 22 | E2 X PE2 | -0 281870 | ETHNICITY BY PAREN.' S ED (BLACK, HS GRAD) |
| 23 | E2 X PE3 | -0.179468 | ETHNICITY BY PARENT'S ED (BLACK, POST HS) |
| 24 | E2 X PE4 | -0.397062 | EthNiCITY BY PARENT'S ED (BLACK, COLLEGE) |
| 25 | E2 $\mathrm{X} \mathrm{PE}^{\text {P }}$ | 0.090978 | ETHNICITY BY PARENT'S ED (BLACK, UNKNOWN) |
| 26 | E3 X PE2 | -0.033586 | ETHNICITY BY PARENT'S ED (HISPANIC, HS GRAD) |
| 27 | E3 X PE3 | -0.035114 | ETHNICITY BY PARENT'S ED (HISPANIC, POST HS) |
| 28 | E3 X PE4 | -0.359408 | ETHNICITY BY PARENT'S ED (HISPANIC, COLLEGE) |
| 29 | E3 $\times$ PE | -0.15「,307 | ETHNICITY BY PARENT'S ED (HISPANIC, UNKNOWN) |
| 30 | E4 X PE2 | -0.412270 | ETHNICITY BY PARENT'S ED (ASIAN AM, HS GRAD) |
| 31 | E4 X PE3 | -1.023135 | ETHNICITY BY PARENT'S ED (ASIAN AM, POST HS) |
| 32 | F4 X PE4 | 0.005724 | ETHNICITY BY PARENT'S ED (ASIAN AM, COLLEGE) |
| 33 | E4 X PE | -0.148864 | ETHNICITY BY PARENT'S ED (ASIAN AM, UNKNOWN) |
| 34 | SCH TYP $\overline{2}$ | 0.019369 | SCHOOL TYPE (NOT PUBLIC) |
| 35 | SCH TYP |  | SCHOOL TYPE (MISSING) |
| 36 | TV1 | -0.192841 | 0-2 HOURS OF TV FATCHING |
| 37 | TV? | -0.259867 | 3-5 HOURS OF TV WATCHING |
| 38 | TV3 | 0.391540 | $6+$ HOURS OF TV WATCHING |
| 39 | HW-NO | 0.143508 | HOMEWORK (MONE ASSIGIVED) |
| 40 | HW-YES | 0.295564 | HOMEWORK (YES - SOME AMOUNT) |
| 41 | HW-345 | 0.046762 | HOMEWORK (LINEAR AMOUNT) |

Table C-39 (continued)
Estimated Effe:ts for Mathematics Trend Conditioning Variables 1988 Bridge to 1986, Age 13

Estimated Effect
$-0.142210$
0.050961
0.100579
0.051984
0.032823
$-0.081489$
$-0.295872$
$-0.351225$
0.329379
0.557133
0.860079
1.067878
0.000685
0.021696
-0.262241
0.239560

LANGHOM3 LANGHOM2 E2 X LHI E2 X LH2 E3 X LH1 E3 X LH2 E4 X LHL E4 X LH2 GRADES
TYPEMAT2 TYPEMAT3 TYPEMAT4 TIME ASS STUDYCMP DRACE2 DRACE3 DRACE4

## Description

LANGUAGE IN HOME OTHER THAN ENGLISH? (ALWAYS) LANGUAGE In HOME OTHER THAN ENG.? (SOMETIMES) ETHNICITY BY LANGUAGE IN HOME (BLACK, OFTEN) ETHNICITY BY LANG IN HOME (HISP., SOMETIMES) ETHNICITY BY LANGUAGE IN HOME (HISP., OFTEN) ETHNICITY BY LANG IN HOME (HISP., SOMETIMES) ETHNICITY BY LANG IN HOME (ASIAN AM,OFTEN) ETHN. BY LANG IN HOME (ASIAN AM, SOMETIMES) GRADES IN SCHOOL
TYPE OF MATH CLASS (REGULAR MATH)
TYPE OF MATH CLASS (PRE-ALGEBRA)
TYPE OF MATH CLASS (ALGEBRA, OTHER) TIME OF ASSESSMENT (APPLICABLE Y17, N/A Y19) ARE YOU STUDYING COMPUTERS? B004501 (YES) DERIVED RACE/ETHNICITY (BLACK) DERIVED RACE/ETHNICITY (HISPANIC) DERIVED RACE/ETHN̄̄̄̄ITY (ASIAÑ AMERICAN)

Table C-40
Estilated Effacts for Mathematics Trend Conditioning Variables 1988 Bridge to 1986, Age 17

|  | Variable | Estimated Effect | Description |
| :---: | :---: | :---: | :---: |
| 1 | OVERALL | 0.466202 | OVERALL CONSTANT 'l' FOR EVERYONE |
| 2 | GENDER2 | -0.:227644 | GENDER (FEMALE) |
| 3 | ETHNIC2 | -3. 326424 | OBSERVED ETHNICITY (BLACK) |
| 4 | ETHNIC3 | . 0.125207 | OBSERVED ETHNICITY (HISPANIC) |
| 5 | ETHNIC4 | -0.542147 | OBSERVED ETHNICITY (ASIAN) |
| 6 | STOC3 | 0.355679 | SIZE AND TYPE OF COMMUNITY (HIGH METR |
| 7 | STOCl | 0.268174 | SIZE AND TYPE OF COMMUNITY (NOT HI\&NOT LO) |
| 8 | REGION2 | -0.035567 | REGION (SOUTHEAST) |
| 9 | REGION3 | - 092946 | REGION (CENTRAL) |
| 10 | REGION4 | 0.041544 | REGION (WEST) |
| 11 | PARED2 | -0.009106 | PARENTS EDUCATION (HIGH SCHOOL GRAD) |
| 12 | PARED3 | 0.276562 | PARENTS EDUCATION (POST HIGH SCHOOL) |
| 13 | PARED4 | 0.215802 | PaRENTS EDUCATION (COLLEGE GRAD) |
| 14 | PARED | 0.039054 | PARENTS EDUCATION (MISSING, I DON'T KNOW) |
| 15 | $\angle \mathrm{MODA}$ L GRADE | -0.212266 | MODAL GRADE (LESS THAN MODAL SRADE) |
| 16 | こMODIL GRADE | 0.091063 | MODAL Glade (GREATER THAN MODAL GRADE) |
| 17 | ITEMS2 | 0.032057 | ITEMS IN THE HOME (YES TO 3) |
| 18 | ITEMS 3 | 0.089343 | ITEMS IN THE HCME (YES TO ALL 4) |
| 19 | E2 X SEX | 0.130167 | ETHNICITY BY GENDER (BLACK, FEMALE) |
| 20 | E3 X SEX | 0.294555 | ET...IICITY BY GENDER ( $\because$ ISPANIC, ZEMALE) |
| 21 | E4 X SEX | -0.190247 | ETHNICITY BY GENDER (ASIAN AMERICAN, FEMALE) |
| '22 | E2 X PE2 | -0.014269 | ETHNICITY BY PARENT'S ED (BLACK, HS GRAD) |
| $\angle 3$ | E2 X PE3 | -0.186204 | ETHNICITY BY PARENT'S ED (BLACK, POST HS) |
| 24 | E2 X PE4 | -0.163440 | ETHNICITY BY PARENT'S ED (ELACK, COLLEGE) |
| 25 | E2 $\times$ PE | -0.256462 | ETHNICITY BY PARENT'S ED (BLACK, UNKNOWN) |
| 26 | E3 X PE2 | 0.037801 | ETHNICITY BY PARENT'S ED (HISPANIC, HS GRAD) |
| 27 | E3 X PE3 | -C. 197622 | ETHNICITY BY PARENT'S ED (HISPANIC, POST HS) |
| 28 | E3 X PE4 | -0.148578 | ETHNICITY BY PARENT'S ED (HISPANIC, COLLEGE) |
| 29 | E3 $\mathrm{XPE}^{\text {P }}$ | 0.076608 | ETHNICITY BY PARENT'S ED (HISPANIC, UNKNOWN) |
| 30 | E4 X PE2 | 1.148569 | ETHNICITY BY PARENT'S ED (ASIAN AM, HS GRAD) |
| 31 | E4 X PE3 | 0.548141 | ETHNICITY BY PARENT'S ED (ASIAN AM, POST HS) |
| 32 | E4 X PE4 | -0.003476 | ETHNICITY BY PARENT'S ED (ASIAN AM, COLLEGE) |
| 33 | E4 X PE | 0.555852 | ETHNICITY BY PARENT'S ED (ASIAN AM, UNKNOWN) |
| 34 | SCH "YP2 | -0.130104 | SCHOOL TYPE (NOT PUBLIC) |
| 35 | SCH TYP |  | SCHCOL TYPE (MISSING) |
| 36 | ${ }_{1}$ V1 - | -1.980878 | 0-2 HOURS OF TV WATCHING |
| 37 | TV2 | -1.992986 | 3-5 HOURS OF TV WATCHING |
| 38 | TV3 | -2.079726 | $6+$ HOURS OF TV WATCHING |
| 39 | HW-NO | -0.243494 | HOMEWORK (NONE ASSIGN. D) |
| 40 | HW-YES | 0.104266 | HOMEWORK (YES - SOME AMOUNT) |
| 41 | HW-345 | -0.024606 | HOMEWORK (LINEAR AMOUNT) |

Table C-40 (continued)
Estimated Effects for Mathematics Trend Conditioning Variables 1988 Bzidge to 1986, Age 17

Estimated Effect
Variable
LANGHOM3
$-0.306630$
LANGHOM2 -0.027324
E2 X LH1 0.234334
E2 X LH2 -0.085786
E3 X LHL 0.372056
E3 X LH2 0.068137
E4 X LHI 0.542742
E4 X LH2 0.390736
NMATHI $\quad-0.221100$
NMATH2 0.252774
NMATH3 $\quad 0.354687$
NMATH4 0.700470
NMATH5 $\quad 1.208891$
COMPUTER -0.009892
GRADES 0.293596
HSPROG2 0.196396
HSPROG3 -0.09002?
DRACE2 0.119675
DRACE3 -0.202548
DRACE4 -0.056777

## Description

Table C-41
Estimated Effacts for Scieace Trend Conditioning Variables 1988 Bridge to 198€, Age 9

|  | Variable | Estimated Effect | Description |
| :---: | :---: | :---: | :---: |
| 1 | OVERALL | -0.167629 | OVERALL CONSTANT 'l' FOR EVERYONE |
| 2 | GENDER2 | -0.160032 | GENDER (FEMALE) |
| 3 | ETHNIG2 | -0.716027 | OBSERVED ETHNICITY (BLACK) |
| 4 | ETHNIC3 | -0.677694 | OBSERVED ETHNICITY (HISPANIC) |
| 5 | ETHNIC4 | -0.143962 | OBSERVED ETHNICITY (ASIAN) |
| 6 | STOC2 | -0.400385 | SIZE AND TYPE OF COMMUNITY (LOW HETRO) |
| 7 | STOC3 | 0.114765 | SIZE AND TYPE OF COMMUNITY (HIGH METRO, |
| 8 | REGION2 | 0.105314 | REGION (SOUTHEAST) |
| 9 | REGION3 | 0.202669 | REGION (CENTRAL) |
| 10 | REGION4 | 0.08181 n | REGION (WEST) |
| 11 | PARED2 | J. 200699 | PARENTS ELUCATION (HIGH SCHOOL GRAD) |
| 12 | PARED3 | 0.279235 | PARENTS EDUCATION (POST HIGH SCHOOL) |
| 13 | PARED4 | 0.435635 | PARENTS EDUCATION (COLLEGE GRAD) |
| 14 | PARED | 0.172272 | PARENTS EDUCATION (MISSING, DON'T .NOW) |
| 15 | $\angle$ MODAL GRADE | -0.498134 | MODAL GRADE (LESS THAN MODAL. GRADC) |
| 16 | >MODAL GRADE | 1.050936 | MODAL GRADE (GREATER THAN $\because \because$ JAL GRADE) |
| 17 | ITEMS2 | 0.289243 | ITEMS IN THE HOME (YES TC * |
| 18 | ITEMS 3 | 0.478227 | ITEMS IN THE HOME (YES TO ALL 4) |
| 19 | SCH TYP2 | ). 076284 | SCHOOL TYPE (NOT PUSUIC) |

Table C-42
Estimated Effects for Science Trend Conditioning Variailes 1988 Bridge to 1986, Age 13

| Variable | Effect | Description |
| :---: | :---: | :---: |
| OVERALL | -0.048884 | OVERALL CONSTANT ' 1 ' FOK EvERYONE |
| GENDER2 | -0.267422 | GENDER (FEMALE) |
| ETHNIC2 | -0.719052 | OBSERVE ${ }^{\text {a }}$ ETHNICITY (BLACK) |
| ETHNIC3 | -0.524609 | OBSERVED ETHNICITY (HISPANIC) |
| ETHNIC4 | 0.161636 | OBSERVED ETHNICITY (ASIAN) |
| STOC2 | -0.395130 | SIZE fND TYPE OF COMMUNITY (LOW METRO) |
| STOC3 | -0.007911 | SIZE $\&$ ND TYPE OF COMMUNITY (HIGH METRO) |
| REGION2 | -0.077003 | REGION (SOUTHEAST) |
| REGION3 | 0.046762 | REGION (CENTRAL) |
| REGION4 | -0.1025il | REGION (WEST) |
| PARED2 | 0.137733 | PARENTS EDUCATION (HIGH SCHOOL GRAD) |
| PARED3 | $0.3,7308$ | PARENTS EDUCATION (POST HIGH SCHOOL) |
| PARED4 | 0.412279 | PARENTS EDLCATION (COLLEGE GRAD) |
| PARED | -0.047971 | Parents education (missing, DON'T KNOW) |
| $\angle M O D A \bar{L}$ GRADE | -0.530171 | MODAL GRADE (LESS THAN MODAI GRADE) |
| >MODAL GRADE | 0.969538 | MODAL GRADE (GREATER THAN MODAL GRADE) |
| ITEMS2 | 0.222418 | ITEMS IN THE HOME (YES TO 3) |
| ITEMS 3 | 0.404732 | ITEMS IN THE HOME (YES TO ALL 4) |
| SCH TYP2 | 0.128735 | SCHOOL TYPE (NOT PUBLIC) |

Table C-43
Estimated Effects for Science Trend Conditioning Variables 1988 Bridge to 1986, Age 17

Variable
OVERALL
GENDER2
ETHP「IC2
ETHNIC3
ETHNIC4
STOC2
STOC3
REGION2
REGION3
REGION4
PARED2
PARED3
PARED4
PARED
$\angle$ MODAL GRADE >MODAL GRADE ITEMS2 0.091730 ITEMS3 0.208488
SCH TYP2 $\quad-0.094395$
$-0.353136$
-0. 540566

## Description

-0.018353 OVERALi CONSTAMT 'l' FOR EVERYONE
-0.422265 GENDER (FEMALE)
-0.675393 OBSERVED ETHNICITY (BLACK)
-0.028940 C3~ERVED ETHNICITY (HISPANIC)
0.105174 OBSERVED ETHNICITY (ASIAN)
-0.215624 SIZE AND TYPE OF COMMUNITY (LOW METRO)
0.2009 i 0 SIZE AND TYPE OF COMMUNITY (HIGH METRO)
-0.078230 REGION (SOUTHEAST)
-0.145136 REGION (CENTRAL)
-0.156447 REGION (WEST)
0.277744 PARENTS EDUCATION (HIGH SCHOOL GRAD)
0.506933 PARENTS EDUCATION (POST HIGH SCHOOL)
0.724225 PARENTS EDUCATION (COLLEGE GRAD)

PARENTS EDUCATION (MISSING, DON'T KNOW)
MODAL GRADE (LESS THAN MODAL GRADE)
MODAL GRADE (GREATER THAN MODAL GRADE)
items in the home (yes to 3)
ITEMS IN THE HOME (YES TO ALL 4)
SCHOOL TYPE (NOT PUBLIC)

## APPENDIX D

1988 NAEP Composite and Derived Conditioning Variables

## Appendix D

## 1988 NAEP COMPOSITE AND DERIVED CONDITIONING VARIABLES

Some conditioning variables used in the creation of plausible values were constructed by recoding the values of a data variable or by combining and recoding data from two or more variables. This appendix describes how these conditioning variables were derived for the 1988 assessments of reading writing, civics, U.S. history, geography, mathematics and science.

## Reading Cross-sectional Variables

Seven composites of background, attitude, and instructional variables were created for use as conditioning variables for cross-sectiunal studies in reading. The following list shows the items included in the composites. In some cases, the constituent items vary across age cohorts, as indicated. In each case, items within a composite were reflected so that they were coded "in the same direction" (e.g., more frequent use of a teaching technique received a higher score than less frequent use, etc.). The composite score for each student is a weighted sum of the item scores. (Weights were based on principal component analyses of each set of items; the weights were those associated with the first principal component.) Students with scores more than half a standard deviation above the mean on the composite were considered "high," those with scores more than half a standard devia' were considered low, and the remainıng students were considered "medium." Composite scores were not calculated for students who responced to fewer than two of the constituent items. If the student responded to at least two items but did not respond to all items in the composite, the composite score was taken to be the mean on the completed items. See Table C-2 ("Contrast Codings for 1988 Reading Cross-sectional Conditioning Variables") for the coding of the constituent items. (Missing responses were treated as stated above and not recoded as indicated in Table C-2.)

RHOME (Home environment and support)
R80J101 Magazines at home
R800201 Magazines at home

## Ages

R800301 Books at home
9

R800301 Books at home
$13 \quad 17$
R800401 Read stories

| 9 | 13 | 17 |
| :--- | :--- | :--- |

RINDRDG (Students' independent reading)
R800601 Taik about reading
S003501 Read for fun
SO3502 Talk about book
S003503 Books from library
S003504 Buy own books
S003505 Read after TV show
S003506 Author you like
Ages$13 \quad 17$
$\begin{array}{lll}9 & 13 & 17\end{array}$$\begin{array}{lll}9 & 13 & 17\end{array}$$9 \quad 13 \quad 17$$9 \quad 13 \quad 17$
$13 \quad 17$$13 \quad 17$$13 \quad 17$
917
RUSEMAT (Students' use of materials)

|  |  | Ages |  |
| :--- | :--- | ---: | ---: |
| R800801 | Use dictionary | 13 | 17 |
| S007309 | Use encycl?pedia | 13 | 17 |
| S004304 | Read newspaper | 17 |  |
| S004305 | Read magazine | 17 |  |

RTEACH (Teacher instructional behaviors)
S004602 Teacher-main idea
Ages
S004601 Teacher-vocabulary
$13 \quad 17$
1317
S004701 Teacher-questions 1317
R801201 Analyze reading 1317
S008501 Write on reading 1317
RBEHAV (Students' behaviors)
R800901 Time on literature $\begin{array}{cc}\text { Ages } \\ 17\end{array}$
R801001 T:me on homework 17
RSTRATG (Reading strategies)
S005101 Read material over 17
S005102 Take notes 17
S005103 Make outlines 17
S005104 Answer questions 17
RSCHWRK (Students' school/coursework)

|  |  | Ages |
| :--- | :--- | :---: |
| R801101 | English grades | 17 |
| S006403 | Advanced placement English | 17 |
| S006401 | Remedial English | 17 |

## Writing Cross-sectional Variables

WENJOY (Enjoy Writing)
For grades 4, 8, and 12, responses to item S001201 were recoded as follows:

| Always $=5$ |  |
| :--- | ---: | :--- |
| Half $+=$ | 4 |
| Half $=$ | 3 |
| Half - | $=1$ |
| None | $=1$ |
| Missing $=$ | 3 |

WPOSFB (Positive Teacher Feedback)
For grades 4, 8, and 12, responses to items S001703, S001706, and S 002503 were recoded as indicated below and then summed. Values ranged from 0 to 3 .

| Mostly all | $=1$ |
| :--- | :--- |
| Half + | $=1$ |
| Half | $=0$ |
| Half - | $=0$ |
| Never | $=0$ |
| Missing | $=0$ |

WNEGFB (Negative Teacher Feedback)
For grades 4, 8, and 12, responses to items S001708 and S002505 were recoded as indicated below and then summed. Values ranged from 0 to 2.

| Mostly all | $=0$ |
| :--- | :--- |
| Half + | $=1$ |
| Half | $=0$ |
| Half - | $=1$ |
| Never | $=1$ |
| Missing | $=0$ |

## WAMTWE (Amount Written)

For grades 8 and l2, responses to items W800302 (1 or 2 pages) and W800303 (3 pages) were recoded as follows:

```
Daily - l
Weekly - 2
Monthly - 3
Yearly = 4
Never - 5
Missing = Missing
```

The variables were then coded as six dummy variables as follows:

| W800302 | W800303 | Dummy Variables |
| :--- | :--- | :---: |
| 1,2 | 5 | 100000 |
| 1,2 | 1,2 | 010000 |
| 1,2 | 3,4 | 001000 |
| 3,4, missing | 3,4, missing | 000100 |
| 3,4 | 5 | $0 c 0010$ |
| 5 | 5 | 000000 |
| 5 | $1,2,3,4$ | 000001 |
| 3,4 | 1,2 | 000001 |

WAMTWH (Writing in History Class)

For grades 8 and 12, responses to items W\&00802 (1 or 2 pages) and W800803 (3 pages) were recoded as follows:

$$
\begin{array}{ll}
\text { Daily } & =1 \\
\text { Weekly } & =2 \\
\text { Monthly } & =3 \\
\text { Yearly } & =4 \\
\text { Never } & =5 \\
\text { Missing } & =\text { Missing }
\end{array}
$$

The variables were then coded as six dummy variables as follows:

| W800802 | W800803 | Dummy Variables |
| :--- | :--- | :---: |
| 1,2 | 5 | 100000 |
| 1,2 | 1,2 | 010000 |
| 1,2 | 3,4 | 001000 |
| 3,4, missing | 3,4, missing | 000100 |
| 3,4 | 5 | 000010 |
| 5 | 5 | 000000 |
| 5 | $1,2,3,4$ | 000001 |
| 3,4 | 1,2 | 000001 |

## WINST2 (Instruction on Writing Process II)

For grades 8 and 12, responses to items S000606, S000608, S000609, and S000610 were reccded as indicated below; the recoded responses for the four items were then averaged.

| Always | $=5$ |
| :--- | ---: |
| Half + | $=4$ |
| Half | $=3$ |
| Half - | $=2$ |
| Never | $=1$ |

WSUC2 (Success in English Class II)
For grades 8 and 12, responses to item S008601 were coded as follows:

| A lot | $=1$ |
| :--- | :--- |
| Some | $=2$ |
| None | $=3$ |
| Missing | $=2$ |

WSUC3 (Success in English Class III)
For grade : $?$ responses to item W 800701 were recoded as follows:

| Most A | -8 |
| :--- | :--- |
| Half A-B | -7 |
| Most B | $=6$ |
| Half B-C | $=5$ |
| Most C | -4 |
| Half C-D | -3 |
| Most D | -2 |
| Most $<$ D | -1 |
| Missing | $=5$ |

WTIMSP3 (Time Spent III)
For grade 12, responses to four items were recoded as indicałed below. The recoded respenses to all four items were then averaged. If resporses to all four items wtre missing, WTIMSP3 was given a value of 2.

| Items Used | Codings |  |
| :--- | :--- | :--- |
| W800501 | Weekly | -4 |
| W800502 | Monthly | $=3$ |
|  | Yearly | $=2$ |
|  | Never | -1 |


| W800601 | None | - 2 |
| :---: | :---: | :---: |
|  | Don't do | - 1 |
|  | $<1$ hour | - 2 |
|  | 1 hour | - 3 |
|  | 2 hour | -4 |
|  | $3+$ hours | -4 |
| S000201 | None | - 1 |
|  | 1 to 2 | - 2 |
|  | 3 to 4 | - 3 |
|  | 5 to 10 | - 4 |
|  | $11+$ | 4 |

## WREVISE (Revision)

For grade 12, responses to items S001302, S001303, S001304, S001308, and S001301 were recoded as indicated below. The recoded responses to all five items were then averaged. If responses to all five items were missing, WREVISE was given a value of 3 .

| Always | -5 |
| :--- | :--- |
| Half + | -4 |
| Half | -3 |
| Kalf - | -2 |
| Never | -1 |

WPLANI:G (Planning)
For grade 12, responses to items S 000901 and S 000902 were recoded as indicated below. The recoded responses to both items were then averaged. If responses to both items were missing, WPLANNG was given a value of 3 .

| Most, all | -5 |
| :--- | :--- |
| Half + | $=4$ |
| Half | $=3$ |
| Half - | -2 |
| Never | -1 |

## WTIMSP2 ('rime Spent II)

For grade 8, responses to item W800502 werc recoded as follows:

| Weekly | $=4$ |
| :--- | :--- |
| Monthly | -3 |
| Yearly | $=2$ |
| Iever | $=1$ |
| Missing | $=3$ |

WTIMSPI (:ime Spent I)
For grade 4, three dummy variables were created from the responses to item W8002́ul as follows:

| 1 | Weekly | 100 |
| :--- | :--- | :--- |
| 2 | Monthly | 010 |
| 3 | Yearly | 001 |
| 4 | Never | 000 |
|  | Missing | 010 |

WSUCl (Success in English Class I)
For grade 4, four dummy variables were created from the responses to item W800401 as follows:

1 Daily 1000
2 Weekly 0100
3 Monthly 0010
4 Yearly 0001
5 Never 0000 Missing 0010

## WINSTl (Instruction on Writing Process 1)

For grade 4, responses to items 5000604 and S 000605 were recoded as indicated below. The recoded responses to both items were then averaged. If responses to both items were missing, WINSTI was given a value of 3 .

| Always | -5 |
| :--- | :--- |
| Half + | -4 |
| Half | -3 |
| Half - | -2 |
| Nevor | -1 |

## Writing Trend Variables

NUMREP (Number of Reports Written for English Class)
For grades 8 and 12, if the student had an English class (i.e., response to items B001208 is not 1), responses to items B001201•B001207 were recoded as follows:

| None | -0 |
| :--- | ---: |
| 1 or 2 written | - |
| 3 or more written | 1 |
| BLK missing | - |

The suri of the seven responses was then computed and the number of reports written for English class became 0 (for 0 reports or missing) or 1 to 7 (for 1 to 7 reports).

## Givics Cross-sectional Variables

ST-ALOT (Number of Subjects $\leqslant$ sudied a Lot)
For grade 4, items P800601, P800701, D800801, P800901, P801001, and P801101 asked students to indicate whether they had studied particular civics. related topics a lot, some, or not at all. Each of the six items was soded as follows:

| A lot | $=1$ |
| :--- | ---: |
| Some | $=0$ |
| Not at all | $=0$ |
| Missing | $=0$ |

The sum of the siy recoded variables was defined as ST-ALOT.

STCV-INC (Studied Civics-Incemplete Set of Answers)
For grade 8, items P800101 to P800104 asked students whether they had studied American government or divics in grades 5 to 8, respectively. Each of the four items was coded as:

| Yes | $=0$ |
| :--- | ---: |
| No | $=0$ |
| I don't know | $=1$ |
| Hissing | $=1$ |

The sum of the four variables was then assigned the codes:

$$
\begin{aligned}
& 0-0 \\
& 1-4-1
\end{aligned}
$$

ST-ALOT (Number of Subjects Studied a :ot
For grade 8, items P801201 to P801210 asked students to ineicate whether they had studied particula civics-related topics a lot, some or not at all. Each of the ten items was coded as follows:

| A lot | $=1$ |
| :--- | ---: |
| Some | $=0$ |
| Not at all | -0 |
| Missing | $=0$ |

The sum of the ten recoded variables was defined as ST-ALOT.

CVA-ACT (Active in 4 Areas of Civics, 1, 2, 5, and 8)
For grade 8, items P802201, P802202, P802205, and P802208 asked students to indicate how often they participated in particular educational activjties for social studies class. These items were grouped together because of the similarity of responses te them. Each of the four items was reccdad as:
Almost every day $=1$
Once or twice a week $=1$
Once or twice a month $=0$
A few times a year $=0$
Never
Missing

The sum of the four variables was . an assigned the codes:

$$
\begin{aligned}
& 4-1 \\
& 0-3-0
\end{aligned}
$$

CVB-ACT (Antive in 2 Areas of Civics, 3 and 10)
For grade 8, items P802203 and POS2210 asked students to indicate how often they participa ed in particular educational activities for scial studies class. These items were grouped together becausc of the similarity of responses to them. Each of the two items was recoded as:
Almost every day -1
Once or twice a week -1
Once or twice a month -0
Never
Missing

The sum of the two rariables was then assigned the codes:

$$
\begin{aligned}
& 2-1 \\
& 0-1-0
\end{aligned}
$$

## CVC-ACT (Active in 2 Areas of Civics, 4 and 9)

For grade 8, items P802204 and P802209 asked students to indicate how often they participated in particular educational activities for social studies class. These items were grouped together because of the similarity of responses to them. Each of the two items was recoded as:

| Almost every day | $=1$ |
| :--- | :--- |
| Once or twice a week | $=1$ |
| Once or twice a month | $=0$ |
| A few times a year | $=0$ |
| Never | $=0$ |
| Missing | $=0$ |

The sum of the two variables was then assigned the codes:

$$
\begin{aligned}
& 2=1 \\
& 0-1=0
\end{aligned}
$$

CVD-ACT (Active in 2 Areas of Civics, 6 and 7)
For grade 8, items P802206 and P802207 asked students to indicate how uften they participated in particular educational activities for social studies class. These items were grouped together because of the similarity of responses to them. Each of the two items was recoded as:
Almost every day $=1$
Once or twice a week $=1$
Once or twice a month $=0$
A few times a year
Never
Missing

The sum of the two variables was then assigned the codes:

$$
\begin{array}{ll}
2 & =1 \\
0-1 & =c
\end{array}
$$

CVD-NOI (Not very Active in these 2 Areas of Civics)
For grade 8, items P802206 and P802207 asked students to indicate how often they participated in particular educational activities for social
studies class. These items were grc pped together because of the similarity of responses to them. Each of the two items was recoded as:
Almost every day $=0$
Once or twice a week
$=0$
Once or twice a month
$=0$
A few times a year
Neves
Missing

The sum of the two variables was then assigned the codes:

$$
\begin{aligned}
& 2=1 \\
& 0-1=0
\end{aligned}
$$

STCV-INC (Studied Cfivics-Incomplete set of Answers)
For grade 12, items P800201 to P800204 asked students whether they had studied American government or civics in: gredes 9 to 12, respectively. Each of the four items was coded as:

| Yes | $=0$ |
| :--- | :--- |
| No | -0 |
| I don't know | $=1$ |
| Missing | $=1$ |

The sum of the four variables was then assigned the codes:

$$
\begin{array}{ll}
0 & =0 \\
1-4 & =1
\end{array}
$$

GOVT (How Many Years of Government Study have You Had)
For grade 12, item P 800301 asked for the number of years the student had studied American government or civics since the beginning of ninth grade. The responses were recoded as:

| None | $=0$ |
| :--- | :--- |
| Less than $1 / 2$ year | $=.25$ |
| $1 / 2$ year | $=.5$ |
| Retween $1 / 2$ year and 1 year | $=.75$ |
| 1 year | $=1.0$ |
| More than 1 year | $=2.0$ |
| Missing | $=0$ |

ST-ALOT (Number of Subjects Studied a Lot)
For grade 12, items P801301 to P 801310 asked students to indicate whether they had studied particular civics-related topics a lot, some or not at all. Each of the ten items was coded as follows:


The sum of the ten recodec. variables was defined as ST-ALOT.

ST-AVE (Average Levil of Study for These Ten)
For grade 12, responses to items $P 801301$ to P 801310 were recoded as:

| A lot | $=2$ |
| :--- | :--- |
| Some | $=2$ |
| Not at all | $=1$ |
| Missing | $=0$ |

The average of the ten recoded variables was defined as ST-ALOT.

CIV-INT (Level of Interest in Civics)
For grade 12, item $P 801401$ asked students how much they like studying American government or civics. The responses were recoded as:

```
One of my favorite subjects = 3
Interesting
=2
Like several other subjects better = l
Never studied - 0
```

GOVATTN (Degree of Attention Government Pays)
For gradf 12, items P 801601 and 8801701 asked students to give their opinions about the responsiveness of government to the people. Each of the two items was coded as:

```
A good deal = 2
Some = l
Not much = 0
```

The average of the two variables was defined as GOVATTN.

The responses to HADCIV (yes, have had a civics class) influenced the coding of the following vaiiables. This item (P801801) asked students if they had ever had an American government or aivics class. If they had, they were $t J$ continue answering questions in the civics background vard.able block. If not, tiney vere asked to stop $\quad$ if students continued to answer questions although they had not said that they had taken a civics cousse, we rest of the responses were coded as missing.

## CVHWORK (Amount of Cjvics Homework)

For grade l2, responses to isem $P 801901$ were recoded as:

| No assignments | $=0$ |
| :--- | ---: |
| Don't do assignment | -0 |
| Less than 1 hour | $=5$ |
| 1 hour | $=1$ |
| 2 hours | -2 |
| 3 hours | -3 |
| 4 hours | -4 |
| 5 hours or more | -5 |
| Did not say that Civics was taken | $=0$ |
| Missing | $=0$ |

## CVGRADES (Civics Grades in School)

For grade 12, responses to item 8802001 were recoded as:

| Mostly A | $=4.0$ |
| :--- | ---: |
| Half A and half B | $=3.5$ |
| Mostly B | -3.0 |
| Half B and half C | $=2.5$ |
| Mostly C | $=2.0$ |
| Half C and hilf D | $=1.5$ |
| Mostly D | $=1.0$ |
| Mostly velow D | $=.5$ |
| Did not say that civics had been taken | $=2.0$ |
| Missing | $=2.0$ |

CVA-ACT (Active in 4 Areas of Civics, 1, 2, 5, and 8)
For crade 12, items P802401, P802402, P802405, and P802408 asked students to indicate how often they participased in par:icular educatiunal

Mrullion provisatyverac
acrivities for civics class. These items were grouped together because of the similarity of responses to them. Each of the four items was recoded as:

| Almost every day | $=1$ |
| :--- | ---: |
| Once or twice a week | $=1$ |
| Once or trifee a month | $=0$ |
| A few times á year | $=0$ |
| Never | $=0$ |
| Did not say that civi?s was taken | $=0$ |
| Missing | $=0$ |

The sum of the four variables was then assigned the codes:

$$
\begin{aligned}
& 4=7 \\
& 0-3=1
\end{aligned}
$$

CVB-ACT (Active in 2 Areas of Civics, 3 and 10)
For grade 12, items P802403 and P802410 asked students to indicate how often they narticipated in particular educational activities for civics class. These items were grouped together because of the similarity of responses to them. Each of the two items was recoded as:

| Almost every day | $=1$ |
| :--- | :--- |
| Once or twice a week | $=1$ |
| Once or twice a monti | $=0$ |
| A £ew times a year | $=0$ |
| Never | $=0$ |
| Did not say that civics was taken | $=0$ |
| Missing | $=0$ |

The sum of the two variables was then assigned the codes:

$$
\begin{aligned}
& 2=1 \\
& 0-1=0
\end{aligned}
$$

CVC-ACT (Active in 2 Areas of Civics, 4 and 9)
For grade 12, items P802\&.04 and P802409 asked srudents to indicate how often they participated in particular educational activities for civics class. These items were grouped together because of the similarity of responses shem. Each of the two items was recoded as:

```
Almost every day = l
Once or twice a week = = 
Once or twice a month =0
A few times a year =0
Never - = 
Did not say that civics was taken = 0
Missing = 0
```

The sum of the two variables was then assigned the codes:

$$
\begin{aligned}
& 2=1 \\
& 0-1=0
\end{aligned}
$$

CVD-ACT (Active in 2 Areas of Civics, 6 and 7)
For grade 12, items P802406 and P802407 asked students to indicate how often they participated in particular educational activities for civics class. These items were grouped together because of the similarity of responses to them. Each of the two items was recoded as:

| Almost every day | $=1$ |
| :--- | ---: |
| Once or twice a week | $=1$ |
| Once or twice a month | $=0$ |
| A few times a year | $=0$ |
| Never | $=0$ |
| Did not say that civics was taken | $=0$ |
| Missing | $=0$ |

The sum of the two variables was then assigned the codes:

$$
\begin{aligned}
& 2=1 \\
& 0-1=0
\end{aligned}
$$

CVD-NOT (Not Very Active in These 2 Areas of Civics)
For grade 12, items P802406 and P802407 asked students to indicate how often they participated in particular educational activities for civics class. These items were grouped together because of the similarity of responses to them. Each of the two items was recoded as:

| Almost every day | $=0$ |
| :--- | :--- |
| Once or twice a week | $=0$ |
| Once or twice a monti | $=0$ |
| A few times a year | $=1$ |
| Never | $=1$ |
| Did not say that civics was taken | $=1$ |
| Missing | $=1$ |

The sum of the two variables was then assigned the codes:

$$
\begin{aligned}
& 2=1 \\
& 0-1=0
\end{aligned}
$$

## RDDIF (At Least Some Diffiaulty in Reading or Missing)

For grade 12, responses to item P 802301 were recoded as:

$$
\begin{array}{ll}
\text { A lot } & -1 \\
\text { Some } & =1 \\
\text { None } & -0 \\
\text { Did nnt say that civics was taken } & =1 \\
\text { Missing } & =1
\end{array}
$$

## Civics Trend Variables

PPARED (Parent's Education - 2nd Set of Categories)
For ages 13 and 17, a parents' education variable was derived for 1982 data, so that comparisons with 1988 data be made for students having a parent who graduated from coilege. This variable is based on the 1982 variables PARED, FCLGRAD, and MCLGRAD (whether the father or mother graduated from college). The categories for PPARED are coded as:

1 < High school if PARED = l ( HHS )
2 High school graduate if PARED $=2$ (HS Grad)
3 Post high school if PARED = 3 (post-HS), FCLGRAD $=2$ (No), and MCLGRAD $=2$ (No)
4 College graduate if PARED = 3 and either FCLGRAD $=1$ (Yes)
or MCLGRAD = 1 (Yes)
Missing if otherwise

## U.S. History Cross-sectional Variables

HIS TAKE (How often do you have a social studies class?)
For grade 4, responses to item 5008701 were recoded as follows:

$$
\begin{array}{ll}
\text { Neve: , hardly ever or missing } & =0 \\
\text { Less than once a week } & =1 \\
\text { One or two times a week } & =2 \\
\text { Three or four times a week } & =3 \\
\text { Every day } & =4
\end{array}
$$

STUD.HIS (Have you ever studied the history of 'sur country?)
For grade 4, responses to item H 800601 wire recoded as follows:
No or missing $=0$
Yes
$\therefore 1$

STUD.EXP (Have you studied the early explorers of the new world?)
For grade 4, responses to item H 801101 were recoded as follows:
Not at all or missing $=0$
Some $=1$
A lot - 2

STUD.IND (Have you studied the Indians who first lived in our country?)
For grade 4, responses to item H 801201 were recoded as follows:
Not at all or missing $=0$
Some $=1$
A lot $=2$

STUD.PIL (How much have you studied about the Pilgrims and the first colonies in America?)

For grade 4, responses to item H 801301 were recoded as follows:

| Not at all or missing | $=0$ |
| :--- | :--- |
| Some | $=1$ |
| A lot | $=2$ |

STUD.GW 'How much have you studied George Washington and the war to gain independence irom England?)

For grade 4, respoises to item H 801401 were recoded as follows:
Not at all or missing $=0$
Some $=1$
A lot $=2$

STUD. PIO
(How much have you studied the pioneers who settled the western part of the country?)

For grade 4, responses to item H 801501 were recoded as follows:

| Not at all or missing | $=0$ |
| :--- | ---: |
| Some | $=1$ |
| A lot | $=2$ |

STUD.SLA (How much have you studied slavery and the wa- between the Northern and Southern states?)

For grade 4, responses to item 4801601 were recoded as Sollows:
Not at all or missing $=0$
Some $=1$ $A$ lot $=2$

STUD.INV (How much have you studied about people who invented things and made new discoveries?)

For grade 4, responses to item H 801701 were recoded as follows:
Not at all cur missing $=0$
Some $=1$
$A$ lot $=2$

HIS TARE (Did you study or expect to study U.S. history in the following grades?)

For grade 8, responses to items H800701 to H800704 (study in fifth, sixth, severitil, eighth grade) were recoded as follows:

| Yes | $=1$ |
| :--- | :--- |
| No | $=2$ |
| $I$ don't know | $=3$ |

The varimole HIS TAKE was then codied as the sum of all "Yes" responses, ranging from 0 to 4.

EARLY H (How much have you studied these periods of U.S. history?)
For grade 8, responses to items H 801801 to H 80180 were recoded as follows:

| A. lot | -2 |
| :--- | :--- |
| Some | $=1$ |
| Not at all | $=0$ |

The average of the six recoded variables formed the variable EARLY $H$, whose values $x$ s. $2 g e d^{\text {f }}$ from 0 to 2.

POST CH (How much have you studied these periods of U.S. history?)
For grade 8, responses to items H 801807 to H 801811 were recoded as follows:

| A lot | $=2$ |
| :--- | :--- |
| Some | $=1$ |
| Not at all | $=0$ |

The average of the five recoded variables formed the variable POST CH , whose values ranged from 0 to 2 .

TEACH H (How often does your social studies teacher ask you to do these things?;

For grade 8, responses to items H 802501 to H 802511 were recoded as follows:

$$
\begin{array}{ll}
\text { Almost every day } & -4 \\
\text { Once or twice a week } & -3 \\
\text { Once or twice a month } & =2 \\
\text { A few times a year } & =1 \\
\text { Never } & =0
\end{array}
$$

The average of the 11 recoded variables formed the variable TEACH $H$, whose values ranged from 0 to 4 .

TEXTBOOK (How much difficulty do you have reading your social studies textbooks?)

For grade 8, responses to 1 tem 5008801 were recoded as fsillows:

```
A lot - 2
Some = = 
None - 0
```

元

HIS TAKE (Did you study or expect to study U.S. history in the following grades?)

For grade 12, responses to items H800801 to H800804 (ninth, tenth, eleventh, twelfth grade) were recoded as follows:

| Yes | -1 |
| :--- | :--- |
| No | -2 |
| $I$ don't know | -3 |

The variable HIS TAKE was then coded as the sun of all "Yes" responses, ranging from 0 to 4 .

HIS COUR (Since the beginning of ninth grade, how much U.S. history coursework heve you completed up to now?)

For grade 12, respenses to item 4800901 were recoded as follows:

| None | -00 |
| :--- | :--- |
| Less than half a year | -25 |
| Half a year | -50 |
| Between half a year and one year | -75 |
| One year | $=100$ |
| More than one year | $=200$ |

AP HIST (Have you taken or are you taking Advanced Placement American history?)

For grade 12, responses to item H 801001 wer recoded as follows:
Yes - 1
No $\quad-0$

AM HIST (Since the beginning of ninth grade, how much have you studied the following periods of U.S. history?)

For grade 12, responses to items H801901-H801909 and H 801913 were recoded as follows:

| A lnt | $=2$ |
| :--- | :--- |
| Some | $=1$ |
| Not at all | $=0$ |

The average of the 10 recoded variables formed the variable AM HIST, whose values ranged from 0 to 2 .

WORLD H (Since the beginning of ninth grade, how much have you studied the following periods of U.S. history?)

For grade 12, responses to items H 801910 -H801912 were recode $\mathfrak{i}$ as follows:

| A lot | $=2$ |
| :--- | :--- |
| Some | $=1$ |
| Not at all | $=0$ |

The average of the three recoded variables formed the variable WORLD H, whose values ranged from 0 to 2 .

MIN/WOM (To what extent have you studied the history and contributions of minoricies and women?)

For grade 12, responses to item $\mathrm{H} \cong 2001$ were recoded as follows:

$$
\begin{array}{ll}
\text { A lot } & -2 \\
\text { Some } & -1 \\
\text { Not at all } & =0
\end{array}
$$

LIKE H (How much do you likr Judying United States history?)
For grade 12, responses to item H 802101 were recoded as follows:
It is one of my favorite subjects - 3
It is interesting -2
I like several oiher subjects better - 1
I have never studied United States history - 0

HAD HIST (Have you ever had a United States history class?)
For grade 12, responses to item H 802201 were recoded as follows:

$$
\begin{array}{ll}
\text { Yes } & -1 \\
\text { No } & =0
\end{array}
$$

HOMEWK H (How much time have you usually spent each week on homework for your U.S. history class?)

For grade 12, responses to item H 802301 werp recoded as follows:

| I usually haven't had homework assigned | -0 |
| :--- | :--- |
| I have had homework, but I usually haven't done it -0 |  |
| Less than 1 hour | -.5 |
| 1 hour | -1 |
| 2 hours | -2 |
| 3 hours | -3 |
| 4 hours | -4 |
| 5 hours or more | -5 |

GRADES H (What kind of grades have you goこten in your U. S. history class?)
For grade 12, responses to item $\mathrm{H} 80: 3401$ were recoded as follows:

```
Mostly A -4.0
About half A and half 3 - 3.5
Mostly B - 3.0
About half B and half C - 2.5
Mostly C - 2.0
f.bout half C and half D - 1.5
Mostly D - 1.0
Mostly below D - 0.0
```

TEACH/H (How often has your U.S. history teacher asked you so do the following things in class?)

For grade 12, responses to items H 802601 - H 802611 were recoded as follows:

| Almost every day | -4 |
| :--- | :--- |
| Once or twice a week | -3 |
| Once or twice a month | -2 |
| A few times a year | -1 |
| Never | -0 |

The average of the 11 recoded ariables formed the variable $T E A C H / H$, whose values ranged from 0 to 4 .

TEXTBOOK (How much difficulty have you haci reading your U. S. history textbook?)

For grade 12, responses to iten 4802801 were recoded as follows:

| A lot | -2 |
| :--- | :--- |
| Some | $=1$ |
| None | $=0$ |

Geography Cross-sectional Variables (Grade 12)
GEO TARE (Did you take or do you expect to take a geography course in the following grades?)

Responses to ttems G8003Gl-G800304 (ninth, tenth, eleventh, twelfth grades) were recoded as follows:

| Yes | -1 |
| :--- | :--- |
| No | -2 |
| $I$ don't know | -3 |

The variable GEO TAKE was then coded as the sum of all "Yes" responses, ranging from 0 to 4.

PHYSICAL (How much have you studied the following topics in geograph;?)
Responses to items G800201-G800209 (ph/sical geography topic!s) were recoded as follows:

| A lot | $=3$ |
| :--- | :--- |
| Some | $=2$ |
| Very little | $=1$ |
| Not at all | $=0$ |

The average of the nine recoded vaiiables formed th: variable PHYSICAL, whose values ranged from 0 to 3 .

SOCIAL (How much have you studied the following topics in geograph,?
Responses to items G800210-G800215 (social geography topics) were r oded as follows:

| A lot | -3 |
| :--- | :--- |
| Some | -2 |
| Very little | $=1$ |
| Not at all | -0 |

The average of the five recoded variables formed the variable SOCIAL, whose values ranged from 0 to 3 .

The following nine variables were created from responses to nine items that stemmed from the question "Since the beginning of ninth grade, how much of the following geography coursework have you completed up to now? ${ }^{n}$

W GEO (World geography coursework taken)
W HIS/G (World history and geography coursework taken)
STAT/REG (State/regional geography coursework taken)
US GEO (United States geography coursework taken)
US H/G (United States history and geography coursework taken)
PHY/GEO (Physical geography/earth science coursework tal.an)
ECON/P (Economic and political geography coursework taken)
HUM/CULT (Human and cultural geography coursework taken)
URBAN G (Urban geography coursework taken)
These variables were created, respectively, from items G800101-G800109. Responses to these items were first recoded as:

| Yes, in grade 9 | $=1$ |
| :--- | :--- |
| Yes, in grade 10 | $=1$ |
| Yes, in grade 11 | $=1$ |
| Yes, In grade 12 | $=1$ |
| No, I haven't taken | $=0$ |

To form the new variables, the recoded responses were then collapsed as follows:

Any "Yes" $=1$
No, I haven't taken $=0$
No, I haven't taken $=0$

## Mathematics Trend Variables

Observed Race x Observed Sex
This variable is defined as the following combinations of the variables RACE and SEX:

RACE SEX
1 White, American Indian, Other, or Unclassified Male
2 Black
3 Hispanic
4 Asian American
5 White, American Indian, Other, or Unclassified
6 Black
7 Hispanic
8 Asian American

Male
Male
Male
Female
Female
Female
Female

## Observed Race x Parents' Education

This variable is defined as the following combinations of the variables RACE and PARED:

RACE
1 White, American Indian, Other, or Unclassified
2 White, American Indian, Other, or Unclassified
3 White, American Indian, Other, or Unclassified
4 White, American Indian, Other, or Unclassified
5 White, American Indian, Other, or Unclassified
6 Black
7 Black
8 Black
9 Black
10 Black
11 Hispanic
12 Hispanic
13 Hispanic
14 Hispanic
15 Hispanic
16 Asian American
17 Asian American
18 Asian American
19 Asian American
20 Asian American

PARED

Less than high school education
High school graduate
Some education after high school
College graduate
Missing
Less than high school education High school graduate
Some education after high school
College graduate
Missing
Less than high school education High school graduate
Some education after high school
College graduate
Missing
Less than high school education High school graduate
Some education after high school College graduate Missing

Observed Race x Language in the Home
Items B003201 (age 9) and B003301 (ages 13 and 17) asked students how often people in their home speak a language other than English. This conditioning variable is defined by the following combinations of the variables RACE and B003201 (for age 9) or RACE and B003301 (ages 13 and 17):

## Age 9

RACE
1 White, American Indian, Other, or Unclassified
2 White, American Indian, Other, or Unclassified
3 White, American Indian, Other or Unclassified
4 Black
5 Black
6 Black
7 Hispanic
8 Hispanic
9 Hispanic
10 Asian American
11 Asian American
12 Asian American

Ages 13 and 17
RACE
1 White, Americar Indian, Other, or Unclassified
2 White, American Indian, Other, or Unclassified
3 White, American Indian, Other, or Unclassified
4 Black
5 Black
6 Black
7 Hispanic
8 Hispanic
9 Hispanic
10 Asian American
11 Asian American
12 Asian American

B003201

Always
Sometimes
Never
Always
Sometimes
Never
Always
Sometimes
Never
Always
Sometimes
Never

B003301

Always or mostly
Occasionally or half the time
Never
Always or mostly
Occasionally or half the time
Never
Always or mostly
Occasionally or half the time
Never
Always or mostly
Occasionally or half the time Never

## APPENDIX E

Revision of 1984 NAEP Poststratification Weights for Grade 4/Age 9 and Grade 8/Age 13

# Appendix E <br> REVISION OF 1984 NAEP POSTSTRATIFICATION WEIGHTS FOR GRADE 4/AGE 9 AND GRADE 8/AGE 13 

Keith F. Rust
Westat, Inc.
A. comparison of the propor ${ }^{+}$ns of 9 -yoar-old students who were in grade 4, based on weighted data, revealed an inconsistency betwee:. the 1984 main sample results and those for bridge studies in sulsequent years. In 1984, the percentage of 9 -year-old students in grade 4 was 74.9. For three subsequent bridges, the percentage ranged from 62.6 to 66.1 .

A consideration of the method of obtaining the separate poststratification factors for those students both grade and age eligible, those eligible by agt, alone, and those eligible by grade alone, used in 1984 but not for subsequent bridges, revealed the possibility of improving the approach used to derive the independent estimates which constitute the major component of the rumerators of each poststratification factor. This improvement pertained to the poststratification procedure for grade 4/age ? and grade 8/age 13, but not grade 1l/age 17.

The possibility of improvement arose because the independent estimates were derived using Current Population Survey data on the distribution over grades of the population by whole years of age. These ages are as of early October, the time each year the Current Population Survey in which this information is collected is conducted. The age definition for ages 9 and 13 used in 1984 means that this distribution is required as of January l. (For age 17, and for all three ages for the main samples in 1986, the appropriate date is October 1, consistent with the Current Population Survey data, consequently, the problem of inconsistency between NAEP and the Curiant Population Survey did not occur for these cases.)

Evidence from the 1984 and 1988 NAEP samples shows clearly that the proportion of 9 -jear-olds who were in grade 4 and 13 -year-olds who were in grade 3 declinea between October 1 and the following January 1 . That is, there were merz fourth graders who had their tenth birthday during this period than there were fourth graders who had their ninth birthday. The difference was sufficiently great as to decrease the percentage of 9 -year-olds who were age-eligible by about 10 percentage points. A similar but less marked decrease also occurred at age 13.

Independent estimates and the resulting poststratification factors were recomputed in a way that racognized this shift. The magnitude in the shift was estimated from NAEF data, this being the only source of information
available. We note thiat the shift proved very consistent between the 1984 and 1988 samples, when the same age and grade definitions were used.

The 1988 poststratification procedure, which differed from that used in 1984 and 1986 in a number of ways, was performed in a manner that also accounted for this shift in the grade/age distribution. Hence, no revision of the 1988 poststratification factors is required.

## APPENDIX F

1988 NAEP IRT Parameters

## Appendix F

## 1988 NAEP IRT PARAMETERS

Appendix F contains 13 tables of IRT (item response theory) parameters for NAEP items that were used in each subject area and study (cross-sectional or trend) for which IRT scales were created.

For each NAEP item used in scaling, the tables show the corresponding IRT parameters (A, B, and C) and standard errors (S.E.), the block in which the item appears for each age class (BLOCK), and the order in which the item appears within the block (ITEM).

IRT parameters for items used in cross-sectional scales are shown for reading in Table F-1, for civics in Table F-3, for U.S. history in Table F-6, and for giography in Table F-7. IRT parameters for items used in trend scales are shown for reading in Table F-2, for civics in Tables F-4 and F-5, for mathematics in Tables F-8 to F-10, and for science in Tables F-11 to F-13.

Note that item parameters shown in this appendix are in the metrics used for the original calibration of the scale. The transformations needed to represent these parameters in terms of the metric of the final reporting scales are given in Chapters 10 through 1 .

Table F-1
1988 Inm Parameters, Reading Cross-sectional

| HAEP ID | $\underline{1}$ | S.E. | B | S.E. | C: | S.E. | GRADE 4/AGE 9 |  | GRADE 8/AGE 13 |  | GRadE 12/AGE 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| N001501 | 1.733 | (0.028) | -1.036 | (0.029) | 0.221 | (0.010) | R3 | 4 | R3 | 4 | -- | -- |
| N 001502 | 2.190 | (0.064) | -0.211 | (0.023) | 0.256 | (0.007) | R3 | 5 | R3 | 5 | -- | -- |
| N001503 | 1.732 | (0.046) | -0.536 | (0.026) | 0.319 | (0.008) | F3 | 6 | R3 | 6 | -- | -- |
| H001504 | 1.798 | (0.052) | -0.240 | (0.022) | 0.305 | (0.007) | R3 | 7 | P. 3 | 7 | -- | -- |
| H001601 | 0.589 | (0.017) | -0.804 | (0.027) | 0.181 | (0.009) | R4 | 4 | R4 | 4 | -- | -- |
| N001602 | 1.387 | (0.040) | -0.346 | (0.020) | 0.258 | (0.007) | R4 | 5 | R4 | 5 | -- | -- |
| K001603 | 1.305 | (0.039) | 0.325 | (0.022) | 0.312 | (0.006) | R4 | 6 | 84 | 6 | -- | -- |
| N001604 | 1.400 | (0.041) | 0.182 | (0.019) | 0.272 | (0.006) | R4 | 7 | R4 | 7 | -- | -- |
| H002001 | 2.776 | (0.051) | 0.163 | (0.023) | 0.176 | (0.009) | -- | -- | R4 | 8 | -- | -- |
| K002002 | 1.553 | (0.048) | 0.155 | (0.023) | 0.234 | (0.0n9) | -- | -- | 84 | 9 | -- | -- |
| N002003 | 1.878 | (0.073) | -0.091 | (0.027) | 0.254 | (0.0i1) | -- | -- | 84 | 10 | -- | -- |
| $N 002101$ | 1.113 | (0.018) | 0.830 | (0.021) | 0.207 | (0.006) | -- | -- | R5 | 13 | R5 | 13 |
| $N 002102$ | 1.922 | (0.022) | 0.838 | (0.022) | 0.188 | (0.005) | -- | -- | R5 | 14 | R5 | 14 |
| $N 002401$ | 1.285 | (0.059) | 0.027 | ( 0.023 ) | 0.148 | (0.007) | R4 | 1 | -- | -- | -- | -- |
| N002401 | 1.383 | (0.052) | -0.399 | (0.028) | 0.225 | (0.012) | -- | -- | R4 | 1 | -- | -- |
| N002801 | 1.803 | (0.039) | -0 579 | (0.023) | 0.186 | (0.008) | R3 | 2 | R3 | 2 | -- | -- |
| N002802 | 1.591 | (0.032) | -0.705 | (0.024) | 0.196 | (0.009) | R3 | 3 | R3 | 3 | -- | -- |
| \$003001 | 1.605 | (0.020) | 1.026 | (0.023) | 0.210 | (0.005) | -- | -- | R5 | 10 | R5 | 10 |
| N003002 | 0.509 | (0.015) | 0.649 | (2.022) | 0.141 | (0.007) | -- | -- | R5 | 11 | R5 | 11 |
| N003003 | 2.506 | (0.021) | 1.456 | (0.0) | 0.096 | (0.003) | -- | -- | R5 | 12 | R5 | 12 |
| N003101 | 1.335 | (0.050) | -0.424 | (0.029) | 0.232 | (0.014) | -- | -- | R3 | 8 | -- | -- |
| N003102 | 1.739 | (0.062) | -0.150 | (0.026) | 0.201 | (0.012) | -- | -- | R3 | 9 | -- | -- |
| N003201 | 1.312 | (0.035) | -0.4E,3 | (5.022) | 0.252 | (0.011) | -- | -- | R5 | 1 | R5 | 1 |
| N003202 | 1.552 | (0.049) | U. 204 | (0.02s) | 0.271 | (0.009) | -- | -- | R5 | 2 | -- | -- |
| N003202 | 1.139 | (0.041) | -0.114 | (0.525) | 0.316 | (0.015) | -- | -- | -- | -- | R5 | 2 |
| N003203 | 1.165 | (0.022) | 0.390 | (0.018) | 0.298 | (0.007) | -- |  | RS | 3 | R5 | 3 |
| H003204 | 1.162 | (0.039) | 0.497 | (0.029) | 0.285 | (0.008) | -- | -- | R5 | 4 | -- | -- |
| N003:04 | 1.494 | (0.056) | -0.071 | (0.029) | 0.368 | (0.014) | -- | -- | -- | -- | R5 | 4 |
| N003501 | 0.998 | (0.024) | 0.146 | (0.020) | 0.187 | (0.014) | -- | -- | -- | -- | R3 | 7 |
| \$003701 | 0.941 | (0.024) | -0.768 | (0.025) | 0.293 | (0.009) | R4 | 2 | 84 | 2 | -- | -- |
| $\lambda 003702$ | 0.968 | (0.032) | -0.182 | (0.017) | 0.318 | (0.007) | R4 | 3 | 84 | 3 | -- | - |
| H004201 | 1.454 | (0.029) | 0.218 | (0.018) | 0.295 | (0.007) | -- | -- | R5 | 5 | R5 | 5 |
| N004202 | 1.080 | (0.024) | 0.606 | (0.023) | 0.410 | (0.006) | -- | -- | R5 | 6 | R5 | 6 |
| N004801 | 1.025 | (0.025) | -1.112 | (0.033) | 0.339 | (0.011) | R3 | 1 | R3 | 1 | -- | -- |
| K005001 | 2.826 | (0.025) | 1.223 | (0.032) | 0.233 | (0.004) | -- | -- | R5 | 7 | R5 | 7 |
| N005002 | 1.516 | (0.022) | 1.215 | (0.030) | 0.307 | (0.005) | -- | -- | R5 | 8 | R5 | 8 |
| N005003 | 1.143 | (0.018) | 1.528 | (0.031) | 0.141 | (0.004) | -- | -- | R5 | 9 | R5 | 9 |
| \%005101 | 0.716 | (0.018) | -2.688 | (0.075) | 0.237 | (0.025) | R2 | 2 | -- | -- | -- | -- |
| N005503 | 0.835 | (0.019) | 0.499 | (0.019) | 0.280 | (0.007) | -- | -- | R2 | 1 | R2 | 1 |
| H005504 | 1.778 | (0.021) | 0.759 | (0.020) | 0.237 | (0.006) | -- | -- | R2 | 2 | R2 | 2 |
| N005505 | 1.4 .57 | (0.040) | -0.582 | (0.027) | 0.300 | (0.012) | -- | -- | R2 | 3 | R2 | 3 |
| H007301 | 1.403 | (0.031) | 0.020 | (0.017) | 0.276 | (0.008) | -- | -- | F2 | 4 | R2 | 4 |
| N007302 | 1.097 | (0.018) | 0.717 | (0.020) | 0.254 | (0.006) | -- | -- | 很く | 5 | R2 | 5 |
| N007303 | 1.703 | (0.030) | 0.224 | (0.018) | 0.232 | (0.007) | -- | -- | R2 | 6 | R2 | 6 |
| N007304 | 1.117 | (0.022) | 0.352 | (0.01?) | 0.264 | (0.007) | -- | -- | R2 | 7 | R2 | 7 |
| $\mathrm{Kl}_{2}{ }^{7305}$ | 0.951 | (0.017) | 0.671 | (0.019) | 0.212 | (0.006) | -- | - | R2 | 8 | R2 | 8 |
| N00,306 | 1.368 | (0.024) | 0.184 | (0.016) | $0 . .706$ | (0.008) | - | -- | R2 | 9 | R2 | 9 |
| N007401 | 2.069 | (0.022) | 0.748 | (0.020) | 0.1 .59 | (C 005) | -- | -- | R2 | 10 | R2 | 10 |
| N007402 | 1.601 | (0.031) | 0.254 | (0.020) | 0.288 | (0 908) | -- | -- | R2 | 11 | R2 | 11 |
| H007403 | 2.302 | (0.035) | 0.353 | (0.021) | 0.203 | (0.c07) | -- | -- | R2 | 12 | R2 | 12 |
| N007404 | 1.852 | (0.028) | 0.531 | (0.022) | 0.296 | (0.007) | -- | -- | R2 | 13 | R2 | 13 |
| N007405 | 1.432 | (0.020) | 1.183 | (0.028) | 0.220 | (0.005) | -- | -- | R2 | 14 | R2 | 14 |
| H008701 | 0.715 | (0.018) | -2.941 | (0.079) | 0.242 | (0.026) | R2 | 1 | -- | -- | -- | -- |
| N010501 | 1.525 | (0.033) | -1.160 | (0.039) | 0.285 | (0.012) | R2 | 8 | -- | -- | -- | -- |
| K010502 | 0.913 | (0.026) | -1.050 | (0.037) | 0.213 | (0.012) | R2 | 9 | -- | -- | -- | -- |
| H010503 | 1.479 | (0.033) | -1.11\% | :0.039) | 0.268 | (0.012) | R2 | 10 | -- | -- | -- | -- |
| N010504 | 1.843 | (0.049) | -0.627 | (0.032) | 0.189 | (0.010) | R2 | 11 | - - | -- | -- | -- |
| H013101 | 1.706 | (0.036) | -1.145 | (0.040) | 0.325 | (0.012) | R2 | 4 | -- | -- | -- | -- |
| N013102 | 1.251 | ( 0.0 .400 ) | -0.460 | (0.02.5) | 0.170 | (0.009) | R2 | 5 | -- | -- | -- | -- |
| N013103 | 2.058 | (0.040) | -0.335 | (0 925) | 0.200 | (0.009) | R2 | 6 | -- | -- | -- | -- |
| N013104 | 0.700 | (C.035) | -0.116 | (0.022) | 0.235 | (1.009) | R2 | 7 | -- | -- | -- | -- |
| H013301 | 1.143 | (0.022) | -1.717 | (0.044) | 0.252 | (0.017) | R2 | 3 | -- | -- | -- | -- |
| N014301 | 1.809 | (0.084) | -0.292 | (0.032) | 0.197 | (0008) | R2 | 12 | -- | -- | -- | -- |
| N014302 | 1.511 | (0.081) | -0.052 | (0.029) | 0.227 | (0008) | R2 | 13 | - | -- | -- | -- |

Table F-1 (continued)
1988 IRT Parameters, Reading Cross-sectional

| RAEP ID | A | $\mathrm{S}_{\underline{1}}$ | E | $\mathrm{S}_{\underline{L}}$ | C | S.E. | $\begin{aligned} & \text { GRADE } 4 \\ & \text { BLOCK } \end{aligned}$ | $\begin{aligned} & \text { /AGE } 9 \\ & \text { ITEM } \end{aligned}$ | $\begin{gathered} \text { GRADE } 8 \\ \text { BLOCK } \end{gathered}$ | $\begin{aligned} & \text { B/AGE } 13 \\ & \text { ITEM } \end{aligned}$ | GRADE 12 BLCCK | $\begin{aligned} & \text { /AGE } 17 \\ & \text { ITEN } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1014303 | 2.049 | (0.056) | -0.683 | (0.038) | 0.243 | (0.010) | 82 | 14 | -- | -- | -- | -- |
| N015901 | 1.331 | (0.031) | 0.389 | (0.025) | 0.250 | (0.012) | -- | -- | -- | -- | R3 | 8 |
| 801590\% | 1.229 | (0.625) | 0.719 | (0.028) | 0.313 | (0.010) | -- | -- | -- | -- | R3 | 9 |
| N01s903 | 2.311 | $(0.027)$ | 1.020 | (0.032) | 0.226 | (0.008) | -- | -- | -- | -- | R3 | 10 |
| 13015905 | 0.684 | (0.019) | 0.561 | (0.023: | 0.000 | (0.000) | -- | -- | -- | -- | R3 | 111 |
| 8016001 | 1.040 | (0.031) | -0.168 | (0.022) | 0.210 | (0.216) | -- | -- | -- | -- | R3 | 1 |
| N016002 | 0.917 | (0.022) | 0.598 | (0.032: | 0.22 ? | 0.011) | -- | -- | -- | -- | R3 | 2 |
| \$016003 | 1.319 | (0.029) | $0.48=$ | (0.026) | 0.283 | n.011) | -- | -- | -- | -- | R3 | 3 |
| N016004 | 1.159 | (0.030) | 0.139 | (0.022) | 0.240 | 014) | -- | -- | -- | -- | R3 | 4 |
| N016005 | 2.167 | (0.051) | 0.240 | (0.029) | 0.247 | 1 013) | -- | -- | -- | -- | RS | 5 |
| N016006 | 1.295 | (0.027) | 0.489 | (0.024) | 0.252 | (0.011) | -- | -- | -- | -- | R3 | 6 |
| H021101 | 0.757 | (0.017) | -1.807 | (0.046) | 0.206 | (0.016) | R7 | 4 | -- | -- | -- | -- |
| \%021102 | 0.843 | (0.022) | -0.897 | (0.031) | 0.166 | (0.011) | R7 | 5 | -- | -- | -- | -- |
| 8021103 | 1.096 | (0.025) | -1.082 | (0.033) | 0.207 | (0.011) | R7 | 6 | -- | -- | -- | -- |
| N021401 | 1.337 | (0.050) | -0.297 | (0.026) | 0.208 | (0.008) | R7 | 12 | -- | -- | -- | -- |
| N021402 | 2.202 | (0.074) | -0.354 | (0.032) | 0.214 | (0.007) | R7 | 13 | -- | -- | -- | -- |
| N021403 | 1.42 .5 | (0.032) | -1.130 | (0.038) | 0.282 | (0.012) | R7 | 14 | -- | -- | -- | -- |
| H021404 | 2.006 | (0.113) | 0.081 | (0.032) | 0.205 | (0.006) | R7 | 15 | -- | -- | -- | -- |
| N021501 | 0.858 | (0.025) | -0.780 | (0.031) | 0.246 | (0.010) | R5 | 1 | -- | -- | -- | -- |
| H021502 | 1.116 | (0.02*) | -1.607 | (0.037) | 0.201 | (0.014) | R5 | 2 | -- | -- | -- | - |
| N021503 | 1.111 | (0.019) | -1.975 | (0.043) | 0.223 | (0.018) | R5 | 3 | -- | -- | -- | -- |
| \%021504 | 1.036 | (0.030) | -0 706 | (0.029) | 0.248 | (0.009) | R5 | 4 | -- | -- | -- | -- |
| N021505 | 1.582 | (0.033) | -0.837 | (0.030) | 0.198 | (0.008) | R5 | 5 | -- | -- | -- | -- |
| 8022601 | 0.781 | (0.026) | -0.009 | (0.021) | 0.291 | (0.013) | -- | -- | -- | -- | R4 | 15 |
| N021602 | 0.708 | (0.019) | 1.098 | (0.035) | 0.188 | (0.009) | -- | -- | -- |  | R4 | 16 |
| N021603 | 0.631 | (0.032) | 2.241 | (0.119) | 0.381 | (0.007) | -- | -- | -- | -- | 84 | 17 |
| K021604 | 1.488 | (0.033) | 0.393 | :0.026) | 0.278 | (0.011) | -- | -- | -- | - | R4 | 18 |
| N021605 | 1.242 | (0.023) | 0.869 | (0.029) | 0.276 | (0.009) | -- | -- | -- | -- | R4 | 19 |
| R000101 | 1.095 | (0.024) | -0.970 | (0.030) | 0.176 | (0.010) | R5 | 6 | -- | -- | -- | -- |
| R000102 | 1.391 | (0.064) | -0.035 | (0.024) | 0.200 | (0.00\%) | R5 | 7 | -- | -- | -- | - |
| R000103 | 1.702 | (0.043) | -0.699 | (0.032) | 0.276 | (0.009) | R5 | 8 | -- | -- | -- | -- |
| 8000104 | 1.766 | (0.031) | -1.362 | (0.041) | 0.313 | (0.012) | R5 | 9 | -- | -- | -- | -- |
| R000201 | 0.983 | (0.030) | -0.839 | (0.034) | 0.304 | (0.010) | R5 | 10 | -- | -- | -- | -- |
| R000202 | 2.351 | (0.044) | -0.873 | (0.037) | 0.252 | (0.009) | R5 | 11 | -- | -- | -- | -- |
| R000203 | 1.462 | (0.027) | -1.363 | (0.039) | 0.273 | (0.013) | R5 | 12 | =- | -- | -- | -- |
| R000204 | 2.011 | (0.035) | -1.165 | (0.040) | 0.273 | (0.011) | R5 | 13 | -- | -- | -- | -- |
| R000205 | 1.389 | (0.027) | -1.305 | (0.038) | 0.255 | (0.013) | R5 | 14 | -- | -- | -- | -- |
| R000206 | 1.068 | (0.039) | 0.130 | (0.021) | 0.000 | (0.000) | R5 | 15A | - | -- | -- | -- |
| R000301 | 1.510 | (0.053) | -0.355 | (0.028) | 0.257 | (0.008) | R6 | 1 | -- | -- | -- | -- |
| R000302 | 1.134 | (0.027) | -0.862 | (0.029) | 0.191 | (0.010) | R6 | 2 | -- | -- | -- | -- |
| 2000303 | 1.076 | (0.034) | -0.587 | (0.029) | 0.258 | (0.009) | R6 | 3 | -- | -- | -- | -- |
| 8000304 | 1.035 | (0.027) | -0.895 | (0.032) | 0.241 | (0.010) | R6 | 4 | -- | - | - | -- |
| R000401 | 1.504 | (0.056) | -0.260 | (0.026) | 0.217 | (0.007) | 26 | 5 | -- | -- | -- | -- |
| R000402 | 0.848 | (0.017) | -1.994 | (0.047) | 0.222 | (0.017) | R6 | 6 | -- | -- | -- | -- |
| R000403 | 1.052 | (0.054) | 0.112 | (0.025) | 0.238 | (0.007) | R6 | 7 | -- | -- | -- | -- |
| R000604 | 1.336 | (0.025) | -1. 258 | (0.034; | 0.186 | (0.012) | R6 | 8 | -- | -- | -- | -- |
| R000501 | 1.583 | (0.030) | -1.197 | (0.036) | 0.236 | (0.011) | R6 | 9 | -- | -- | -- | -- |
| R000502 | 1.656 | (0.060) | -0.395 | (0.030) | ¢. 270 | (0.008) | R6 | 10 | -- | -- | -- | -- |
| R000503 | 1.194 | (0.067) | 0.449 | (0.037) | 0.162 | (0.n05) | R6 | 11 | -- | -- | -- | -- |
| R000504 | 0.726 | (0.027) | -0.673 | (0.032) | 0.261 | (0.010) | ne | 12 | -- | -- | -- | -- |
| R000505 | 1.435 | (0.054) | -0.397 | (0.030) | 0.245 | (0.008) | R6 | 13 | -- | -- | -- | -- |
| R000601 | 1.079 | (0.022) | -1.326 | (0.03.5) | 0.197 | (0.012) | R7 | 1 | -- | -- | -- | -- |
| R000602 | 1.029 | (0.028) | -0.829 | (0.031) | 0.240 | (0.010) | R7 | 2 | -- | -- | -- | -- |
| 8000603 | 1.354 | (0.030) | -0.973 | (0.032) | 0.231 | (0.010) | R7 | 3 | -- | -- | -- | -- |
| R000701 | 1.338 | (0.056) | -0.054 | (0.023) | 0.171 | (0.007) | R7 | 7 | -- | -- | -- | -- |
| R000702 | 1.767 | (0.076) | -0.152 | (0.027) | 0.216 | (0.007) | R7 | 8 | -- | -- | -- | -- |
| 2000703 | 1.472 | (0.030) | -1.083 | (0.035) | 0.257 | (0.011) | R7 | 9 | -- | -- | -- | -- |
| R000704 | 0.556 | (0.017) | -1.821 | (0.058) | 0.221 | (0.015) | R7 | 10 | -- | -- | -- | -- |
| R000705 | 0.661 | (0.026) | 0.537 | (0.030) | 0.273 | (0.010) | R7 | 11 | -- | -- | -- | -- |
| R000801 | 0.741 | (0.015) | -1.541 | (0.036) | 0.231 | (0.012) | R8 | 6 | R8 | 10 | -- | -- |
| R000802 | 1.206 | (0.019) | -1.311 | (0.028) | 0.195 | (0.011) | P. 8 | 7 | R8 | 11 | -- | -- |
| R000803 | 0.941 | (0.022) | -0.452 | (0.017) | 0.164 | (0.00'\%) | R8 | 8 | R8 | 12 | -- | -- |
| R000804 | 1.631 | (0.035) | -0.402 | (0.019) | 0.139 | (0.066) | R8 | 9 | R8 | 13 | -- | -- |
| R000805 | 1.462 | (0.031) | -0.702 | (0.024) | 0.226 | (0.008) | R8 | 10 | R8 | 14 | -- | -- |

Table F-1 (continued)
1988 IRT Parameters, Reading Cross-sectional

| MAEP ID | A | S.E. | B | $\underline{S, E}$ | C | $\underline{S, E_{1}}$ | GRADE 4/AGE 9 |  | GRADE 8/AGE 13 |  | GRADE 12/AGE 17 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | BLOCK | ITEM | BLOCK | ITEM | BLOCK |  |
| R000806 | 1.647 | (0.045) | -0.799 | (0.036) | 0.537 | (0.008) | R8 | 114 | R8 | 15A | -- | -- |
| R000807 | 0.881 | (0.015) | -1.090 | (0.025) | 0.000 | (0.000) | R8 | 118 | R8 | 15B | -- | -- |
| R000901 | 1.531 | (0.02\%) | -0.797 | (0.021) | 0.200 | (0.008) | R8 | 1 | R8 | 1 | R8 | 1 |
| R000902 | 1.185 | (0.024) | -0.808 | (0.023) | 0.297 | (0.008) | R8 | 2 | R8 | 2 | R8 | 2 |
| R000903 | 1.523 | (0.022) | -1.074 | (0.025) | 0.165 | (0.009) | R8 | 3 | R8 | 3 | R8 | 3 |
| R000904 | 2.829 | (0.106) | 0.473 | (0.045) | 0.121 | (0.004) | R8 | 4 | -- | -- | -- | -- |
| R000904 | 1.975 | (0.043) | 0.009 | (0.018) | 0.176 | (0.008) | -- | -- | R8 | 4 | R8 | 4 |
| R000905 | 1.448 | (0.037) | -0.928 | (0.033) | 0.199 | (0.015) | P. 8 | 5 | R8 | 5 | R8 | 5 |
| R00 1001 | 1.172 | (0.043) | -0.791 | (0.039) | 0.273 | (0.015) | -- | -- | R8 | 6 | -- | -- |
| R001002 | 1.336 | (0.047) | -0.166 | (0.023) | 0.250 | (0.011) | -- | -- | Re, | 7 | -- | -- |
| R001003 | 1.498 | (0.047) | 0.144 | (0.022) | 0.197 | (0.009) | - | -- | F. 8 | 8 | -- | -- |
| R001004 | 1.499 | (0.052) | -0 165 | (0.024) | 0.223 | (0.010) | -- | -- | ! 18 | 9 | -- | -- |
| R001101 | 1.375 | (0.034) | 0.932 | (0.035) | 0.132 | (0.006) | -- | -- | R6 | 16 | -- | -- |
| R01)1102 | 1.797 | (0.046) | 0.729 | (0.039) | 0.351 | (0.007) | -- | -- | R6 | 17 | -- | -- |
| R001103 | 1.089 | (0.035) | 0.570 | (0.029) | 0.190 | (0.008) | -- | -- | R6 | 18 | -- | -- |
| R001201 | 1.984 | (0.067) | -0.22, | (0.026) | 0.178 | (0.010) | -- | -- | R6 | 6 | -- | - |
| R001202 | 1.819 | (0.062) | 0.038 | (0.026) | 0.294 | (0.009) | -- | -- | R6 | 7 | -- | -- |
| R001203 | 1.695 | (0.061) | -0.356 | (0.0? ${ }^{\text {(0.) }}$ | 0.197 | (0.011) | -- | -- | R6 | 8 | -- | -- |
| R001204 | 1.574 | (0.049) | -0.123 | (0.022) | 0.159 | (0.010) | -- | -- | R6 | 9 | -- | -- |
| R001205 | 1.749 | (0.059) | -0.541 | (0.034) | 0.250 | (0.013) | -- | -- | R6 | 10 | -- | -- |
| R00 1301 | 1.020 | (0.034) | -0.080 | (0.019) | 0.189 | (0.010) | -- | -- | R6 | 1 | -- | -- |
| R001302 | 1.563 | (0.051) | 0.301 | (0.027) | 0.333 | (0.008) | -- | -- | R6 | 2 | -- | -- |
| R001303 | 2.042 | (0.081) | -0.289 | (0.032) | 0.322 | (0.011) | -- | -- | R6 | 3 | -- | -- |
| R001304 | 2.428 | (0.041) | 0.924 | (0.038) | 0.197 | (0.005) | -- | -- | R6 | 4 | -- | -- |
| R001305 | 1.540 | (0.057) | -0.457 | (0.031) | 0.282 | (0.012) | -- | -- | R6 | 5 | -- | -- |
| R001401 | 1.863 | (0.057) | 0.086 | (0.024) | 0.189 | (0.009) | -- | -- | R6 | 11 | -- | -- |
| R001402 | 2.344 | (0.085) | -0.007 | (0.039) | 0.268 | (0.009) | -- | -- | R6 | 12 | -- | -- |
| RCO1403 | 2.321 | (0.053) | 0.398 | (0.031) | 0.262 | (0.038) | -- | -- | R6 | 13 | -- | -- |
| R001404 | 2.271 | (0.091) | 0.090 | (0.031) | 0.308 | (0.009) | -- | -- | R6 | 14 | -- | -- |
| R001405 | 0.773 | (0.032) | 0.057 | (0.020) | 0.238 | (0.010) | -- | -- | R6 | 15 | -- | -- |
| R001501 | 0.809 | (0.021) | -0.974 | (0.030) | 0.202 | (0.013) | -- | -- | R7 | 1 | R7 | 1 |
| R091502 | 0.61\% | (0.015) | 0.182 | (0.013) | 0.146 | (0.008) | -- | -- | R7 | $?$ | R7 | 2 |
| R001503 | 1.199 | (0.033) | -0.909 | (0.033) | 0.238 | (0.914) | -- | -- | $\mathrm{R7}$ | : | R7 | 3 |
| R001504 | 1.460 | (0.031) | -0.032 | (0.017) | 0.261 | (0.008) | -- | -- | R7 | 4 | 57 | 4 |
| R001601 | 1.575 | (0.037) | -0.642 | (0.026) | 0.166 | (0.012) | -- | -- | R7 | 5 | 87 | 5 |
| R001602 | 1.406 | (0.037) | -0.401 | (0.021) | 0.207 | (0.010) | -- | -- | R7 | 6 | $\therefore 1$ | 6 |
| R001603 | 1.245 | (0.029) | -0.097 | (0.016) | 0.240 | (0.009) | -- | -- | R7 | 7 | R7 | 7 |
| R001604 | 0.7 . | (0.020) | -0.951 | (0.029) | 0.172 | (0.013) | -- | -- | R7 | 8 | R7 | 8 |
| R001605 | 1.039 | (0.019) | 0.463 | (0.016) | 0.207 | (0.096) | -- | -* | R7 | 9 | R7 | 9 |
| R001701 | 1.132 | (0.025) | 0.153 | (0.017) | 35 | (0.008) | -- | -- | R7 | 10 | R7 | 10 |
| R001702 | 1.936 | (0.058) | -0.498 | (0.028) | U. 261 | (0.011) | -- | -- | R7 | 11 | R7 | 11 |
| R001703 | 0.670 | (0.016) | 0.939 | (0.026) | 0.180 | (0.006) | -- | -- | R7 | :2 | K7 | 12 |
| R001704 | 1.057 | (0.019) | 0.568 | (0.018) | 0.224 | (0.006) | -- | -- | R7 | 13 | R7 | 13 |
| R001801 | 1.493 | (0.033) | -0.017 | (0.017) | 0.210 | (0.008) | -- | -- | R7 | 14 | R7 | 14 |
| R001802 | 2.274 | (0.031) | 0.365 | (0.019) | 0.149 | (0.006) | -- | -- | R7 | 15 | R7 | 15 |
| R001803 | 1.087 | (0.018) | 0.771 | (0.021) | 0.235 | (0.006) | -- | -- | R7 | 16 | R7 | 16 |
| R001804 | 2.053 | (0.035) | 0.308 | (0.021) | 0.294 | (0.007: | -- | -- | R7 | 17 | R7 | 17 |
| R001805 | 1.840 | (0.028) | 0.355 | (0.019) | 0.225 | (0.007) | -- | -- | R7 | 18 | R7 | 18 |
| R001806 | 0.955 | (0.020) | 0184 | (0.015) | 0.215 | (9.008) | -- | -- | R7 | 19 | R7 | 19 |
| R001901 | 0.692 | (0.031) | -i. 135 | (0.057) | 0.237 | (0.022) | -- | -- | -- | -- | R4 | 10 |
| R001902 | 1.535 | (0.036) | 0.250 | (0 024) | 0.241 | (0.012) | -- | -- | -- | -- | 84 | 11 |
| R001903 | 1.172 | (0.027) | 0.255 | (0.022) | 0.226 | (0.012) | -- | -- | -- | -- | R4 | 12 |
| R001904 | 1.864 | (0.048) | 0.130 | (0.027) | 0.273 | (0.013) | -- | -- | -- | -- | R4 | 13 |
| R001905 | 1.307 | (0.039) | -0.237 | (0.026) | 0.181 | (0.017) | -- | -- | -* | -- | R4 | 14 |
| R002001 | 1.762 | (0.057) | -0.080 | (0.029) | 0.272 | (0.015) | -- | -- | -- | -- | R4 | 1 |
| R002002 | 1.099 | (0.025) | 0.412 | (0.023) | 0.259 | (0.011) | -- | -- | -- | -- | R4 | 2 |
| R002003 | 1.463 | (0.030) | 0.329 | (0.023) | 0.198 | (0.011) | -- | -- | -- | -- | R4 | 3 |
| R002004 | 1.179 | (0.032) | 0.115 | (0.023) | 0.285 | (0.013) | -- | -- | -- | -- | 84 | 4 |
| R002005 | 0.837 | (0.022) | 0.716 | (0.028) | 0.27\% | (0.010) | -- | -- | -- | -- | R4 | 5 |
| R002101 | 0.442 | (0.026) | 2.427 | (0.145) | 0.305 | (0.007) | -- | -- | -- | -- | R4 | 6 |
| 8002102 | 1.160 | (0.024) | 0.363 | (0.021) | 0.169 | (0.011) | -- | -- | -- | -- | R4 | 7 |
| R002103 | 1.528 | (0.047) | -0.162 | (0.027) | 0.213 | (0.016) | -- | -- | -- | -- | R4 | 8 |
| R002104 | 1.117 | (0.030) | -0.030 | (0.022) | 0.245 | (0.014) | -- | -- | -- | - | R4 | 9 |
| R002201 | 1.324 | (0.027) | 0.951 | (0.034) | 0.417 | (0.008) | -* | -* | -- | -- | R6 | 1 |

Table F-1 (continued)
1988 IRT Parameters, Reading Cross-sectional

| MAEP ID | 1 | S.E.E | 且 | $\underline{S . E . E}$ | C | $\underline{S}$, E. | GRADE BLOCK | $\text { /AGE } 9$ | GRADE BLOC: | $\begin{gathered} \text { 8/AGE } 13 \\ \text { ITEM } \end{gathered}$ | $\begin{aligned} & \text { GRADE } \\ & \text { YLOCX } \end{aligned}$ | $\begin{aligned} & \text { 2/AGE } 17 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R002202 | 1.123 | (0.051) | -0.911 | (0.053) | 0.234 | (0.024) | -- | -- | -- | -- | RS | 2 |
| R002203 | 1.107 | (0.023) | C. 535 | (0.023) | 0.238 | (0.010) | -- | -- | -- |  | R6 | 3 |
| R002204 | 0.205 | (0.020) | 3.279 | (0.039) | 0.227 | (0.008) | -- | -- | -- | -- | R6 | 4 |
| R002205 | 1.078 | (0.043) | 2.336 | (0.111) | 0.319 | (0.006) | -- | -- | -- | -- | R6 | 5 |
| R002301 | 2.070 | (0.033) | 0.569 | (0.027) | 0.244 | (0.009) | -- | -- | -- | -- | R6 | 6 |
| R002302 | 0.683 | (0.020) | 0.839 | (0.031) | 0.232 | (0.010) | -- | -- | -- | -- | R6 | 7 |
| 2032303 | 1.882 | (0.030) | 0.526 | (0.025) | 0.178 | (0.009) | -- | -. | -- | -- | R6 | 8 |
| R002304 | 2.068 | (0.036) | 0.411 | (0.026) | 0.203 | (0.010) | -- | -- | -- | -- | R6 | 9 |
| R092401 | 1.281 | (0.057) | -0.479 | (0.037) | 0.287 | (0.019) | -- | -- | -- | -- | R6 | 10 |
| R002402 | 0.777 | (0.026) | 1.820 | (0.069) | 0.335 | (0.007) | -- | -- | -- | -- | R6 | 11 |
| R002403 | 1.383 | (0.044) | -0.054 | (0.027) | 0.317 | (0.015) | -- | -- | -- | -- | R6 | 12 |
| R002404 | 1.427 | (0.021) | 1.073 | (0.028) | 0.197 | (0.008) | -- | -- | -- | -- | R6 | 13 |
| R002405 | 1.482 | (0,029) | 0.550 | (0.026) | 0.262 | (0.010) | -- | -- | -- | -- | R6 | 14 |
| R002406 | 0.808 | (0.017) | 1.011 | (0.027) | 0.000 | (0.000) | -- | -- | -- | -- | R6 | 15 A |
| R002501 | 1.564 | (0.026) | 0.547 | (0.024) | 0.227 | (0.010) | -- | -- | -- | -- | R8 | , |
| R002502 | 1.150 | (0.026) | 0.364 | (0.022) | 0.251 | (0.011) | -- | -- | -- |  | R8 | 7 |
| R002503 | 1.287 | (0.037) | -0.190 | (0.025) | 0.205 | (0.016) | -- | -- | -- | -- | R8 | 8 |
| R002601 | 1.442 | (0.026) | 0.581 | (0.024) | 0.238 | (0.010) | -- | -- | -- | -- | R8 | 9 |
| R002602 | 1.402 | (0.038) | 0.102 | (0.025) | 0.295 | (0.013) | -- | -- | -- | -- | R8 | : |
| R002603 | 1.539 | (0.056) | -0.146 | (0.029) | 0.294 | (0.016) | -- | -- | -- | -- | R8 | 11 |
| R002604 | 1.338 | (0.024) | 0.574 | (0.022) | 0.163 | (0.010) | -- | -- | -- |  | R8 | 12 |
| R002605 | 1.678 | (0.026) | 0.826 | (0.028) | 0.265 | (0.008) | -- | -- | -- | -- | R8 | 13 |
| R202701 | 1.462 | (0.029) | 0.269 | (0.022) | 0.144 | (0.012) | -- | -- | -- | -- | R8 | 14 |
| R002702 | 1.327 | (0.021) | 1.132 | (0.029) | 0.187 | (0.007) | -- | -- | -- | -- | R8 | 15 |
| R002703 | 2.013 | (0.036) | 0.440 | (0.027) | 0.205 | (0.011) | -- | -- | -- | -- | R8 | 16 |
| R002704 | 0.971 | (0.023) | 0.784 | (0.026) | 0.208 | (0.010) | -- | -- | -- | -- | R8 | 17 |
| R002705 | 1.840 | (0.026) | 1.460 | (0.039) | 0.221 | (0.006) | -- | -- | -- | -- | R8 | 18 |

Table F-2
1988 IRT Parameters, Reading Bridge to $\mathbf{1 9 8 4}$

| HAEP ID | $\triangle$ | $\underline{S} \mathrm{E}_{1}$ | B | S.E. | C | $\underline{S}, \mathrm{E}_{\text {c }}$ | GRADE BLOCK | $\begin{aligned} & \text { AGE } 9 \\ & \text { ITEM } \end{aligned}$ | grade BLOC | $\begin{aligned} & \text { AGE } 13 \\ & \text { ITEM } \end{aligned}$ | GRADE BLOC | $\begin{aligned} & \text { ITGE } \\ & \text { ITE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Y001101 | 0.344 | (0.048) | -0.384 | (0.104) | 0.292 | (0.053) | $\pm$ | 5 | H | 6 | -- | -- |
| 8001201 | 0.712 | (0.183) | 1.144 | (0.403) | 0.369 | i0.053) | -- | -- | \# | 7 | -- | - |
| \%001202 | 1.276 | (J.18*) | 0.585 | (0.197) | 0.258 | (0.03'r) | - | -- | 日 | 8 | -- | -- |
| N00̈1301 | 0.886 | (0.112) | 0.495 | (0.173) | 0.400 | (0.043) | -- | -- | H | 9 | H | 10 |
| N001302 | 0.720 | (0.087) | -1.548 | (0.241) | 0.497 | (0.097) | -- | -- | H | 10 | H | 11 |
| 8001303 | 1.534 | (0.133) | 0.407 | (0.131) | 0.281 | (0.030) | -- | -- | H | 11 | H | 12 |
| \%001401 | 0.899 | (0.094) | 0.001 | (0.114) | 0.251 | (0.055) | - | -- | H | 12 | H | 13 |
| K001501 | 1.808 | (0.130) | -1.313 | (0.152) | 0.225 | (0.047) | 8 | 10 | \% | 13 | H | 14 |
| R001502 | 1.643 | (0.098) | -0.507 | (0.061) | 0.182 | (0.026) | H | 11 | H | 14 | 日 | 15 |
| H001503 | 1.345 | (0.088) | -0.202 | (0.086) | 0.207 | (0.043) | 8 | 12 | : | 15 | H | 16 |
| R001504 | 3.448 | (0.089) | -0.650 | (0.068) | 0.173 | (0.032) | H | 13 | H | 16 | H | 17 |
| R001601 | 0.622 | (0.041) | -0.959 | (0.082) | 0.133 | (0.046) | $J$ | 12 | J | 11 | -- | -- |
| N001602 | 1.263 | (0.079) | -0.693 | (0.066) | 0.250 | (0.031) | J | $\dot{3}$ | J | 12 | -- | -- |
| R001603 | 0.816 | (0.073) | -0.031 | (0.068) | 0.233 | (0.031) | J | 14 | J | 13 | -- | -- |
| HCO1694 | 1.375 | (0.101) | 0.111 | (0.063) | 0.269 | (0.013) | J | 15 | J | 14 | -- | -- |
| H001701 | 0.981 | (0.066) | -0.418 | (0.090) | 0.231 | (0.059) | -- | -- | J | 17 | J | 12 |
| N001702 | 0.541 | (0.116) | 2.651 | (0.621) | 0.231 | (0.028) | -- | -- | J | 18 | J | 13 |
| 8001703 | 1.081 | (0.080) | 0.003 | (0.096) | 0.291 | (0.044) | -- | -- | J | 19 | J | 14 |
| H001802 | 1.592 | (0.140) | 0.727 | (0.131) | 0.217 | (0.012) | J | 20 | J | 21 | -- | -- |
| H001901 | 1.644 | (0.111) | 0.210 | (0.098) | 0.331 | (0.028) | -- | -- | J | 22 | J | 1.5 |
| H002002 | 1.187 | (0.065) | -0.013 | (0.050) | 0.131 | (0.020) | K | 9 | K | 9 | K | 9 |
| 2002002 | 1.444 | (0.084) | -0.042 | (0.055) | 0.203 | (0.020) | K | 10 | K | 10 | K | 10 |
| 8002003 | 1.583 | (0.093) | -0.229 | (0.054) | 0.224 | (0.022) | K | 11 | K | 11 | K | 11 |
| H002101 | 0.941 | (0.094) | 1.171 | (0.176) | 0.247 | (0.019) | K | 18 | K | 12 | K | 12 |
| \$002102 | 1.495 | (0.100) | 0.840 | (0.12e) | 0.147 | (0.012) | K | 19 | K | 13 | K | 13 |
| H002201 | 1.704 | (0.118) | -0.129 | (0.078) | 0.200 | (0.037) | -- | -- | K | 14 | K | 14 |
| H002202 | 1.358 | (0.120) | -0.349 | (0.112) | 0.337 | (0.059) | - | -- | X | 15 | K | 15 |
| 8002203 | 0.783 | (0.066) | -1.139 | (0.137) | 0.236 | (0.086) | - | -- | K | 16 | K | 10 |
| H0024U1 | 1.449 | (0.096) | -0.375 | (0.057) | 0.128 | (0.023) | 2 | 22 | 2 | 22 | -- | -- |
| H002501 | 0.550 | (0.053) | 0.129 | (0.100) | 0.205 | (0.057) | -- | -- | $L$ | 23 | $L$ | 27 |
| \$002701 | 1.024 | (0.102) | 0.833 | (0.164) | 0.234 | (0.032) | -- | -- | 1 | 24 | $L$ | 28 |
| H002702 | 1.148 | (0.077) | 0.055 | (0.065) | 0.141 | (0.023) | 2 | 20 | - | -- | L | 29 |
| H002801 | 1.921 | (0.114) | -0.767 | (0.081) | 0.175 | (0.028) | 2 | 24 | 2 | 25 | L | 30 |
| N002802 | 2.896 | (0.110) | -0.912 | (0.082) | 0.143 | (0.028) | 2 | 25 | 2 | 20 | 2 | 31 |
| H002902 | 0.558 | (0.050) | -0.801 | (0.114) | 0.229 | (0.071) | -- | -- | M | 6 | M | 6 |
| 1002903 | 2.3 .3 | (0.180) | -0.341 | (0.082) | 0.253 | (0.040) | -- | -- | M | 7 | M | 7 |
| H002904 | 1.289 | (0.095) | -0.020 | (0.087) | 0.197 | (0.041) | -- | -- | M | 8 | M | 8 |
| R002:05 | 0.758 | (0.058) | 0.248 | (0.083) | 0.116 | (0.040) | -- | -- | ${ }^{\text {M }}$ | 9 | M | 9 |
| 8002906 | 1.964 | (0.148) | -0.363 | (0.082) | 0.230 | (0.044) | -- | -- | M | 10 | M | 10 |
| R003001 | 1.293 | (0.109) | 1.153 | (0.268) | 0.207 | (0.013) | M | 10 | M | 11 | M | 11 |
| H003002 | 0.309 | (0.028) | 0.119 | (0.065) | 0.168 | (0.041) | M | 11 | M | 12 | M | 12 |
| \$003003 | 2.294 | (0.109) | 1.724 | (0.180) | 0.120 | (0.006) | M | 12 | M | 13 | M | 13 |
| N003101 | 1.571 | (0.100) | -0.645 | (0.073) | 0.267 | (0.032) | M | 14 | M | 14 | H | 14 |
| N003102 | 1.530 | (0.083) | -0.3E3 | (0.051) | 0.145 | (0.023) | $M$ | 15 | M | 15 | H | 15 |
| NC 33201 | 1.207 | (0.088) | -0.593 | (0.087) | 0.171 | (0.056) | -- | -- |  | 12 | N | 21 |
| N003202 | 1.590 | (0.124) | 0.012 | (0.083) | 0.227 | (0.038) | -- | -- |  | 13 | $N$ | 22 |
| R003203 | 1.215 | (0.101) | 0.240 | (0.107) | 0.222 | (0.030) | -- | -- | N | 14 | N | 23 |
| H003204 | 1.457 | (0.120) | 0.260 | (0.112) | 0.238 | (0.0.02) | -- | -- | $N$ | 15 | N | 24 |
| H003301 | 1.141 | (0.081) | -0.410 | (0.078) | 0.158 | (0.049) | -- | -- | $N$ | 16 | $N$ | 25 |
| ผ003401 | 1.467 | (0.150) | -0.207 | (0.092) | 0.159 | (0.047) | -- | -- | $\mathbf{N}$ | 17 | -- | -- |
| H003501 | 0.751 | (0.062) | -0.448 | (0.093) | 0.172 | (0.061) | -- | -- | $N$ | 18 |  | 27 |
| 2003601 | 1.452 | (0,116) | -0.668 | (0.099) | 0.203 | (0.060) | -- | -- | N | 19 | N | 28 |
| H003602 | 1.320 | (0.109) | -0.130 | (0.097) | 0.241 | (0.048) | -- | -- | N | 20 | $N$ | 29 |
| 8003701 | 0.736 | (0.061) | -0.760 | (0.104) | 0.239 | (0.060) | N | 23 | , | 21 | $N$ | 30 |
| H003702 | 1.071 | (0.084) | -0.010 | (0.078) | 0.236 | (0.032) | $N$ | 24 | N | 22 | $N$ | 31 |
| K003801 | 0.891 | (0.112) | 1.465 | (0.251) | 0.309 | (0.018) | 0 | 12 | 0 | 12 | O | 12 |
| H003802 | 0.414 | (0.030) | -0.703 | (0.078) | 0.110 | (0.047) | 0 | 13 | 0 | 13 | 0 | 13 |
| H003803 | 0.757 | (0.093) | 1.600 | (0.245) | 0.206 | (0.019) | 0 | 14 | 0 | 14 | 0 | 14 |
| \$003801 | 1.375 | (0.192) | -1.847 | (0.331) | 0.232 | (0.089) | -- | -- | 0 | 16 | -- | -- |
| N004002 | 615 | (0.079) | -1.426 | (0.214) | 0.246 | (0.093) | -- | -- | 0 | 15 | -- | -- |
| R004103 | 1.096 | (0.087) | -1.122 | (0.114) | 0.229 | (0.054) | 0 | 17 | 0 | 17 | -- | - |
| N004201 | 1.103 | (0.071) | 0.031 | (0.062) | 0.185 | (0.024) | 0 | 18 | 0 | 18 | 0 | 21 |
| 8004202 | 0.762 | (0.072) | 0.187 | (0.098) | 0.291 | (0.038) | 0 | 19 | 0 | 19 | 0 | 22 |
| 8004301 | 1.420 | (0.125) | 0.404 | (0.131) | 0.288 | (0.032) | -- | -- | 0 | . 0 | 0 | 23 |

Table F-2 (continued)
1988 IRT Parameters, Reading Bridge to 1984

| HAEP ID | $\triangle$ | S.E. | 日 | S.E. | C | S.E. | GRADE BLCCX | $\begin{aligned} & \text { IAGE } 9 \\ & \text { ITEEM } \end{aligned}$ | GRadE BLOCK | $\begin{aligned} & \text { AGE } 13 \\ & \text { ITPH } \end{aligned}$ | GUNDE BLOCK | $\begin{aligned} & \text { 1/AGE } 17 \\ & \text { ITRI: } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| K004401 | 1.718 | (0.127) | -1.774 | (0.202) | 0.262 | (0.065) | -- | -- | P | 7 | -- | -- |
| K004402 | 0.876 | (0.075) | -0.220 | (0.066) | 0.148 | (0.036) | -- | -- | P | 8 | -- | -- |
| K004403 | 1.642 | (0.128) | -1.467 | (0.170) | 0.228 | (0.054) | -- | -- | P | 9 | -- | -- |
| H004501 | 0.874 | (0.103) | 0.493 | (0.151) | 0.305 | (0.043) | -- | -- | P | 10 | P | 20 |
| H004502 | 0.680 | (0.054) | -0.824 | (0.105) | 0.180 | (0.068) | -- | -- | P | 11 | P | 21 |
| n004601 | 0.899 | (0.078) | 0.178 | (0.104) | 0.184 | (0.048) | -- |  | P | 12 | $\bigcirc$ | 22 |
| n 004602 | 1.318 | (0.103) | -0.085 | (0.092) | 0.249 | (0.044) | -- | -- | P | 13 | P | 23 |
| 80.24603 | 1.485 | (0.113) | -0.516 | (0.089) | 0.226 | (0.029) | -- | -- | P | 14 | P | 24 |
| K004701 | 1.684 | (0.101) | -0.515 | (0.059) | J. 204 | (0.021) | $Q$ | 10 | $Q$ | 7 | -- | -- |
| K0047\%2 | 0.764 | (0.065) | -0.928 | (0.105) | 0.237 | (0.057) | 2 | 11 | 0 | 8 | -- | -- |
| H004703 | 1.021 | (0.065) | -0.651 | (0.062) | 0.153 | (0.031) | 0 | 12. | 0 | 9 | -- | -- |
| H004801 | 1.257 | (0.085) | -1.258 | (0.108) | 0.242 | (0.047) | Q | 13 | 0 | 10 | -- | -- |
| \%004801 | 0.916 | (0.057) | 0.221 | (0.660) | 0.190 | (0.021) | 0 | 14 | 0 | 11 | $Q$ | 10 |
| 8005001 | 1.893 | (0.102) | 1.380 | (0.159) | 0.211 | (0.011) | -- | -- | Q | 13 | 0 | 7 |
| H005c02 | 0.859 | (0.108) | 1.288 | (0.240) | 0.264 | (0.028) | -- | -- | 0 | 14 | c | 8 |
| 1005003 | 0.737 | (0.105) | 1.805 | (0.331) | 0.135 | (0.024) | -- | -- | Q | 15 | Q | 9 |
| r 005101 | 0.842 | (0.061) | -2.140 | (0.178) | 0.236 | (0.083) | 0 | 15 | 0 | 12 | -- | -- |
| R005201 | 0.674 | (0.107) | 0.636 | (0.239) | 0.481 | (0.054) | -- | -- | Q | 15 | 0 | 11 |
| K 005202 | 0.600 | (0.071) | 0.982 | (0.152) | 0.206 | (0.058) | -- | -- | 0 | 17 | 0 | 12 |
| 8005203 | 1.143 | (0.121) | 1.637 | (0.284) | 0.308 | (0.015) | -- | -- | 0 | 18 | 0 | ${ }^{3}$ |
| \%005301 | 1.133 | (0.146) | -0.028 | (0.232) | 0.283 | (0.059) | -- | -- | Q | 19 | -- | -- |
| n005302 | 1.408 | (0.145) | 0.387 | (0.119) | 0.129 | (0.030) | -- | -- | 0 | 20 | -- | -- |
| 8005303 | 0.887 | (0.195) | 1.008 | (0.344) | 0.330 | (0.048) | -- | -- | 0 | 21 | -- | -- |
| K005304 | 1.810 | (0.197) | 0.052 | ( 0.114 ) | 0.227 | (0.038) | -- | -- | 0 | 22 | -- | -- |
| z005305 | 1.086 | (0.121) | -0.677 | (0.130) | 0.222 | (0.077) | -- | -- | 0 | 23 | -- | -- |
| 7005403 | 1.347 | (0.153) | -v. 335 | (0.115) | 0.288 | (0.081) | -- | -- | R | 7 | -- | -- |
| H005404 | 1.455 | (0.138: | -1.037 | (0.144) | 0.187 | (0.067) | -- | -- | R | 8 | -- | -- |
| 8005405 | 2.018 | (0.185) | 0.06R | (0.100) | 0.20e | (0.031) | -- | -- | R | 9 | -- | -- |
| H 005406 | 1.210 | (0.116) | -0.398 | (0.094) | 0.165 | (0.054) | -- | -- | : | 10 | -- |  |
| 2005407 | 1.777 | (0.201) | -0.246 | (0.110) | 0.326 | (0.049) | -- | -- | R | 11 | -- | -- |
| R005503 | 0.718 | (0.074) | 0.358 | (0.127) | 0.211 | (0.054) | -- | -- | R | 14 | R | 14 |
| H0̇5504 | 1.316 | (0.112) | 0.778 | (0.147) | 0.219 | (0.024) | -- | -- | R | 15 | 8 | 15 |
| r 005505 | 1.126 | (0.092) | -0.913 | (0.121) | 0.247 | (0.074) | -- | -- | 8 | 16 | 8 | 16 |
| H005861 | 1.387 | (0.151) | -0.653 | (0.125) | 0.253 | (0.071) | -- | -- | R | 17 | -- | -- |
| \$005602 | 2.715 | (0.187) | 0.297 | (0.133) | 0.208 | (0.031) | -- | -- | 8 | 18 | -- | -- |
| K005603 | 1.487 | (0.171) | -0.177 | (0.113) | 0.306 | (0.051) | -- | -- | R | 19 | -- | -- |
| N008601 | 1.389 | (0.179) | -0.972 | (0.171) | 0.169 | (0.037) | $\pm$ | 6 | -- | -- | -- | -- |
| H 008602 | 1.368 | (0.178) | -0.554 | (0.122) | 0.261 | (0.041) | H | 7 | -- | -- |  |  |
| \%008603 | 1.206 | (0.118) | -0.985 | (0.137) | 0.140 | (0.043) | B | 8 | -- | -- | -- | -- |
| H008701 | 1.192 | (0.134) | -2.391 | (0.342) | 0.240 | (0.088) | H | 9 | -- | -- | -- | -- |
| F008801 | 1.489 | (0.100) | -1.789 | (0.173) | 0.184 | (0.056) | J | 18 | -- | -- | -- | -- |
| n 008801 | 1.328 | (0.106) | -1.244 | (0.138) | 0.148 | (0.041) | J | 21 | -- | -- | -- | -- |
| \$208902 | 1.258 | (0.102: | -1.271 | (0.140) | 0.156 | (0.043) | J | 22 | -- | -- |  | -- |
| \%008001 | 1.328 | (0.15<] | -0.433 | (0.097) | 0.154 | (0.031) | K | 12 | -- | -- | -- | - |
| K009002 | 1.177 | (0.163) | -0.093 | (0.087) | 0.178 | (0.030) | K | 13 | -- | -- | -- | - |
| 1008003 | 0.844 | (0.203) | 0.755 | (0.242) | 0.226 | (0.032) | K | 14 | -- | -- | -- | -- |
| H009004 | 1.768 | (0.225) | -0.350 | (0.109) | 0.240 | (0.027) | K | 15 | -- | -- | -- | -- |
| H009101 | 1.007 | (0.120) | -1.451 | (0.210) | 0.256 | (0.076) | K | 16 | -- | -- | -- | -- |
| n009201 | 1.795 | (0.172) | -1.377 | (0.216) | 0.301 | (0.054) | K | 17 | -- | -- |  | - |
| M008401 | 1.882 | (0.127) | -1.402 | (0.172) | c.103 | (0.036) | L | 23 | -- | -- | -- | -- |
| n009691 | $\therefore .360$ | (0.106) | -1.872 | (0.207) | 0130 | (0.753) | L | 21 | -- | -- | -- | -- |
| 1009701 | 1.082 | (0.124) | -0.654 | (0.112) | $0 .: 64$ | (0.041) | M | 5 | -- | -- | -- | -- |
| 1009702 | 1.859 | (0.227) | -0.533 | (0.131) | 0.249 | (0.028) | M | 6 | -- | -. | -- | -- |
| K009703 | 1.449 | (0.211) | -0.165 | (0.097) | 0.258 | '0.029) | M | 7 | -- | -- |  |  |
| 1009704 | 1.150 | (0.185) | 0.033 | (0.086) | 2.209 | (0.031) | M | 8 | -- | -- | -- | - |
| 12009705 | 1.957 | (0.207) | -0.702 | (0.147) | 0.211 | (0.029) | M | 9 | -- | -- | -- | -- |
| 14009801 | 1.396 | (0.134) | -2.227 | (0.286) | 0.259 | (0.086) | N | 12 | -- | -- | - | -- |
| 1009831 | 0.976 | (0.117) | -1.049 | (0.160) | 0.206 | (0.059) | ${ }^{\mathrm{H}}$ | 13 | -- | -. | -- | -- |
| 1010002 | 1.290 | (0 137) | -1.094 | (0.165) | 0.172 | (0.047) | ${ }^{*}$ | 18 | -- | -- | -- | -- |
| H010003 | 1.657 | ....294) | -0.940 | (0.178) | 0.241 | (0.043) | N | 19 | -- | -- | -- | -- |
| H010102 | 1.124 | (0.193) | -0.050 | (0.111) | 0.267 | (0.c51) | N | 21 | -- | -- | -- | -- |
| n010103 | 1.785 | (0.200) | -1.075 | (0.207) | 0.209 | (0.042) | $N$ | 22 | -- | -- | -- | -- |
| $n 010201$ | 243 | (0.121) | -1.932 | (0.245) | 0.244 | (0.078) | 0 | 16 | -- | -- | -- | -- |
| N010301 | . 702 | (0.085) | -2.383 | (0.318) | 0.248 | (0.093) | 0 | 15 | -- | -. | -- | -- |

Table F-2 (continued)
1988 IRT Parameters, Reading Bridge to 1984

| NAEP ID | A | S.E. | B | S, E. | C | S.E. | GRADE 4/AGE 9 |  | GRADE 8/AGE 13 |  | GRADE 11/AGE 17 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | BLOCK | ITEM | BLOCK | ITEM | BLOCK | ITEM |
| H010421 | 0.715 | (0.087) | -1.487 | (0.209) | 0.219 | (0.077) | 0 | 20 | -- | -- | -- | -- |
| \$010402 | 0.928 | (0.171) | 0.132 | (0.113) | 0.222 | (0.037) | 0 | 21 | -- | -- | -- |  |
| H010403 | 1.031 | (0.137) | 0.465 | (0.153) | 0.190 | (0.027) | 0 | 22 | - | - | -- |  |
| K010801 | 1.084 | (0.119) | -0.471 | (0.087) | 0.260 | (0.035) | Q | 16 | -- | -- | -- |  |
| H010802 | 1.564 | (0.153) | -0.467 | (0.087) | 0.241 | (0.026) | Q | 18 | - | -- | -- |  |
| H010903 | 1.850 | (0.157) | -0.564 | (0.096) | 0.193 | (0.022) | Q | 19 | -- | -- | -- |  |
| H010804 | 1.522 | (0.170) | -0.245 | (0.080) | 0.275 | (0.024) | Q | 20 | -- | -- | - |  |
| H011n01 | 1.279 | (0.116) | -0.379 | (0.113) | 0.228 | (0.037) | R | 5 | -- | -- | -- | - |
| H011002 | 1.657 | (0.167) | -0.315 | (0.081) | 0.252 | (0.022) | R | 6 | -- | -- | -- |  |
| K011003 | 2.416 | (0.169) | -0.928 | (0.147) | $0 .<1$ | (0.024) | R | 7 | - | - | - |  |
| H011004 | 1.788 | (0.159) | -0.543 | (0.097) | 0.226 | (0.023) | R | 8 | -- | -- | -- |  |
| H011101 | 1.568 | (0.141) | -0.541 | (0.090) | 0.197 | (0.025) | R | 9 | -- | -- | - | -- |
| N011201 | 0.911 | (0.117) | -0.259 | (0.085) | -. 260 | (0.037) | R | 10 | - | -- | - |  |
| H011301 | 1.653 | (0.143) | -0.756 | (0.111) | 6.211 | (0.028) | R | 11 | -- | -- | - |  |
| H011302 | 0.992 | (0.119) | -0.430 | (0.089) | 0.227 | (0.039) | R | 12 | - | -- | -- |  |
| H011401 | 0.838 | (1).194) | 0.697 | (0.227) | 0.334 | (0.030) | R | 13 | -- | -- | -- |  |
| H011402 | 0.822 | (1.139) | 0.010 | (0.102) | 0.288 | (0.041) | R | 14 | -- | - | - |  |
| H011403 | 0.971 | (0.192) | 0.621 | (0.186) | 0.270 | (0.025) | R | 15 | -- | - | -- |  |
| N011404 | 1.327 | (0.215) | 0.492 | (0.151) | 0.220 | (0.019) | R | 16 | -- | -- | - |  |
| H013201 | 1.655 | (0.211) | -0.693 | (0.160) | 0.181 | (0.037) | V | 29 | -- | -- | -- | -- |
| H013301 | 1.232 | (0.161) | -1.557 | (0.268) | 0.253 | (0.077) | V | 30 | -- | - |  |  |
| 18013401 | 1.203 | (0.177) | -0.250 | (0.107) | 0.157 | (0.035) | V | 31 | -- | -- | -- | -- |
| N013402 | 1.438 | (0.189) | -0.862 | (0.175) | 0.205 | (0.048) | V | 32 | -- | - |  |  |
| K013403 | 1.494 | (0.223) | -0.278 | (0.116) | 0.199 | (0.033) | V | 33 | -- | -- |  | -- |
| N0: .J1 | 1.238 | (0.153) | -0.857 | (0.149) | 0.249 | (0.048) | M | 13 | -- | -- |  |  |
| K014101 | 0.758 | (0.071) | -1.283 | (0.142) | 0.169 | (0.059) | Q | 21 | -- | -- | -- |  |
| \%014201 | 1.207 | (0.134) | -1.218 | (0.189) | 0.136 | (0.052) | V | 34 | -- | -- | -- |  |
| H014301 | 1.755 | (0.191) | -0.820 | (0.158) | 0.190 | (0.035) | H | 14 | -- | -- | - |  |
| K014302 | 1.074 | (0.136) | -0.498 | (0.108) | 0.181 | (0.041) | N | 15 | -- | -- | - |  |
| H014303 | 1.721 | (0.187) | -1.041 | (0.188) | 0.208 | (0.041) | N | 16 | -- |  |  |  |
| H014501 | 0.432 | (0.065) | -2.264 | (0.348) | 0.000 | (0.000) | V | 35A | -- | -- | - |  |
| H014502 | 0.834 | (0.123) | -2.664 | (0.406) | 0.000 | (0.000) | V | 35 B | - | - | - | - |
| H014503 | 0.624 | (0.133) | -4.120 | (0.803) | 0.000 | (0.000) | V | 35 C | - |  |  |  |
| H015101 | 0.932 | (0.110) | 0.343 | (0.168) | 1234 | (0.067) | -- | -- | -- | -- | R | 17 |
| K015102 | 2.533 | (0.236) | 0.548 | (0.207) | 0.216 | (0.030) | -- | -- | - | -- | R | 18 |
| H015103 | 2.401 | (0.200) | 0.660 | (0.197) | 0.219 | (0.028) | -- | -- | -- | -- | R | 19 |
| H015104 | 1.707 | (0.184) | 0.441 | (0.193) | 0.278 | (0.045) | -- | -- | -- | -- | R | 20 |
| H015201 | 1.088 | (0.126) | -0.766 | (0.150) | 0.227 | (0.085) | -- | -- | - |  | N | 26 |
| H015502 | 1.273 | (0.126) | 0.189 | (0.140) | 0.209 | (0.057) | -- | -- | - | -- | P | 16 |
| H015503 | 0.912 | (0.119) | 0.756 | (0.216) | 0.247 | (0.056) | -- | -- | -- | -- | P | 17 |
| H015504 | 1.189 | (0.121) | 0.110 | (0.138) | 0.220 | (0.062) | -- | -- | - | -- | P | 18 |
| H015505 | 0.683 | (0.083) | -0.175 | (0.145) | 0.247 | (0.087) | -- | -- | -- | -- | P | 19 |
| 1015801 | 1.021 | (0.133) | 0.371 | (0.204) | 0.333 | (0.068) | -- | -- | - | -- | Q | 14 |
| 1015982 | 1.380 | (0.165) | 0.726 | (0.234) | 0.317 | (0.043) | -- | -- | -- | -- | Q | 15 |
| H015903 | 1.182 | (0.129) | 1.101 | (0.224) | 0.153 | (0.032) | -- | - | - | - | Q | 16 |
| H016001 | 1.043 | (0.122) | 0.033 | (0.164) | 0.285 | (0.078) | -- | -- | -- | -- | 0 | 15 |
| 1016002 | 1.386 | (0.154) | 1.247 | (0.276) | 0.456 | (0.028) | -- | -- | -- | - | 0 | 16 |
| H016003 | 0.806 | (0.103) | 0.354 | (0.157) | 0.205 | (0.065) | -- | -- | -- | -- | 0 | 17 |
| H016004 | 1.085 | (0.126) | 0.103 | (0.165) | 0.271 | (0.074) | -- | -- | -- | - | 0 | 18 |
| 7016005 | 1.734 | (0.175) | 0.156 | (0.152) | 0.230 | (0.054) | -- | -- | -- | -- | 0 | 19 |
| H016006 | 1.357 | (0.:37) | 0.424 | (0.161) | 0.203 | (0.048) | -- | -- | -- | -- | 0 | 20 |
| H017001 | 1.318 | (0.157) | 0.484 | (0.175) | 0.213 | (0.042) | -- | -- | -- | -- | H | 7 |
| \%017002 | 1.835 | (0.138) | 1.100 | (0.193) | 0.196 | (0.022) | -- | -- | -- | -- | \% | 8 |
| H017003 | 1.833 | (0.129) | 1.770 | (0.248) | 0.177 | (0.016) | -- | -- | -- | -- | H | 9 |

Table F-3

## 1988 IRT Parameters, Civics Cross-sectional



Table F-3 (continued)
1938 IRT Parameters, Civics Cross-sectional

| MAEP ID | 1 | S.E. | B | $\underline{\mathrm{S}, \mathrm{E}}$, | C | $\underline{S, E,}$ | GRADE <br> BLOCK | $\begin{aligned} & \text { /AGE } 9 \\ & \text { ITEM } \end{aligned}$ | GRADE BLOCK | $\begin{aligned} & \text { 3/AGE } 13 \\ & \text { ITEM } \end{aligned}$ | GRADE BLOCK | $\text { 2/AGE } 17$ <br> ITEM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P005801 | 0.690 | (0.028) | 0.002 | (0.022) | 0.539 | (0.009) | -- | -- | C5 | 10 | CS | 10 |
| P005802 | 1.178 | (0.029) | 0.944 | (0.038) | 0.516 | (0.007) | -- | -- | C5 | 11 | Cs | 11 |
| PC05803 | 1.435 | (0.033) | 0.562 | (0.030) | 0.495 | (0.008) | -- | -- | C5 | 12 | C5 | 12 |
| P005903. | 0.936 | (0.029) | -0.198 | (0.022) | 0.426 | (0.011) |  | - | C5 | 14 | C5 | 14 |
| P006101 | 1.579 | (0.040) | 0.431 | (0.032) | 0.550 | (0.008) |  |  | C5 | 16 | C5 | 16 |
| P006201 | 1.491 | (0.039) | 0.218 | (0.027) | 0.493 | (0.009) | -- | -- | CS | 17 | C5 | 17 |
| P006301 | 1.659 | (0.029) | 0.529 | (0.024) | 0.311 | (0.008) | -- | -- | C5 | $\times 8$ | C5 | 18 |
| P006401 | 1.085 | (0.027) | 1.045 | (0.040) | 0.490 | (0.007) | -- | -- | CS | 19 | CS | 19 |
| P006501 | 1.200 | (0.036) | 0.193 | (0.026) | 0.470 | (0.010) | - | -- | C5 | 20 | C5 | 20 |
| P006601 | 0.849 | (0.018) | 0.929 | (0.026) | 0.226 | (0.007) | -- | -- | C5 | 21 | C5 | 21 |
| P006701 | 2.024 | (0.031) | 0.669 | (0.027) | 0.346 | (0.007) | - | -- | CS | 22 | CS | 22 |
| P006491 | 1.613 | (0.037) | 0.326 | (0.027) | 0.417 | (0.009) | -- | -- | C5 | 23 | C5 | 23 |
| P006802 | 0.387 | (0.019) | 0.359 | (0.026) | 0.441 | (1.009) | -- | -- | CS | 24 | C5 | 24 |
| P006803 | 1.343 | (0.031) | 1.982 | (0.069) | 0.396 | (0.006) | -- | -- | CS | 25 | C5 | 25 |
| P006804 | 1.347 | (0.026) | 1.248 | (0.040) | 0.446 | (0.0ui) | -- | -- | C5 | 26 | C5 | 26 |
| P007001 | 2.819 | (0.029) | 1.680 | (0.050) | 0.249 | (0.005) | -- |  | CS | 27 | C5 | 4 |
| P008201 | 1.107 | (0.047) | -0.168 | (0.037) | 0.496 | (0.019) | - |  | -- |  | C3 | 1 |
| P008202 | 1.684 | (0.083) | -0.090 | (0.045) | 0.469 | (0.020) | -- | -- | -- | -- | C3 | 2 |
| P006301 | 1.469 | (0.032) | 0.417 | (0.030) | 0.255 | (0.014) | -- | -- | -- | -- | C3 | 3 |
| P008401 | 1.597 | (0.034) | 2.311 | (0.081) | 0.236 | (0.006) | -- | -- | -- | -- | C3 | 5 |
| P008402 | 1.863 | (0.030) | 0.807 | (0.034) | 0.342 | (0.011) |  |  | -- | - | C3 |  |
| P008403 | 1.900 | (0.032) | 0.771 | (0.035) | 0.358 | (0.011) | -- | -- | -- | -- | C3 | 7 |
| P008404 | 2.168 | (0.028) | 1.608 | (0.048) | 0.343 | (0.008) | -- | -- | -- | -- | C3 | 8 |
| P008405 | 1.898 | (0.036) | 0.739 | (0.037) | 0.405 | (0.011) | -- | -- | -- | -- | C3 | 9 |
| P008406 | 1.773 | (0.025) | 1372 | (0.040) | 0.346 | (0.009) | -- | -- |  |  | C3 | 10 |
| P008407 | 1.789 | (0.026) | 1.195 | (0.038) | 0.286 | (0.010) |  | - | -- | -- | C3 | 11 |
| P008501 | 0.901 | (0.020) | 1.748 | 0.049) | 0.241 | (0.008) | -- | -- | -- | -- | C3 | 12 |
| P008601 | 3.427 | (0.031) | 1.999 | (0.060) | 0.100 | (0.005) | -- | -- | -- | -- | C3 | 14 |
| P008701 | 1.343 | (0.020) | 1.312 | (0.033) | 0.205 | (0.009) | -- | -- | -- | -- | 43 | 4 |
| P008801 | 1.149 | (0.019) | 1.322 | (0.032) | 0.171 | (0.009) | -- | -- |  | -- | C3 | 13 |
| P008901 | 0.747 | (0.02c) | 1.547 | (0.048) | 0.237 | (0.010) |  | - | - |  | C3 | 15 |
| P009001 | 2.364 | (0.025) | 1.507 | (0.041) | 0.255 | (0.008) | -- | -- | -- | -- | C3 | 16 |
| P009101 | 1.794 | (0.022) | 1.214 | (0.032) | 0.177 | (0.009) | -- | -- | -- | -- | C3 | 17 |
| P009201 | 2.104 | (0.025) | 1.712 | (0.045) | 0.239 | (0.007) | -- | -- | -- | -- | C3 | 18 |
| P009301 | 1.470 | (0.021) | 1.693 | (0.041) | 0.162 | (0.008) | - | - | - | -- | C3 | 19 |
| 1009401 | 0.957 | (0.020) | 0.807 | (0 928) | 0.212 | (0.011) | -- | -- |  | -- | C3 | 20 |
| P009501 | 1.792 | (0.023) | 1.719 | (0.043) | 0.210 | (0.007) | -- | -- | -- | -- | C3 | 21 |
| P009601 | 1.059 | (0.049) | -0.684 | (0.046) | 0.247 | (0.025) | -- | -- | -- | -- | C3 | 22 |
| P009801 | 1.356 | (0.028) | 0.401 | (0.029) | 0.231 | (0.013) | -- | -- | - | -- | C3 | 24 |
| P009901 | 1.525 | (0.023) | 1.298 | (0.037) | 0.342 | (0.009) | -- | -- | -- | -- | C3 | 25 |
| P010001 | 1.615 | (0.022) | 1.325 | (0.035) | 0.248 | (0.009) | -- | -- |  | -- | C3 | 26 |
| P010101 | 1.231 | (0.022) | 1.342 | (0.038) | 0.310 | (0.009) | -- | -- | -- | -- | C3 | 23 |
| P010901 | 2.147 | (0.032) | -2.091 | (0.063) | 0.219 | (0.026) | C2 | 1 | -- | -- | -- | -- |
| P011001 | 1.501 | (0.025) | -1.Es9 | (0.040) | 0.283 | (0.017) | C2 | 2 | -- | -- | - | - |
| P011101 | 0.842 | (0.020) | -2.265 | (0.061) | 0.233 | (0.023) | C2 | 3 | -- | -- | -- | -- |
| P011201 | 1.090 | (0.023) | -1.455 | (0.038) | 0.240 | (0.015) | C2 | 4 | -- | -- | - | - |
| P011301 | 1.226 | (0.023) | -1.753 | (0.043) | 0.227 | (0.019) | C2 | 5 | -- | -- | -- | -- |
| P011401 | 1.761 | (0.044) | -0.822 | (0.038) | 0.407 | (0.011) | C2 | 6 | -- | -- | -- | -- |
| P011402 | 1.006 | (0.043) | -0.744 | (0.045) | 0.488 | (0.011) | C2 | 7 | -- | -- | -- | -- |
| P011403 | 1.042 | (0.032) | -1.157 | (0.046) | 0.435 | (0.014) | C2 | 8 | -- | -- | -- | -- |
| P011404 | 1.243 | (0.036) | -1.022 | (0.043) | 0.409 | (0.014) | C2 | 9 | -- | -- | -- | -- |
| P011405 | 1.216 | (0.048) | -0.163 | (0.023) | 0.426 | (0.007) | C3 | 3 | C3 | 3 | -- | -- |
| P011406 | 1.155 | (0.027) | -1.218 | (0.036) | 0.386 | (0.012) | C3 | 4 | C3 | 4 | -- | -- |
| P011407 | 1.098 | (0.030) | -1.021 | (0.036) | 0.453 | (0.011) | C3 | 5 | C3 | 5 | -- | -- |
| P011408 | 1.110 | (0.032) | -0.894 | (0.035) | 0.484 | (0.010) | C3 | 6 | 3 | 6 | -- | -- |
| P011501 | 1.577 | (0.034) | -0.747 | (0.030) | 0.237 | (0.010) | C2 | 10 | -- | -- | -- | - |
| P011601 | 1.388 | (0.035) | -0.681 | (0.030) | 0.268 | (0.010) | C2 | 11 | -- | -- | -- | -- |
| P011701 | 1.337 | (0.046) | -0.237 | (0.027) | 0.181 | (0.008) | C2 | 12 | -- | -- | -- | -- |
| P011801 | 1.960 | (0.056) | -0.379 | (0.031) | 0.202 | (0.008) | C2 | 13 | -- | -- | -- | -- |
| P011901 | 1.353 | (0.025) | -1.121 | (0.031) | 0.187 | (0.013) | C2 | 14 | -- | -- | -- | -- |
| P012001 | 0.878 | (0.043) | -0.075 | (0.028) | 0.289 | (0.008) | C2 | 15 | -- | -- | -- | -- |
| P012101 | 1.374 | (0.022) | -1.53F | :0.034) | 0.246 | (0.015) | C3 | 1 | C3 |  | -- | -- |
| P012201 | 1.352 | (0.020) | -1.734 | (0.036) | 0.186 | (0.01, ) | C3 | 2 | C3 | 2 | -- | -- |
| P012501 | 1.573 | (0.027) | -1.013 | (0.027) | 0.273 | (0.011) | C3 | 7 | C3 | 7 | -- | -- |

6.9 .9

Table F-3 (continued)
1988 IRT Parameters, Civics Cross-sectional

| RAEP ID | A | $\underline{\text { S.E. }}$ | - | S.E. | C | $\underline{S, E_{1}}$ | GRADE 4/AGE 9 |  | GRADE 8/AGE 13 |  | GRADE 12/AGE 17 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | BLOCK | ITEM | BLOCK | ITEM | BLOCK | ITEM |
| P012502 | 1.149 | (0.027) | -0.674 | (0.024) | 0.260 | (0.009) | C3 | 8 | C3 | 8 | -- | -- |
| P012601 | 2.559 | (0.045) | -0.220 | (0.021) | 0.262 | (0.007) | C3 | 9 | C3 | 9 | -- | -- |
| P012701 | 1.506 | (0.034) | -0.584 | (0.023) | 0.268 | (0.008) | C3 | 10 | C3 | 10 | -- | -- |
| P012801 | 2.035 | (0.023) | -0.549 | (0.019) | 0.149 | (0.008) | C3 | 11 | C3 | 11 | -- | -- |
| P012901 | 1.262 | (0.028) | -0.500 | :0.020) | 0.172 | (0.008) | C3 | 12 | C3 | 12 | -- | -- |
| Y913001 | 0.591 | (0.020) | -0.590 | 10.025) | 0.238 | (0.009) | C3 | 13 | C3 | 13 | -- | -- |
| P013101 | 2.148 | (0.021) | -1.012 | (0.025) | 0.151 | (0.011) | C3 | 14 | C3 | 14 | -- | -- |
| P013201 | 1.244 | (0.041) | 0.961 | (0.042) | 0.17E | (0.004) | C3 | 15 | C. | 15 | -- | -- |
| P013301 | 0.936 | (0.035) | 0.440 | (0.025) | 0.237 | (0.006) | C3 | 16 | C3 | 16 | -- | -- |
| P013401 | 1.359 | (0.052) | 0.037 | (0.023) | 0.216 | (0.011) | -- | -- | C3 | 17 | -- |  |
| P013501 | 1.102 | (0.047) | -0.317 | (0.026) | 0.203 | (0.013) | -- | -- | C3 | 19 | -- | -- |
| P013601 | 0.861 | (0.039) | 0.263 | (0.025) | 0.238 | (0.010) | -- | -- | 5 | 18 |  | -- |
| P013701 | 1.288 | (0.046) | 0.533 | (0.032) | 0.248 | (0.008) | -- | -- | C3 | 20 | -- | -- |
| P013801 | <. 061 | (0.056) | 0.882 | (0.050) | 0.325 | (0.007) | -- | -- | C3 | 21 | -- | -- |
| P013901 | 2.035 | (0.042) | 0.169 | (0.023) | 0.238 | (0.010) | -- | -- | C3 | 22 | -- | -- |
| P013902 | 1.236 | (0.043) | 1.119 | (0.052) | 0.230 | (0.007) | -- | -- | C3 | 23 | -- | -- |
| P014001 | 2.049 | (0.097) | 0.016 | (0.029) | 0.289 | (0.011) | -- | -- | C3 | 24 | -- | -- |
| P014101 | 1.152 | (0.034) | -0.475 | (0.023) | 0.328 | (0.011) | -- | -- | C6 | 1 | C6 | 1 |
| P014201 | 2.185 | (0.027) | -0.234 | (0.015) | 0.212 | (0.010) | -- | -- | C6 | 2 | C6 | 2 |
| P014301 | 0.862 | (0.018) | 0.303 | (0.015) | 0.240 | (0.007) | -- | -- | C6 | 3 | C6 | 3 |
| P014401 | 1.503 | (0.022) | 0.372 | (0.016) | 0.199 | (0.006) | -- | -- | C6 | 4 | C6 | 4 |
| P014501 | 1.114 | (0.023) | 0.024 | (0.015) | 0.242 | (0.008) | -- | -- | C6 | 5 | C6 | 5 |
| P014601 | 1.681 | (0.028) | 0.245 | (0.016) | 0.178 | (0.007) | -- | -- | C6 | 6 | C6 | 6 |
| P014701 | 0.829 | (0.016) | 0.393 | (0.015) | 0.190 | (0.007) | -- | -- | C6 | 7 | C6 | 7 |
| P014801 | 1.426 | (0.025) | 0.349 | (0.019) | 0.349 | (0.007) | -- | -- | C6 | 8 | C6 | 8 |
| P014901 | 0.999 | (0.020) | 0.174 | (0.014) | 0.240 | (0.008) | -- | -- | C6 | 9 | C6 | 3 |
| P015001 | 0.602 | (0.015) | 0.069 | (0.012) | 0.200 | (0.008) | -- | -- | C6 | 10 | C6 | 10 |
| P015101 | 1.511 | (0.021) | 1.752 | (0.040) | 0.307 | (0.004) | -- | -- | C6 | 11 | C6 | 11 |
| P015201 | 1.365 | (0.019) | 0.728 | (0.019) | 0.272 | (0.006) | -- | -- | C6 | 12 | C6 | 12 |
| P015202 | 1.562 | (0.039) | -0.238 | (0.018) | 0.205 | (0.010) | -- | -- | C6 | 13 | C6 | 13 |
| P015301 | 2.057 | (0.014) | 0.955 | (0.019) | 0.174 | (0.005) | -- | -- | C6 | 14 | C6 | 14 |
| P01.5401 | 1.324 | (0.015) | 1.240 | (0.022) | 0.159 | (0.004) | -- | -- | C6 | 22 | C6 | 22 |
| \%015 561 | 2.232 | (0.016) | 1.238 | (0.024) | 0.235 | (0.005) | -- | -- | C6 | 16 | C6 | 16 |
| P015601 | 2.674 | (0.021) | 1.037 | (0.024) | 0.227 | (0.004) | -- | -- | C6 | 17 | C6 | 17 |
| P015701 | 0.563 | (0.014) | 1.053 | (0.029) | 0.226 | (0.006) | -- | -- | C6 | 18 | C6 | 18 |
| P015702 | 0.518 | (0.014) | 1. 500 | (0.044) | 0.224 | (0.005) | -- | -- | C6 | 19 | C6 | 19 |
| P015703 | 1.592 | (0.018) | 1.452 | (0.029) | 0.262 | (0.004) | -- | -- | C6 | 2.0 | C6 | 20 |
| P015704 | 1.241 | (0.020) | 2.044 | (0.045) | 0.195 | (0.004) | -- | -- | :6 | 21 | C6 | 21 |
| P015801 | 1.164 | (0.015) | 0.959 | (0.019) | 0.163 | (0.005) | -- | -- | c 6 | +5 | C6 | 15 |
| P015901 | 1.641 | (0.021) | 0.617 | (0.019) | 0.223 | (0.006) | *- | -- | C5 | 23 | C6 | 23 |
| P015902 | 2.711 | (0.024) | 0.779 | (0.022) | 0.181 | (0.0(.5) | -- | - | C6 | 24 | C6 | 24 |
| P016001 | 1.:68 | (0.033) | 0.021 | (0.c18) | 0.302 | (0.008) | -- | -- | C7 | 1 | C7 | 1 |
| P016101 | 1.349 | (0.032.) | -0.163 | (0.617) | 0.216 | (0.009) | -- | -- | C7 | 2 | C7 | 2 |
| P016201 | 1.882 | (0.020) | 0.846 | (0.022) | 0.226 | (0.005) | -- | -- | C7 | 3 | C7 | 3 |
| P016301 | 1.465 | (0.027) | 0.472 | (0,021) | 0.356 | (0.007) | -- | -- | C7 | 4 | C7 | 4 |
| P016491 | 0.978 | (0.021) | 0.204 | (0.015) | 0.232 | (0.008) | -- | -- | C7 | 5 | C7 | 5 |
| 5016501 | 1.881 | (0.031) | 0.350 | (0.721) | 0.272 | (0.007) | -- | -- | C7 | 6 | C7 | 6 |
| P016501 | c. 779 | (0.020) | $0.05 \%$ | (0.015) | 0.279 | (0.008) | -- | -- | C7 |  | C7 | 7 |
| P. 6701 | 1.992 | (0.024) | 0.785 | (0.023) | 0.250 | (0.005) | -- | -- | C7 | $\delta$ | C7 | 8 |
| P016801 | 0.885 | (0.618) | 0.585 | (0.019) | 6.244 | (0.007) | -- | -- | C7 | 9 | C7 | 9 |
| P015901 | 1.729 | (0.024) | 1.151 | (0.031) | 0.400 | (0.005) | -- | -- | C7 | 10 | C7 | 10 |
| 2017001 | 0.632 | (0.015) | 1.013 | (0.027) | 0.174 | (0.006) | -- | -- | C7 | 11 | C7 | 11 |
| P017101 | 1.998 | (0.022) | 0.831 | (0.022) | 0.206 | (0.005) | -- | -- | C7 | 12 | C7 | 12 |
| P017201 | 1.170 | (0.017) | 0.971 | (0.022) | 0.210 | (0.035) | -- | -- | C7 | 13 | C7 | 13 |
| E017301 | 1.809 | (0.022) | 0.854 | (0.023) | 0.272 | (0.005) | -- | -- | C7 | 14 | C7 | 14 |
| 9217401 | 1.188 | (0.022) | 0.233 | (0.015) | 0.172 | (0.007) | -- | -- | C7 | 15 | C7 | 15 |
| P017501 | 1.616 | (0.020) | 1.18: | (0.027) | 0.244 | (0.005) | -- | -- | C7 | 16 | C7 | 16 |
| P017601 | 1.238 | (0.018) | 1.064 | (0.025) | 0.281 | (0.005) | -- | -- | C7 | $1{ }^{\text {. }}$ | C7 | : 7 |
| P017701 | 1.649 | (0.020) | 1.580 | (0.035) | 0.247 | (0.094) | -- | -- | C7 | 18 | C7 | 18 |
| P017801 | 1.690 | (0.021) | 1.441 | (0.035) | 0.321 | (0.005) | -- | -- | C7 | 18 | C7 | 19 |
| P017901 | 0.701 | (0.016) | 0.842 | (0.025) | 0.248 | (0.006) | -- | -- | C7 | 20 | C7 | 20 |
| P018001 | 1.508 | (0.017) | 1.222 | (0.02.5) | 0.183 | (0.004) | -- | -- | C7 | 21 | C7 | 21 |
| P018101 | 1.443 | (0.019) | 1.418 | (0.031) | 0.266 | (0.005) | -- | -- | C7 | 22 | C7 | 22 |
| P018201 | 0.406 | (0.021) | -3.026 | (0.158) | 0.000 | (0.000) | -- | -- | C8 | 1 | C8 | 1 |

Table F-3 (continued)
1988 IRT Parameters, Civics Cross-sectional

| HAEP ID | A | $\underline{S} \underline{E}_{\text {c }}$ | B | $\underline{\mathrm{S}, \mathrm{E}}$, | C | $\underline{S} \underline{E}_{1}$ | $\begin{gathered} \text { GRADE } 4 \\ \text { BLOCK } \end{gathered}$ | $\begin{aligned} & \text { /AGE } 9 \\ & \text { ITEM } \end{aligned}$ | GRADE BLOCK | $\begin{aligned} & \text { 3/AGE } 13 \\ & \text { ITEMM } \end{aligned}$ | GRADE 1 BLOCK | $\begin{aligned} & \text { 2/AGE } 17 \\ & \text { ITEM } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P018202 | 0.861 | (0.014) | 0.685 | (0.017) | 0.000 | (0.003) | -- | -- | C8 | 1 | C8 | 1 |
| P018301 | 0.996 | (0.035) | -0.724 | (0.037) | 0.218 | (0.021) | -- | -- | -- | -- | C4 | 2 |
| P018401 | 1.816 | (0.026) | 0.928 | (0.032) | 0.419 | (0.008) | -- | - | -- | -- | C4 | 3 |
| P018501 | 1.303 | (0.047) | -0.395 | (0.032) | 0.249 | (0.018) | -- | -- | -- | -- | C4 | 4 |
| P013601 | 0.950 | (0.020) | 0.450 | (0.022) | 0.228 | (0.011) | -- | -- | -- | -- | C4 | 5 |
| P0i3701 | 1.502 | (0.023) | 0.761 | (0.021) | 0.305 | (0.009) | -- | - | - | - | C4 | 6 |
| P018801 | 1.067 | (0.022) | 0.955 | (0.032) | 0.419 | (0.008) | -- | -- | -- |  | C4 | 7 |
| P018901 | 0.511 | (0.016) | 0.353 | (0.020) | 0.216 | (0.011) | - | -- | -- |  | C4 | 8 |
| P018001 | 1.322 | (0.018) | 0.748 | (0.022) | 0.153 | (0.009) |  |  | - |  | C4 | 9 |
| 9015101 | 1.935 | (0.023) | 0.864 | (0.025) | 0.180 | (0.008) | -- | -- | -- |  | C4 | 10 |
| P019201 | 1.061 | (0.018) | 1.336 | (0.032) | 0.257 | (0.007) | -- | -- | -- | -- | C4 | 11 |
| P019301 | 0.799 | (0.019) | 0.245 | (0.019) | 0.197 | (0.012) | -- | -- | -- | -- | C4 | 12 |
| P019402 | 1.853 | (0.022) | 1.013 | (0.028) | 0.284 | (0.008) | -- | -- | - |  | C4 | 13 |
| P0195C1 | 1.463 | (0.021) | 0.821 | (0.027) | 0.274 | (0.008) | -- |  | -- |  | C4 | 14 |
| P019601 | 2.148 | (0.021) | 1.100 | (0.028) | n. 210 | (0.007) |  | -- | -- | -- | C4 | 15 |
| P018701 | 2.723 | (0.027) | 1.096 | (0.033) | 0.297 | (0.007) | -- | -- | -- | -- | C4 | 16 |
| P018801 | 0.772 | (0.020) | 2.422 | (0.070) | 0.157 | (0.005) | -- | -- | -- | -- | C4 | 17 |
| P019901 | 1.238 | (0.018) | 0.887 | (0.025) | 0209 | (0.008) | -- | -- | -- | -- | C4 | 18 |
| P020001 | 1.470 | (0.018) | 1.271 | (0.028) | 0.188 | (0.007) | -- | -- | -- | -- | C4 | 19 |
| P020101 | 1.614 | (0.024) | 1.827 | (0.047) | 0.308 | (0.006) | - | -- | -- | - | C4 | 20 |
| P020201 | 0.574 | (0.017) | 2.146 | (0.069) | 0.190 | (0.007) | -- | -- | -- |  | C4 | 21 |
| P020301 | 1.958 | (0.020) | 1.115 | (c.027) | 0.184 | (0.007) | -- | -- | -- | -- | C4 | 22 |
| P020401 | 2.278 | (0.025) | 1.838 | (0.047) | c 229 | (0.005) | -- | -- | -- | -- | C4 | 23 |
| P020501 | 1.822 | (0.021) | 1.613 | (0.035) | 0.195 | (0.006) | -- | -- | -- | -- | C4 | 24 |
| P020601 | 0.677 | (0.029) | 2.947 | (0.135) | 0.251 | (0.006) | -- | -- | -- | -- | C4 | 2.5 |
| P020701 | 1.681 | (0.027) | 0.704 | (0.026) | 0.324 | (0.007) | -- | -- | CS | 9 | Cs | 9 |
| P021301 | 0.840 | (0.031) | -0.676 | (0.035) | 0.238 | (0.019) | -- | -- | -- | -- | C4 | 1 |

Table F-4
1988 IRT Parameters, Civics Trend, Age 13

| NAEP ID | A | $\underline{S} \underline{L}_{\text {L }}$ | B | $\underline{S} \boldsymbol{E}_{\text {L }}$ | C | $\underline{S . E .}$ | $\begin{gathered} \text { AGE } \\ \text { BLOCK } \end{gathered}$ | $\begin{aligned} & 13 \\ & \text { ITEM } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P000101 | 0.531 | (0.057) | 0.212 | (0.044) | 0.453 | (0.014) | C9 | 1 |
| P000201 | 0.421 | (0.048) | -1.449 | (0.171) | 0.463 | (0.021) | C9 | 2 |
| P000401 | 0.188 | (0.037) | -0.185 | (0.049) | 0.472 | (0.015) | C9 | 4 |
| P000501 | 0.715 | (0.053) | -2.550 | (0.194) | 0.296 | (0.040) | C9 | 5 |
| F000601 | 0.393 | (0.057) | -2.956 | (0.43, | 0.454 | (0.035) | C9 | 6 |
| P000801 | 0.885 | (0.054) | -1.638 | (0.112) | 0.257 | (0.034) | C9 | 9 |
| P000802 | 0.826 | (0.070) | -0.506 | (0.057) | 0.236 | (0.021) | C9 | 9 |
| P000801 | 0.413 | (0.050) | -1.529 | (0.191) | 0.456 | (0.024) | C9 | 10 |
| P001001 | 0.621 | (0.071) | -0.805 | (0.104) | 0.492 | (0.022) | C9 | 11 |
| P001101 | 0.394 | (0.054) | -3.152 | (0.435) | 0.446 | (0.036) | C9 | 12 |
| P001201 | 0.232 | (0.037) | -2.410 | (0.382) | 0.466 | (0.024) | ca | 13 |
| P001301 | 0.700 | (0.061) | 0.331 | (0.049) | 0.406 | (0.013) | C9 | 14 |
| P001401 | 0.530 | (0.051) | -1.558 | (0.153) | 0.440 | (0.023) | C9 | 15 |
| P001501 | 0.718 | (0.086) | -0.195 | (0 054) | 0.429 | (0.019) | C9 | 15 |
| P001601 | 0.415 | (0.052) | -2.313 | (0.292) | 0.442 | (0.031) | 69 | 17 |
| P00170: | 0.647 | (0.079) | -0.769 | (0.105) | 0.475 | (0.022) | C9 | 18 |
| P001301 | 0.415 | (0.048) | -1.627 | (0.192) | 0.418 | (C.026) | C9 | 19 |
| P001802 | 0.931 | (0.105) | -0.343 | (0.066) | 0.418 | (0.021) | C9 | 20 |
| P001901 | 0.519 | (0.057) | 2.265 | (0.258) | 0.290 | (0.011) | C9 | 21 |
| P002101 | 1.066 | (0.077) | 1.622 | (0.154) | 0.418 | (0.012) | C9 | 23 |
| P002201 | 0.383 | (0.050) | -2.438 | (0.321) | 0.436 | (0.031) | C9 | 24 |
| P002301 | 0.831 | (0.056) | -0.527 | (0.047) | 0.236 | (0.018) | C9 | 25 |
| P002461 | 0.516 | (0.056) | 3.028 | (0.335) | 0.148 | (0.008) | C9 | 26 |
| P0025\%1 | 0.764 | (0.050) | 2.057 | (0.147) | 0.198 | (0.008) | C9 | 27 |
| P002001 | 0.515 | (0.050) | -0.537 | (0.060) | 0.239 | (0.021) | C9 | 28 |
| P002702 | 0.530 | (0.048) | 0.037 | (0.029) | 0.291 | (0.015) | C9 | 29 |
| P0027C2 | 0.308 | (0.045) | 2.316 | (0.336) | 0.296 | (0.010) | C9 | 30 |
| P002901 | 0.536 | (0.063) | -0.814 | (0.106) | 0.447 | (0.023) | C9 | 32 |
| P003001 | 0.496 | (0.051) | 0.268 | (0.044) | 0.250 | (0.017) | C9 | 33 |
| P003201 | 0.598 | (0.052) | 0.727 | (0.072) | 0.226 | (0.013) | C1 | 1 |
| P003401 | 0.880 | (0.063) | 2.057 | (0.171) | 0.234 | (0.010) | C1 | 2 |
| P003501 | 0.523 | (0.066) | 3.496 | (0.450) | 0.172 | (0.008) | C1 | 3 |
| P003601 | 0.819 | (0.054) | 1.907 | (0.143) | 0.173 | (0.010) | C1 | 4 |
| P003701 | 0.628 | (0.051) | -0.004 | (0.033) | 0.206 | (0.017) | C1 | 5 |
| P003801 | 0.629 | (0.068) | 2.658 | (0.300) | 0.221 | (0.010) | C1 | 6 |
| P004001 | 0.767 | (0.082) | -0.819 | (0.100) | 0.438 | (0.025) | C1 | 7 |
| P004002 | 0.349 | (0.040) | -0.707 | (0.089) | 0.403 | (0.020) | C1 | 8 |
| P004003 | 1.917 | (0.086) | -1.322 | (0.106) | 0.333 | (0.035) | C1 | 9 |
| P004004 | 0.329 | (0.064) | 2.782 | (0.548) | 0.450 | (0.013) | C1 | 10 |
| P004005 | 0.573 | (0.064) | 1.007 | (0.126) | 0.436 | (0.014) | C1 | 11 |
| P004007 | 0.822 | (0.087 | 1.966 | (0.238) | 0.463 | (0.012) | C1 | 12 |
| P004008 | 0.927 | (0.073) | -1.153 | (0.104) | 0.394 | (0.028) | C1 | 13 |
| P004010 | 1.894 | (0.084) | -1.375 | (0.105) | 0.343 | (0.035) | C1 | 14 |
| P004011 | 0.464 | (0.055) | 0.764 | (0.102) | 0.445 | (0.015) | C1 | 15 |
| P004012 | 0.568 | (0.085) | 2.629 | (0.409) | 0.434 | (0.013) | C1 | 16 |
| P004101 | 0.300 | (0.060) | -0.958 | (0.081) | 0.218 | (0.026) | C1 | 18 |
| P004201 | 0.904 | (0.066) | -0 774 | (0.066) | 0.207 | (0.021) | C1 | 19 |
| P004401 | 0.292 | (0.048) | -1.817 | (0.304) | 0.460 | (0.026) | C1 | 20 |
| P004501 | 0.860 | (0.085) | 1.698 | (0.198) | 0.499 | (0.013) | C1 | 21 |
| P004601 | 0.370 | (0.055) | -1.003 | (0.156) | 0.468 | (0.023) | C1 | 22 |
| P004701 | 0.372 | (0.050) | -1.013 | (0.142) | 0.440 | (0.023) | C1 | 23 |
| P004901 | 0.605 | (0.054) | -0.554 | (0 064) | 0.369 | (0.022) | C1 | 25 |
| P005001 | 0.921 | (0.079) | 2.293 | (0.232) | 0.293 | (0.010) | C1 | 27 |
| P005301 | 0.587 | (0.055) | 0.321 | (0.048) | 0.417 | (0.013) | C1 | 1 |
| P005401 | 0.789 | (0.064) | -1.649 | (0.142) | 0.647 | (0.029) | C1 | 2 |
| P005501 | 0.508 | (0.049) | -1.923 | (0.192) | 0.458 | (0.028) | C1 | 5 |
| P005502 | 0.859 | (0.078) | -2.671 | (0.258) | 0.427 | (0.049) | C1 | 6 |
| P005504 | 1.082 | (0.081) | -2.432 | (0.214) | 0.457 | (0.051) | C1 | 7 |
| P005505 | 0.505 | (0.055) | -1.92 | (0.215) | 0.436 | (0.032) | C1 | 8 |
| P005601 | 0.844 | (0.057) | -1. 505 | (0.112) | 0.275 | (0.032) | C1 | 3 |
| P005801 | 0.533 | (0.051) | -1.771 | (0.175) | 0.431 | (0.025) | C1 | 10 |
| P005802 | 0.057 | (0.084) | 1.932 | (0.216) | 0.462 | (0.010) | C1 | 11 |
| P005803 | 0.649 | (0.073) | 0.378 | (0.061) | 0.462 | (0.014) | C1 | 12 |
| P006001 | 0.487 | (0.088) | 3.509 | (0.647) | 0.385 | (0.011) | C1 | 15 |

Table F-4 (continued)
1988 IRT Parameters, Civics Trend, Age 13

| NAEP ID | $\Delta$ | $\underline{S} \underline{E}^{1}$ | B | $\underline{S} \underline{E}_{\text {E }}$ | C | $\underline{S} \underline{E}^{\text {, }}$ | $\begin{gathered} \text { AGE } \\ \text { BLOCK } \end{gathered}$ | $\begin{aligned} & 13 \\ & \text { ITEM } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P006101 | 0.934 | (0.104) | 0.408 | (0.079) | 0.534 | (0.015) | C1 | 16 |
| P006201 | 0.980 | (0.118) | -0.034 | (0.058) | 0.526 | (0.017) | C1 | 17 |
| P006301 | 0.763 | (0.063) | 0.933 | (0.093) | 0.317 | (0.013) | C1 | 18 |
| P006401 | 0.590 | (0.061) | 1.005 | (0.114) | 0.427 | (0.013) | C1 | 19 |
| P006501 | 0.752 | (0.096) | 0.273 | (0.059) | 0.490 | (0.014) | C1 | 20 |
| P006601 | 0.417 | (0.042) | 0.935 | (0.099) | 0.247 | (0.013) | C1 | 21 |
| P006701 | 0.696 | (0.071) | 0.188 | (0.044) | 0.259 | (0.017) | C1 | 22 |
| P006801 | 0.748 | (0.079) | 0.036 | (0.049) | 0.390 | (0.019) | C1 | 23 |
| P006802 | 0.237 | (0.038) | -0.567 | (0.101) | 0.466 | (0.019) | C1 | 24 |
| P006803 | 0.565 | (0.070) | 3.069 | (0.394) | 0.288 | (0.008) | C1 | 25 |
| P066804 | 0.744 | (0.062) | 1.522 | (0.142) | 0.423 | (0.010) | C1 | 26 |
| P007201 | 0.791 | (0.058) | 0.181 | (0.039) | 0.203 | (0.016) | C1 | 29 |
| P007301 | 0.434 | (0.060) | -0.403 | (0.068) | 0.485 | (0.017) | C1 | 30 |
| P007401 | 0.428 | (0.049) | -1.774 | (0.205) | 0.442 | (0.023) | C1 | 31 |
| P007501 | 0.514 | (0.056) | -2.363 | (0.264) | 0.445 | (0.035) | Cl | 32 |
| P00750\% | 0.776 | (0.095) | 0.074 | (0.052) | 0.487 | (0.016) | C1 | 33 |
| P007503 | 0.559 | (0.076) | -0.242 | (0.058) | 0.492 | (0.019) | C1 | 34 |
| P020701 | 0.530 | (0.056) | 0.223 | (0.043) | 0.288 | (6.017) | C1 | 9 |
| P021101 | 0.509 | (0.037) | -1.882 | (0.142) | 0.000 | (0.000) | C1 | 28 |

Table F-5
1988 IRT Parameters, Civics Trend, Age 17

| HAEP ID | A | $\underline{S . E .}$ | B | S. E. | C | S.E. | BL | $17$ <br> ITEM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P000101 | 0.683 | (0.066) | -0.408 | (0.055) | 0.502 | (0.01-) | C9 | 27 |
| PCDO201 | 0.526 | (0.053) | -1.490 | (0.154) | 0.479 | (0.021) | Cg | 28 |
| P000401 | 0.174 | (0.033) | -0.160 | (0.045) | 0.525 | (0.014) | $\bigcirc$ | 30 |
| P000801 | 1.335 | (0.050) | -1.886 | (0.088) | 0.217 | (0.040) | C9 | 32 |
| P000802 | 1.111 | (0.050) | -1.510 | (0.085) | 0.203 | (0.032) | C9 | 33 |
| P003201 | 0.622 | (0.047) | -0.414 | (0.042) | 0.226 | (0.017) | C1 | 1 |
| P003401 | 1.014 | (0.087) | 0.238 | (0.049) | 0.266 | (0.015) | C1 | 2 |
| P003501 | 1.262 | (0.059) | . 013 | (0.068) | 0.206 | (0.010) | C1 | 3 |
| P003601 | 1.008 | (0.068) | 0.421 | (0.051) | 0.194 | (0.014) | C1 | 4 |
| P003701 | 0.659 | (0.050) | -1.089 | (0.090) | 0.240 | (0.025) | C1 | 5 |
| PU03801 | 1.174 | (0.079) | 0.738 | (0.073) | 0.252 | (0.014) | C1 | 6 |
| P004001 | 1.245 | (0.072) | -1.578 | (0.118) | 0.451 | (0.036) | C1 | 7 |
| P004002 | 0.421 | (0.047) | -1.761 | (0.200) | 0.472 | (0.026) | C1 | 8 |
| P004003 | 1.327 | (0.063) | -1.957 | (0.128) | 0.427 | (0.042) | Cl | 8 |
| P004004 | 0.475 | (0.056) | -0.183 | (0.050) | 0.462 | (0.018) | C1 | 10 |
| P004005 | 0.933 | (0.079) | 0.253 | (0.060) | 0.494 | (0.015) | C1 | 11 |
| P004007 | 1.188 | (0.105) | 0.403 | (0.074) | 0.463 | (0.014) | $C_{1}$ | 12 |
| P004008 | 0.988 | (0.062) | -1.768 | (0.129) | 0.459 | (0.035) | $C 1$ | 13 |
| P004010 | 1.394 | (0.067) | -1.883 | (0.124) | 0.423 | (0.041) | C1 | 14 |
| P004011 | 0.571 | (0.057) | 0.403 | (0.062) | 0.449 | (0.015) | C1 | 15 |
| P004012 | 0.504 | (0.057) | 0.674 | (0.091) | 0.478 | (0.015) | C1 | 16 |
| P004201 | 1.106 | (0.050) | -1.548 | (0.084) | 0.277 | (0.030) | CI | 19 |
| P004401 | 0.505 | (0.069) | -1.418 | (0.199) | 0.502 | (0.027) | C1 | 20 |
| P004501 | 1.045 | (0.122) | -0.056 | (0.060) | 0.494 | (0.018) | C1 | 21 |
| P004601 | 0.778 | (0.084) | -1.104 | (0.132) | 0.511 | (0.026) | C1 | 22 |
| P004701 | 0.577 | (0.063) | -1.164 | (0.135) | 0.462 | (0.025) | C1 | 23 |
| P004801 | 0.597 | (0.062) | -1.539 | (0.166) | 0.452 | (0.028) | CI | 25 |
| P005001 | 1.264 | (0.074) | 0.776 | (0.073) | 0.277 | (0.012) | C1 | 32 |
| P005101 | 0.904 | (0.083) | -0.542 | (0.069) | 0.405 | (0.022) | C1 | 27 |
| P005102 | 1.342 | (0.091) | -0.509 | (0.061) | 0.345 | (0.019) | CI | 28 |
| P005103 | 1.276 | (0.101) | 0.278 | (0.058) | 0.371 | (0.014) | CI | 29 |
| P005104 | 1.788 | (0.123) | 1.442 | (0.183) | 0.558 | (0.010) | C1 | 30 |
| P005105 | 1.421 | (0.120) | -0.233 | (0.058) | 0.415 | (0.017) | C1 | 31 |
| P005301 | 1.269 | (0.089) | -0.923 | (0.085) | 0.505 | (0.022) | C1 | 1 |
| P005401 | 1.086 | (0.065) | -1.986 | (0.137) | 0.479 | (0.038) | C1 | 2 |
| P005501 | 1.407 | (0.072) | -1.653 | (0.116) | 0.437 | (0.039) | C1 | 5 |
| P005502 | 0.698 | (0.070) | -3.130 | (0.326) | 0.462 | (0.051) | C1 | 6 |
| P005504 | 0.836 | (0.123) | -3.212 | (0.458) | 0.468 | (0.062) | C1 | 7 |
| P005505 | 0.851 | (0.076) | -2.015 | (0.195) | 0.460 | (0.042) | C1 | 8 |
| P005601 | 1.573 | (0.064) | -1.687 | (0.100) | 0.232 | (0 041) | C1 | 3 |
| P005801 | 0.577 | (0.053) | -1.5\%3 | (0.151) | 0.493 | (0.023) | C1 | 10 |
| P005802 | 0.724 | (0.075) | 0.235 | (0.051) | 0.466 | (0.014) | C1 | 11 |
| P005803 | 0.936 | (0.077) | -0.701 | (0.0\%2) | 0.461 | (0.020) | C1 | 4.0 |
| P005804 | 0.620 | (0.092) | 3.051 | (0.473) | 0.408 | (0.009) | C1 | 13 |
| P006101 | 0.845 | (0.072) | -0.838 | (0.087) | 0.443 | (0.025) | C1 | 16 |
| P006201 | 1.037 | (0.083) | -0.750 | (0.079) | 0.463 | (0.023) | C1 | 17 |
| P006301 | 1.284 | (0.100) | -0.428 | (0.059) | 0.314 | (0.020) | C1 | 18 |
| P006401 | 0.504 | (0.055) | 0.351 | (0.056) | 0.475 | (0.014) | C1 | 18 |
| P006501 | 0.889 | (0.084) | -0.675 | (0.077) | 0.506 | (0.019) | C1 | 20 |
| P006601 | 0.552 | (0.043) | -0.187 | (0.031) | 0.247 | (0.016) | C1 | 21 |
| PC06701 | 0.968 | (0.072) | -0.878 | (0.078) | 0.242 | (0.027) | C1 | 22 |
| P006801 | 0.843 | (0.080) | -0.721 | (0.085) | 0.431 | (0.024) | C1 | 23 |
| P006802 | 0.381 | (0.053) | -0.363 | (0.066) | 0.498 | (0.018) | C1 | 24 |
| P006803 | 1.061 | (0.086) | 1.607 | (0.128) | 0.368 | (0.010) | C1 | 25 |
| P006804 | 0.887 | (0.063) | 0.482 | (0.055) | 0.388 | (0.012) | C1 | 26 |
| P007201 | 1.480 | (0.090) | -0.704 | (0.065) | 0.244 | (0.024) | C1 | 29 |
| P007301 | 0.838 | (0.086) | -C.840 | (0.089) | 0.530 | (0.021) | C1 | 30 |
| P007401 | 0.963 | (0.060) | -1.555 | (0.110) | 0.473 | (0.029) | C1 | 31 |
| P007501 | 0.410 | (0.063) | -3.651 | (0.562) | 0.476 | (0.041) | C1 | 32 |
| P007502 | 0.505 | (0.953) | -1.014 | (0.114) | 0.473 | (0.022) | C1 | 33 |
| P007503 | 0.824 | (0.078) | -1.071 | (0.105) | 0.478 | (0.027) | C1 | 34 |
| P008201 | 0.823 | (0.068) | -1.318 | (0.112) | 0.508 | (0.027) | C8 | 1 |
| P008202 | 1.300 | (0.076) | -1.343 | (0.106) | 0.476 | (0.030) | Cg | 2 |
| P008301 | 0.852 | (0.053) | -1.108 | (0.080) | 0.252 | (0.026) | C8 | 3 |

Table F-5 (continued)
1988 IRT Parameters, Civics Trend, Age 17

| HAEP ID | A | $\underline{\mathbf{S}_{1} \mathbf{E}_{1}}$ | B | $\mathrm{S}_{\underline{\text { E }}}$ | C | $\underline{S N}_{\underline{E}}$ | $\begin{gathered} \text { AGE } \\ \mathrm{BLOCK} \\ \hline \end{gathered}$ | $\begin{aligned} & 17 \\ & \text { ITEM } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P008401 | 1.166 | (0.068) | 2.014 | (0.154) | 0.216 | (0.009) | C8 | 5 |
| P008402 | 2.414 | (0.284) | 0.010 | (0.074) | 0.393 | (0.015) | C9 | 6 |
| P008403 | 1.406 | (0.105) | -0.131 | (0.051) | 0.371 | (0.017) | C9 | 7 |
| P008404 | 2.417 | (0.100) | 1.215 | (0.125) | 0.364 | (0.011) | Cg | 8 |
| P008405 | 1.664 | (0.186) | -0.067 | (0.064) | 0.463 | (0.017) | C8 | 9 |
| P008406 | 1.277 | (0.068) | 0.763 | (0.071) | 0.348 | (0.013) | C9 | 10 |
| P008407 | 1.637 | (0.108) | 0.401 | (0.071) | 0.353 | (0.015) | C9 | 11 |
| P008501 | 0.796 | (0.061) | 0.638 | (0.066) | 0.279 | (0.015) | C3 | 12 |
| P008601 | 1.271 | (0.065) | 2.356 | (0.164) | 0.089 | (0.007) | C8 | 14 |
| P008701 | 0.888 | (0.058) | 0.816 | (0.070) | 0.245 | (0.012) | C9 | 4 |
| P009001 | 1.482 | (0.066) | 0.874 | (0.067) | 0.211 | (0.011) | C8 | 16 |
| P009101 | 0.948 | (0.061) | 0.994 | (0.082) | 0.201 | (0.013) | C8 | 17 |
| P009201 | 1.138 | (0.057) | 1.310 | (0.088) | 0.188 | (0.010) | C8 | 18 |
| P009301 | 0.886 | (0.059) | 1.579 | (0.124) | 0.199 | (0.012) | C9 | 19 |
| P009401 | 0.474 | (0.038) | -1.105 | (0.096) | 0.228 | (0.024) | C9 | 20 |
| P009501 | 1.027 | (0.055) | 1.579 | (0.105) | 0.168 | (0.009) | C9 | 21 |
| P009601 | 0.653 | (0.060) | -3.201 | (0.303) | 0.236 | (0.047) | C9 | 22 |
| P009801 | 0.669 | (0.055) | -0.991 | (0.090) | 0.238 | (0.026) | C9 | 24 |
| P009901 | 1.397 | (0.069) | 0.420 | (0.048) | 0.315 | (0.011) | C9 | 25 |
| P010101 | 0.550 | (0.045) | 0.595 | (0.058) | 0.295 | (0.012) | C3 | 23 |
| P020701 | 1.052 | (0.089) | -0.435 | (0.056) | 0.267 | (0.021) | C1 | 9 |
| P021001 | 1.071 | (0.049) | -1.238 | (0.069) | 0.000 | (0.000) | C1 | 33 |
| P021101 | 0.593 | (0.042) | -2.269 | (0.165) | 0.000 | (0.000) | C1 | 34 |

Table F-6
1988 IRT Parameters, U.S. History Cross-sectional

| HAEP ID | $\underline{A}$ | $\underline{S, E}$ | B | $\underline{S} \underline{E}^{( }$ | C | $\underline{S . E}$ | GRADE 4/AGE 9 BLOCK ITEM |  | GRADE 8/AGE 13 BLOCK TTEM |  | GRADE 12/AGE 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | BLOC: | ITEM |
| H000101 | 1.562 | (0.014) | 1.061 | (0.019) | 0.223 | (0.005) | - | -- |  |  | -- | -- | H3 | 1 |
| H000201 | 1.575 | (0.014) | 1.549 | (0.024) | 0.205 | (0.004) | -- | -- | -- | -- | 日3 | 3 |
| H000301 | 0.760 | (0.016) | 0.019 | (0.014) | 0.272 | (0.009) | -- | -- | -- | -- | H3 | 4 |
| H000401 | 1.558 | (0.021) | 1.679 | (0.038) | 0.496 | (0.004) | -- | -- | -- | -- | H3 | 5 |
| 8000601 | 0.723 | (0.012) | 0.529 | (0.015) | 0.151 | (0.008) | -- | -- | -- | -- | H3 | 6 |
| B000801 | 1.197 | (0.034) | -0.159 | (0.024) | 0.286 | (0.013) | -- | -- | -- | -- | H3 | 7 |
| H000801 | 1.687 | (0.013) | 1.444 | (0.021) | 0.171 | (0.004) | -- | -- | -- | -- | 日3 | 8 |
| H001101 | 1.561 | (0.016) | 1.036 | (0.020) | 0.297 | (0.005) | -- | -- | -- | -- | H3 | 9 |
| H001301 | 2.153 | (0.022) | 0.683 | (0.021) | 0.334 | (0.006) |  | -- | -- | -- | H3 | 13 |
| H001401 | 0.624 | (0.012) | 0.458 | (0.015) | 0.230 | (0.008) | - - | -* | -- | -- | H3 | 14 |
| H001501 | 1.257 | (0.014) | 0.602 | (0.015) | 0.144 | (0.007) | -- | -- | -- | -- | H3 | 15 |
| H001701 | 1.532 | (0.014) | 1.301 | (0.921) | 0.218 | (0.005) | -- | -- | -- | -- | H3 | 17 |
| H001801 | 1.452 | (0.016) | 1.833 | (0.031) | 0.245 | (0.004) | -- | - | -- | -- | H3 | 18 |
| E001901 | 0.774 | (0.012) | 0.990 | (0.020) | 0.196 | (0.006) | -- | -- | -- | -- | ç | 18 |
| H002001 | 1.058 | (0.013) | 0.843 | (0.017) | 0.215 | (0.006) | -- | -- | -- | -- | H3 | 20 |
| H002101 | 1.309 | (0.013) | 1.422 | (0.023) | 0.229 | (0.005) | -- | -- | -- | -- | H3 | 21 |
| H002201 | 1.064 | (0.016) | 0.494 | (0.017) | 0.299 | (0.008) | -- | -- | -- | -- | H. | 22 |
| H002301 | 2.722 | (0.024) | 2.094 | (0.049) | 0.188 | (0.003) | -- | -- | -- | -- | H3 | 23 |
| H002601 | 1.964 | (0.016) | 1.483 | (0.025) | 0.253 | (0.004) | -- | -- | -- | -- | H3 | 24 |
| H002701 | 1.188 | (0.013) | 1.466 | (0.023) | 0.192 | (0.005) | -- | -- | -- | -- | H3 | 25 |
| H003001 | 1.201 | (0.016) | 0.078 | (0.009) | 0.232 | (0.005) | -- | -- | H5 | 1 | H5 | 1 |
| H003101 | 1.119 | (0.011) | 0.872 | (0.012) | 0.152 | (0.003) | -- | -- | H5 | 2 | H5 | 2 |
| H003201 | 1.825 | (0.013) | 1.594 | (0.022) | 0.204 | (0.002) | -- | -- | H5 | 3 | H5 | 3 |
| H003301 | 0.818 | (0.010) | 0.833 | (0.015) | 0.202 | (0.004) | -- | -- | H5 | 4 | H5 | 4 |
| H003601 | 1.555 | (0.012) | 1.113 | (0.016) | 0.261 | (0.003) | -- | -- | H5 | 7 | H5 | 7 |
| H003701 | 1.467 | (0.016) | 1.778 | (0.031) | 0.349 | (0.003) | -- | -- | H5 | 8 | H5 | 8 |
| H003801 | 1.538 | (0.012) | 1.624 | (0.021) | 0.164 | (0.002) | -- | -- | H5 | 9 | H5 | 9 |
| H004001 | 0.937 | (0.011) | 1.234 | (0.018) | 0.259 | (0.003) | -- | -- | H5 | 10 | H5 | 10 |
| H004301 | 0.648 | (0.015) | 2.217 | (0.056) | 0.384 | (0.003) | -- | -- | H5 | 12 | 115 | 12 |
| H004401 | 1.359 | (0.014) | 0.761 | (0.014) | 0.327 | (0.004) | -- | -- | H5 | 13 | H5 | 13 |
| H004501 | 0.526 | (0.011) | -0.775 | (0.018) | 0.204 | (0.007) | -- | -- | H5 | 14 | H5 | 14 |
| R004502 | 0.723 | (0.011) | 0.166 | (0.008) | 0.191 | (0.005) | -- | -- | HS | 15 | H5 | 15 |
| E004601 | 0.747 | (0.009) | 1.097 | (0 316) | 0.142 | (0.003) | -- | -- | H5 | 17 | H5 | 17 |
| H004901 | 0.825 | (0.011) | 0.180 | (0.008) | 0.163 | (0.005) | -- | -- | H5 | 18 | H5 | 18 |
| H005001 | 2.204 | (0.018) | 0.577 | (0.014) | 0.280 | (0.004) | -- | -- | H5 | 18 | H5 | 19 |
| E005201 | 1.451 | (0.011) | 0.970 | (0.013) | 0.191 | (0.003) | -- | -- | H5 | 22 | H5 | 22 |
| H005301 | 0.539 | (0.010) | 1.340 | (0.026) | 0.211 | (0.004) | -- | -- | H5 | 23 | H5 | 23 |
| E005401 | 1.318 | (0.013) | 0.573 | (0.011) | 0.216 | (0.004) | -- | -- | H5 | 24 | H5 | 24 |
| H005501 | 1.526 | (0.016) | 1.865 | (0.031) | 0.284 | (0.003) | -- | -- | H5 | 25 | H5 | 25 |
| H005801 | 0.882 | (0.014) | -0.130 | (0.009) | 0.231 | (0.006) | -- | -- | H5 | 26 | H5 | 26 |
| H003201 | 1.632 | (0.015) | 0.939 | (0.018) | 0.215 | (0.005) | -- | -- | -- | -- | E4 | 1 |
| H066001 | 1.470 | (0.017) | 0.541 | :0.016) | 0.205 | (0.007) | -- | -- | -- | -- | H4 | 2 |
| H006101 | 1.367 | (0.029) | -0.138 | (0.018) | 0.228 | (0.011) | -- | -- | -- | -- | H4 | 3 |
| H006401 | 1.551 | (0.013) | 1.920 | (0.027) | 0.113 | (0.003) | -- | -- | -- | -- | H4 | 6 |
| E006601 | 1.445 | (0.013) | 1.442 | (0.023) | 0.223 | (0.004) | -- | -- | -- | -- | H4 | 7 |
| H006701 | 1.858 | (0.020) | 2.208 | (0.044) | 0.164 | (0.003) | -- | -- | -- | -- | H4 | 8 |
| H006801 | 1.864 | (0.018) | 0.771 | (0.020) | 0.303 | (0.006) | -- | -- | -- | -- | H4 | 9 |
| H007001 | 1.845 | (0.015) | 1.090 | (0.020) | 0.231 | (0.005) | -- | -- | -- | -- | H4 | 13 |
| H007101 | 1.159 | (0.017) | 2.117 | (0.041) | 0.250 | (0.004) | -- | -- | -- | -- | H4 | 10 |
| H007102 | 1.787 | (0.015) | 1.037 | (0.019) | 0.238 | (0.005) | -- | -- | -- | -- | H4 | 11 |
| R 607103 | 1.196 | (0.016) | 0.790 | (0.019) | 0.338 | (0.006) | -- | -- | -- | -- | $\mathrm{H}_{4}$ | 12 |
| H007201 | 0.671 | (0.013) | 1.467 | (0.033) | 0.314 | (0.005) | -- | -- | -- | -- | H4 | 14 |
| 8007301 | 1.757 | (0.015) | 1.882 | (0.028) | 0.153 | (0.003) | -- | -- | -- | -- | H4 | 15 |
| प007401 | 1.795 | (0.016) | 1.805 | (0.033) | 0.219 | (0.004) | -- | -- | -- | -- | H4 | 18 |
| H007501 | 1.342 | (0.013) | 1.201 | (0.020) | 0.219 | (0.005) | -- | -- | -- | -- | H4 | 17 |
| H007601 | 1.341 | (0.014) | 1.626 | (0.026) | 0.233 | (0.004) | -- | -- | -- | -- | H4 | 18 |
| H007701 | 1.965 | (0.021) | 0.684 | (0.020) | 0.312 | (0.006) | -- | -- | -- | -- | H4 | 19 |
| H007801 | 1.129 | (0.012) | 1.083 | (0.018) | 0.164 | :0.005) | -- | -- | -- | -- | H4 | 20 |
| H008101 | 0.771 | (0.011) | 1.072 | (0.c19) | 0.145 | i3.006) | -- | -- | -- | -- | H4 | 22 |
| [008201 | 0.878 | (0.013) | 1.846 | (0.032) | 0.208 | (0.004) | -- | -- | -- | -- | H4 | 23 |
| H008501 | 1.14F. | (0.031) | -0.624 | (0.027) | 0.235 | (0.014) | -- | -- | -- | -- | H4 | 24 |
| H008701 | 1.362 | (0.014) | 1.588 | (0.025) | 0.233 | (0.004) | -- | -- | -- | -- | H4 | 25 |
| EC08801 | 1.094 | (0.013) | 1.143 | (0.021) | 0.285 | (0.005) | -- | -- | -- | -- | H3 | 2 |
| H008801 | 2.411 | (0.015) | 1.046 | (0.017) | 0.292 | (0.003) | -- | -- | H5 | 5 | H5 | 5 |

Table F-6 (continued)
1988 IRT Parameters, U.S. Histerv Cross-sectional

| NAEP ID | A | S $\underline{S}^{\text {c }}$ | B | $\underline{S} \underline{E}^{\text {r }}$ | C | $\underline{S .}$ | GRADE BLOCK | $\begin{gathered} \text { /AGE } 9 \\ \text { TIEM } \end{gathered}$ | GRADE BLOCK | $\begin{aligned} & \text { 3/RGE } 13 \\ & \text { ITEM } \end{aligned}$ | $\begin{gathered} \text { GRADE }{ }^{\prime} \\ \text { BLOCK } \end{gathered}$ | $\begin{aligned} & \text { PAGE } 17 \\ & \text { IIEM } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H009201 | 0.813 | (0.014) | 17 | (0.016) | 0.254 | (0.008) | -- | -- | -- | -- | H3 | 10 |
| 8009401 | 0.684 | (0.014) | 0.295 | (0.014) | 0.238 | (0.008) | -- | -- | -- | -- | H4 | 4 |
| B009501 | 1.341 | (0.014) | 1.205 | (0.022) | 0.299 | (0.005) | -- | -- | -- | -- | E3 | 11 |
| B009601 | 2.408 | (0.017) | 1.754 | (0.030) | 0.193 | (0.004) | -- | -- | -- | -- | E3 | 12 |
| H009801 | 1.854 | (0.025) | 0.439 | (0.020) | 0.346 | (0.008) | -- | -- | -- | -- | E3 | 16 |
| B009901 | 1.044 | (0.022) | -0.324 | (0.018) | 0.214 | (0.012) | -- | -- | -- | -- | E4 | 5 |
| 日310101 | 1.536 | (0.015) | 0.982 | (0.019) | 0.270 | (0.006) | -- | -- | - | - | $\mathrm{H}_{4}$ | 21 |
| B010201 | 1.125 | (0.013) | 1.091 | (0.018) | 0.362 | (0.003) | - | -- | H5 | 11 | E5 | 21 |
| B010401 | 1.787 | (0.012) | 1.403 | (0.017) | 0.163 | (0.002) | - | -- | H5 | 16 | H5 | 16 |
| 8010801 | 0.648 | (0.011) | 1.634 | (0.029) | 0.226 | (0.003) | -- | -- | H5 | 20 | E5 | 20 |
| 8011001 | 1.737 | (0.013) | 0.697 | (0.012) | 0.145 | (0.003) | -- | -- | H5 | 21 | H5 | 21 |
| [011501 | 0.761 | (0.010) | -1.141 | (0.018) | 0.308 | (0.006) | H2 | 1 | E2 | 1 | -- | -- |
| E011601 | 1.233 | (0.010) | -1.617 | (0.017) | 0.166 | (0.008) | 42 | 2 | H2 | 2 | -- | -- |
| 8011701 | 1.074 | (0.009) | -2.023 | (0.021) | 0.167 | (0.011) | H2 | 3 | H2 | 3 | -- | -- |
| E011801 | 0.912 | (0.009) | -1.591 | (0.018) | 0.158 | (0.008) | 12 | 4 | H2 | 4 | -- | -- |
| EC11901 | 1.412 | (0.020) | -0.806 | (0.017) | 0.487 | (0.005) | H2 | 5 | H2 | 5 | -- | -- |
| E012001 | 0.831 | (0.009) | -1.619 | (0.020) | 0.202 | (0.008) | E2 | 6 | H2 | 6 | -- | -- |
| 8012101 | 2.009 | (0.024) | -0.471 | (0.013) | 0.264 | (0.004) | H2 | 7 | H2 | 7 | -- | -- |
| E012201 | 1.246 | (0.014) | -0.641 | (0.012) | 0.213 | (0.004) | H2 | 8 | H2 | 8 | -- | -- |
| E012301 | 1.654 | (0.019) | -0.400 | (0.010) | 0.170 | (0.003) | E2 | 9 | H2 | 9 | -- | -- |
| E012401 | 1.931 | (0.018) | -0.655 | (0.012) | 0.184 | (0.004) | H2 | 10 | H2 | 10 | -- | -- |
| E012501 | 2.601 | (0.032) | -0.384 | (0.013) | 0.236 | (0.003) | H2 | 11 | H2 | 11 | -- | -- |
| H012701 | 0.803 | (0.012) | -0.529 | (0.011) | 0.214 | (0.004) | H2 | 13 | H2 | 13 | -- | -- |
| E012801 | 1.581 | (0.020) | -0.471 | (0.012) | 0.255 | (0.004) | H2 | 14 | H2 | 14 | -- | -- |
| E012901 | 2.293 | (0.035) | -0.170 | (0.012) | 0.210 | (0.003) | H2 | 15 | H2 | 15 | -- | - |
| E013001 | 1.421 | (0.013) | -0.954 | (0.014) | 0.214 | (0.005) | H3 | 1 | H3 | 1 | -- | -- |
| E013101 | 0.885 | (0.012) | -0.908 | (0.016) | 0.322 | (0.005) | H3 | 2 | H3 | 2 | -- | -- |
| E013201 | 1.157 | (0.013) | -0.880 | (0.013) | 0.146 | (0.005) | H3 | 3 | H3 | 3 | -- | -- |
| E013301 | 0.860 | (0.013) | -0.242 | (0.009) | 0.183 | (0.004) | H3 | 4 | E3 | 4 | -- | -- |
| E013401 | 1.413 | (0.025) | -0.127 | (0.011) | 0.278 | (0.003) | H3 | 5 | H3 | 5 | -- | -- |
| E313501 | 0.868 | (0.011) | -0.580 | (0.011) | 0.179 | (0.005) | H3 | 6 | H3 | 6 | -- | -- |
| B013502 | I 374 | (0.012) | -1.055 | (0.014) | 0.216 | (0.006) | H3 | 7 | H3 | 7 | -- | -- |
| [013701 | 0.426 | (0.008) | -1.059 | (0.023) | 0.220 | (0.006) | E3 | 8 | H3 | 8 | -- | -- |
| E013801 | 1.434 | (0.026) | -0.030 | (0.011) | 0.367 | (0.003) | H3 | 9 | H3 | 9 | -* | -- |
| E013901 | 1.342 | (0.016) | -0.590 | (0.012) | 0.220 | (0.004) | H3 | 10 | H3 | 10 | -- | -- |
| E014001 | 1.609 | (0.022) | -0.248 | (0.011) | 0.158 | (0.003) | H3 | 11 | H3 | 11 | -- | -- |
| E014101 | 1.637 | (0.017) | -0.666 | (0.013) | 0.20S | (0.004) | H3 | 12 | H3 | 12 | -- | -- |
| E014201 | 1.763 | (0.033) | 0.132 | (0.013) | 0.248 | (0.003) | H3 | 13 | h3 | 13 | -- | -- |
| E014301 | 1.635 | (0.028) | 0.478 | (0.017) | 0.476 | (0.003) | H3 | 14 | H3 | 14 | -- | -- |
| E014401 | 1.666 | (0.023) | -0.198 | (0.010) | 0.139 | (0.003) | H3 | 15 | H3 | 15 | -- | -- |
| E014501 | 1.867 | (0.016) | -1.167 | (0.018) | 0.385 | (0.006) | $\mathrm{H}_{4}$ | 1 | H4 | 1 | -- | -- |
| E014601 | 2.344 | (0.018) | -1.123 | (0.018) | 0.355 | (0.006) | H4 | 2 | H4 | 2 | - | -- |
| 8014701 | 1.277 | (0.010) | -1.587 | (0.017) | 0.163 | (u.009) | H4 | 5 | $\mathrm{H}_{4}$ | 5 | -- | -- |
| B014702 | 0.902 | (0.009) | -1.613 | (0.018) | 0.122 | (0.008) | H4 | 6 | H4 | 6 | -- | -- |
| 8014703 | 1.590 | (0.022) | -0 301 | (0.011) | 0.197 | (0.004) | $\mathrm{H}_{4}$ | 7 | H4 | 7 | -- | - |
| E015001 | 0.804 | (0.010) | -0.831 | (0.012) | 0.094 | (0.005) | H4 | 3 | H4 | 3 | -- | -- |
| E015101 | 0.785 | (0.014) | -0.030 | (0.009) | 0.199 | (0.004) | E4 | 4 | H4 | 4 | -- | - |
| E015201 | 1.356 | (0.022) | -0.383 | (0.013) | 0.330 | (0.004) | B4 | 8 | H4 | 8 | -- | -- |
| E015301 | 0.901 | (0.010) | -0.972 | (0.014) | 0.176 | (0.006) | E4 | 9 | $\mathrm{H}_{4}$ | 9 | -- | - |
| 8015401 | 1.283 | (1.014) | -0.544 | (0.010) | 0.118 | (0.004) | 134 | 10 | H4 | 10 | -- | -- |
| E015501 | 2.389 | (0.044) | 0.258 | (0.018) | 0.323 | (0.003) | E4 | 11 | $\mathrm{H}_{4}$ | 11 | -- | -- |
| E015601 | 1.046 | (0.021) | 0.236 | (0.012) | 0.269 | (0.003) | E4 | 12 | $\mathrm{H}_{4}$ | 12 | -- | - |
| E015701 | 1.040 | (0.013) | -0.514 | 10.010) | 0.130 | (0.004) | H4 | 13 | $\mathrm{H}_{4}$ | 13 | -- | -- |
| H015801 | 1.023 | (0.019) | 0.506 | (0.01-) | 0.174 | (0.003) | H4 | 14 | H4 | 14 | -- | -- |
| H015901 | 1.613 | (0.028) | 0.038 | (0.012) | 0.245 | (0.003) | 124 | 15 | $\mathrm{H}_{4}$ | 15 | -- | -- |
| 8016001 | 0.655 | (0.017) | -1.459 | (0.040) | 0.221 | (0.012) | -- | -- | H2 | 16 | -- | -- |
| B016101 | 2.267 | (0.051) | -0.368 | (0.018) | 0.227 | (0.007) | -- | -- | H2 | 17 | -" | -- |
| E016201 | 0.456 | (0.015) | -0.612 | (0.022) | 0.200 | (0.008) | -- | -- | H2 | 18 | -- | -- |
| B018301 | 2.096 | (0.035) | 0.333 | (0.018) | 0.352 | (0.005) | -- | -- | H2 | 19 | -- | -- |
| 8016401 | 1.511 | (0.035) | -0.279 | (0.015) | 0.279 | (0.007) | -- | -- | 122 | 20 | - | -- |
| E016501 | 1.922 | (0.042) | 0.113 | (0.016) | 0.357 | (0.005) | -- | -- | H2 | 21 | -- | -- |
| [1013601 | 1.983 | (0.036) | 0.137 | (0.014) | 0.230 | (0.005) | -- | -- | $\mathrm{H2}$ | 22 | -- | -- |
| E016701 | 1.551 | (0.026) | 0.166 | (0.013) | 0.176 | (0.005) | -- | - | H2 | 23 | -- | -- |
| 8016801 | 2.166 | (0.035) | 0.422 | (0.019) | 0.253 | (0.004) | -- | -- | H2 | 24 | -- | -- |

Table F－6（continued）
1988 IRT Parameters，U．S．History Cross－sectional

| HAEP ID | A | $\underline{S_{+} E_{1}}$ | B | $\underline{\mathbf{S}_{\mathbf{L}} \mathbf{E}_{1}}$ | C | $\mathbf{S H E}_{\text {c }}$ | GRADE 4／AGE 9 |  | GFADE 8／AGE 13 |  | GRADE 12／AGE 17 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | BLOCK | ITEM | BLOCK | ITEM | BLOCK | ITEM |
| H016901 | 1.500 | （0．022） | 0.695 | （0．018） | 0.209 | （0．004） | －－ | －－ | 日2 | 25 | －－ | －－ |
| H017001 | 0.488 | （0．023） | 2.198 | （0．105） | 0.222 | （0．004） | －－ | －－ | H2 | 26 | －－ | －－ |
| H017101 | 1.120 | （0．023） | 0.500 | （0．018） | 0.245 | （0．005） | －－ | －－ | E3 | 16 | －－ | －－ |
| H017102 | 1.528 | （0．038） | －0．593 | （0．023） | 0.294 | （0．010） | －－ | －－ | E3 | 17 | －－ | －－ |
| B017301 | 1.310 | （0．027） | 0.638 | （0．023） | 0.340 | （0．005） | －－ | －－ | 日3 | 18 | －－ | －－ |
| H017401 | 1.118 | （0．024） | 0.445 | （0．018） | 0.253 | （0．006） | －－ | －－ | E3 | ： 9 | －－ | －－ |
| H017501 | 1.267 | （0．029） | －0．372 | （0．017） | 0.215 | （0．009） | －－ | －－ | E3 | 20 | －－ | －－ |
| H017601 | 1.75 .7 | （0．031） | 0.359 | （0．018） | 0.234 | （0．005） | －－ | －－ | E3 | 21 | －－ | －－ |
| ［017701 | 1.367 | （0．032） | 1.459 | （0．048） | 0.331 | （0．004） | －－ | －－ | E3 | 22 | －－ | －－ |
| B017801 | 0.941 | （0．022） | 0.564 | （0．020） | 0.238 | （0．006） | －－ | －－ | E3 | 23 | －－ | －－ |
| ［017901 | 1.952 | （0．028） | 1.369 | （0．037） | 0.186 | （0．003） | －－ | － | E3 | 24 | －－ | －－ |
| 8018001 | 2.571 | （0．026） | 1.109 | （0．029） | 0.154 | （0．003） | －－ | －－ | E3 | 25 | －＊ | －－ |
| H018101 | 1.319 | （0．023） | 1.219 | （0．030） | 0.186 | （0．004） | －－ | －－ | E3 | 26 | －－ | －－ |
| H018201 | 0.818 | （0．020） | －0．289 | （0．014） | 0.152 | （0．008） | －－ | －－ | E4 | 16 | －－ | －－ |
| H018301 | 1.724 | （0．036） | 0.075 | （0．015） | 0.191 | （0．006） | －－ | －－ | 84 | 17 | －－ | －－ |
| H018401 | 1.890 | （0．035） | 0.266 | （0．018） | 0.271 | （0．006） | －－ | －－ | E4 | 18 | －－ | －－ |
| H018501 | 1.016 | （0．025） | 1.112 | （0．034） | 0.285 | （0．005） | －－ | －－ | H4 | 18 | －－ | －－ |
| H018601 | 1258 | （0．025） | 0.567 | （0．019） | 0.235 | （0．005） | －－ | －－ | $\mathrm{H}_{4}$ | 20 | －－ | －－ |
| E018701 | 6.923 | （0．022） | 0.573 | \％018） | 0.203 | （0．006） | －－ | －－ | $\mathrm{H}_{4}$ | 21 | －－ | －－ |
| H018801 | 2.143 | （0．027） | 0.76 | 1．022） | 0.207 | （0．004） | －－ | －－ | H4 | 22 | －－ | －－ |
| E018801 | 2.108 | （0．026） | 0.772 | （0．022） | 0.198 | （0．004） | －－ | －－ | 84 | 23 | －－ | －－ |
| ［018001 | 1.139 | （0．023） | 0.855 | （0．025） | 0.188 | （0．004） | －－ | －－ | H4 | 24 | －－ | －－ |
| H019101 | 1.373 | （0．026） | $1.0^{\circ}$ | （0．030） | 0.288 | （0．004） | －－ | －－ | E4 | 2.5 | －－ | －－ |
| E019201 | 2.390 | （0．025） | 1.1 | （0．028） | 0.122 | （0．003） | －－ | －－ | H／4 | 26 | －－ | －－ |
| 8019301 | 0.507 | （0．012） | －1．7． | （0．043） | 0.246 | （0．009） | －－ | －－ | H ； | 1 | 日6 | 1 |
| E019401 | 1.048 | （0．013） | －0．026 | （0．008） | 0.181 | （0．005） | －－ | －－ | F． 6 | 2 | H6 | 2 |
| E018501 | 1.206 | （0．017） | －0．115 | （0．009） | 0.243 | （0．005） | －－ | －－ | H6 | 3 | 16 | 3 |
| E019601 | 1.068 | （0．013） | 0.822 | （0．016） | 0.452 | （0．003） | －－ | －－ | H6 | 4 | H6 | 4 |
| E018701 | 1.007 | （0．017） | －0．564 | （0．013） | 0.229 | （0．007） | －－ | －－ | H6 | 5 | H6 | 5 |
| E019801 | 0.893 | （0．012） | －0．112 | （0．009） | 0.287 | （0．005） | － | －－ | H6 | 6 | 16 | 6 |
| E018901 | 1.060 | （0．020） | －1．263 | （0．028） | 0.259 | （0．011） | －－ | －－ | H6 | 10 | H6 | 10 |
| E019802 | 0.735 | （0．012） | －0．850 | （0．016） | 0.162 | （0．008） | －－ | －－ | 日6 | 11 | 16 | 11 |
| E020101 | 1.121 | （0．014） | 0.318 | （0．011） | $0 . \therefore 46$ | （0．004） | －－ | －－ | H6 | 8 | H6 | 8 |
| B020201 | 1.959 | （ 0.922 ） | 0.224 | （0．011） | 0.276 | （0．004） | －－ | －－ | 日6 | 7 | R6 | 7 |
| E020301 | 1.657 | （0．013） | 0.816 | （0．014） | 0.350 | （0．003） | －－ | －－ | H6 | 12 | H6 | 12 |
| H020401 | 1.327 | （0．010） | 0.875 | （0．012） | 0.210 | （0．003） | －－ | －－ | H6 | 9 | H6 | 9 |
| H020501 | 1.414 | （0．014） | 0.517 | （0．012） | 0.357 | （0．004） | －－ | －－ | H6 | 13 | 46 | 13 |
| H020601 | 0.751 | （0．010） | 0.087 | （0．008） | 0.217 | （0．005） | －－ | －－ | H6 | 14 | H6 | 14 |
| H020701 | 1.081 | （0．011） | 0.572 | （0．010） | 0.202 | （0．004） | －－ | －－ | H6 | 15 | H6 | 15 |
| E020801 | 1.500 | （0．012） | 0.436 | （0．009） | 0.118 | （0．003） | －－ | －－ | H6 | 16 | H6 | 16 |
| H020901 | 1．， 3 | （0．014） | 0.426 | （0．010） | 0.181 | （0．004） | －－ | －－ | He | 17 | H6 | 17 |
| H021001 | 1.866 | （0．014） | 0.638 | （0．013） | 0.299 | （0．003） | －－ | －－ | H6 | 18 | H6 | 18 |
| H02．1101 | 1.376 | （0．011） | 0.627 | （0．010） | 0.169 | （0．003） | －－ | －－ | H6 | 19 | 36 | 19 |
| H021201 | 0.878 | （0．011） | 0.588 | （0．012） | 0.349 | （0．004） | －－ | －－ | H6 | 20 | H6 | 20 |
| E021301 | 1.862 | （0．013） | 0.690 | （0．011） | 0.198 | （0．003） | －－ | －－ | H6 | 21 | R6 | 21 |
| E221401 | 1.585 | （0．017） | 0.232 | （0．010） | 0.249 | （0．004） | －－ | －－ | H6 | 22 | H6 | 22 |
| E021501 | 1.022 | （0．008） | 1.337 | （0．014） | 0.115 | （0．002） | －－ | －－ | H6 | 23 | H6 | 23 |
| H021601 | 1.390 | （0．021） | 1.077 | （0．015） | 0.289 | （0．003） | －－ | －－ | 日6 | 24 | H6 | 24 |
| ［021701 | 2.608 | （0．016） | 1.713 | （0．028） | 0.295 | （0．002） | －－ | －－ | H6 | 25 | H6 | 25 |
| H021801 | 1.705 | （0．012） | 1.496 | （0．020） | 0.287 | （0．003） | －－ | －－ | H6 | 26 | 46 | 26 |
| ［021901 | 2.025 | （0．012） | 1.186 | （0．016） | 0.255 | （0．003） | －－ | －－ | H6 | 27 | H6 | 27 |
| H022001 | 1.657 | （0．013） | 1.886 | （0．026） | 0.225 | （0．002） | －－ | －－ | H6 | 28 | H6 | 28 |
| H022101 | 1.157 | （0．015） | 0.102 | （0．010） | 0.233 | （0．005） | －－ | －－ | H7 | 1 | 日7 | 1 |
| H022201 | 0.647 | （0．013） | －1．047 | （0．024） | 0.200 | （0．009） | －－ | －－ | 87 | 2 | 87 | 2 |
| 8022301 | 0.896 | （0．011） | 0.674 | （0．012） | 0.179 | （0．004） | －－ | －－ | P ${ }^{\text {P }}$ | 3 | 47 | 3 |
| H022501 | 1.479 | （0．017） | 0.244 | （0．011） | 0.224 | （0．005） | －－ | －－ | 47 | 5 | H7 | 5 |
| 8022601 | 1.378 | （0．021） | 0.006 | （0．012） | 0.303 | （0．006） | －－ | －－ | 日7 | 6 | H7 | 6 |
| H022701 | 0.881 | （0．011） | 0.576 | （0．011） | 0.167 | （0．004） | －－ | －－ | 87 | 7 | H7 | 7 |
| H022801 | 1.064 | （0．017） | 0.003 | （0．011） | 0.370 | （0．006） | －－ | －－ | R7 | 8 | 87 | 8 |
| ［022802 | 1.082 | （0．013） | 0.665 | （0．014） | 0.352 | （0．004） | －－ | －－ | 日7 | 9 | 87 | 9 |
| H022901 | 1.861 | （0．014） | 0.712 | （0．012） | 0.139 | （0．003） | －－ | －－ | 87 | 10 | H7 | 10 |
| H023101 | 2.186 | （0．015） | 0.869 | （0．016） | 0.248 | （0．003） | －－ | －－ | 日7 | 11 | 87 | 11 |
| H023201 | 0.936 | （0．0：2） | 0.308 | （0．010） | 0.193 | （0．005） | －－ | －－ | H7 | 12 | 87 | 12 |
| H023301 | 1.065 | （0．013） | 0.617 | （0．013） | 0.285 | （ ${ }^{\text {n04）}}$ | －－ | －－ | 日7 | 13 | 日7 | 13 |

Table F－6（cor inued）
1988 IRT Parameters，U．S．History Cross－sectional

| HAEP ID | $\underline{1}$ | $\underline{S . E}$ | B | $\underline{S .}$ | C | $\underline{S .}$ | GRADE 4 <br> BLOCK | ／AGE 9 <br> ITEM | GRADE BLOCK | $\text { 8/AGE } 13$ ITEM | $\begin{aligned} & \text { GRADE } \\ & \text { BLOCK } \end{aligned}$ | $\begin{aligned} & \text { 2/AGE } 17 \\ & \text { ITEM } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8023401 | 0.798 | （0．011） | 0.677 | （0．016） | 0.253 | （0．004） | －－ | －－ | 日7 | 14 | H7 | 14 |
| 8023501 | 1.351 | （0．012） | 0.810 | （0．013） | 0.194 | （0．004） | －－ | －－ | 187 | 15 | 87 | 15 |
| 802こ501 | 0.766 | （0．011） | 0.547 | （0．012） | 0.194 | （0．cos） | －－ | －－ | H7 | 16 | H7 | 16 |
| 8023\％01 | 1.843 | （0．012） | 1.101 | （0．016） | 0.204 | （0．003） | －－ | －－ | 87 | 17 | 日7 | 17 |
| 8023801 | 2.350 | （0．016） | 0.793 | （0．015） | 0.221 | （0．003） | －－ | －－ | H7 | 18 | H7 | 18 |
| 8023901 | 1.500 | （0．013） | 0.804 | （0．016） | 0.265 | （0．004） | －－ | －－ | ［7 | 19 | 日7 | 19 |
| 8024001 | 2.335 | （0．016） | 1.683 | （0 028） | 0.252 | （0．003） | －－ | －－ |  | 20 | H7 | 20 |
| 8024101 | 1.068 | （0．010） | 0.843 | （0．012） | 0.079 | （0．003） | － | －－ | H7 | 21 | 17 | 21 |
| 8024201 | 3.021 | （0．016） | 1.390 | （0．024） | 0.238 | （0．003） | －－ | －－ | 87 | 22 | E7 | 22 |
| 8024301 | 1.282 | （0．013） | 1.595 | （0．023） | 0.221 | （0．003） | －－ | －－ | H7 | 23 | H7 | 23 |
| 8024401 | 1.776 | （0．015） | 0.800 | （0．015） | 0.259 | （0．004） | －－ | －－ | 87 | 24 | 87 | 24 |
| 8024501 | 1.669 | （0．013） | 1． 1.03 | （0．017） | 0.250 | （0．003） | －－ | －－ | 87 | 25 | H7 | 25 |
| H024601 | 1.775 | （0．013） | 1.687 | （0．024） | 0.182 | （0．003） | －－ | － | H7 | 26 | ［7 | 26 |
| 802470： | 1.622 | （0．014） | 1.682 | （0．026） | 0.258 | （0．003） | －－ | －－ | 87 | 27 | 87 | 27 |
| H024801 | 3.042 | （0．021） | 1.942 | （0．041） | 0.235 | （0．002） | －－ | －－ | H7 | 28 | H7 | 28 |
| 8024901 | 1.194 | （0．031） | －0．153 | （0．016） | 0.296 | （0．008） | －－ | －－ | H8 | 1 | －－ | －－ |
| 8025003 | 1.018 | （0．013） | 1.776 | （0．028） | 0.168 | （0．004） | －－ | －－ | －－ | －－ | H8 | 1 |
| 8025101 | 0.915 | （0．012） | 0.439 | （0．013） | 0.218 | （0．007） | －－ | －－ | －－ | －－ | 12 | 3 |
| H025201 | 1.866 | （0．014） | 1.311 | （0．022） | 0.349 | （0．004） | －－ | －－ | －－ | －－ | H2 | 4 |
| H025301 | 1.247 | （0．012） | 1.050 | （0．017） | 0.275 | （0．005） | －－ | －－ |  | －－ | $\underline{62}$ | 5 |
| 8025401 | 1.303 | （0．012） | 1.641 | （0．024） | 0.280 | （0．004） | －－ | －－ | －－ | －－ | h2 | 6 |
| H025501 | 0.891 | （0．015） | 0.170 | （0．013） | 0.288 | （0．008） | －－ | －－ | －－ | －－ | H2 | 7 |
| 8025502 | 0.955 | （0．013） | 0.306 | （0．013） | 0.220 | （0．007） | －－ | －－ | － | －－ | $\mathrm{H}_{2}$ | 8 |
| 8025701 | 1.115 | （0．013） | 1.344 | （0．023） | 0.385 | （0．005） | －－ | －－ | －－ | －－ | H2 | 9 |
| 8025801 | 1.006 | （0．011） | 0.744 | （0．014） | 0.164 | （0．006） | －－ | －－ | －－ | －－ | H2 | 10 |
| 8025901 | 1.389 | （0．012： | 0.934 | （0．015） | 0.195 | （0．005） | －－ | －－ | －－ | －－ | H2 | 11 |
| 8026001 | 0.910 | （0．010） | 1.020 | （0．016） | 0.178 | （0．005） | －－ |  |  |  | H2 | 12 |
| 8026101 | 1.168 | （0．012） | 1.203 | （0．019） | 0.285 | （0．005） | －－ | －－ | －－ | －－ | 42 | 13 |
| 8026201 | 1.188 | （0．013） | 0.479 | （0．013） | 0.172 | （0．007） | －－ | －－ | －－ | － | ？ | 14 |
| E026301 | 1.218 | （0．013） | 0.617 | （0．013） | 0.150 | （0．006） | －－ | －－ | － | －－ | － | 15 |
| H026401 | 1.316 | （0．014） | 0.760 | （0．016） | 0.314 | （0．006） | －－ | －－ | －－ | －－ | H2 | 16 |
| 8026501 | 1.337 | （0．012） | 1.421 | （0．020） | 0.250 | （0．004） | －－ | －－ | －－ | －－ | H2 | 17 |
| 8026601 | 1.224 | （0．012） | 1.021 | （0．016） | 0.218 | （0．005） | －－ | －－ | －－ | －－ | H2 | 18 |
| R026701 | c． 977 | （0．012） | 1.400 | （0．022） | 0.280 | （0．005） |  | －－ | －－ | －－ | $\mathrm{H}_{2}$ | 20 |
| 8026801 | 0.744 | （0．010） | 0.6 .3 | （0．015） | 0.156 | （0．006） | －－ | －－ | － | －－ | H2 | 19 |
| H026801 | 1.001 | （0．011） | 0．7．5 | （0．013） | 0.130 | （0．006） | －－ | －－ |  | －－ | H2 | 21 |
| H027001 | 1.223 | （0．011） | 1.257 | （0．018） | 0.215 | （0．005） | －－ | －－ | －－ | －－ | H2 | 22 |
| H027101 | 2.4 .52 | （0．014） | 1.717 | （0．026） | 0.196 | （0．003） | －－ | －－ | －－ | －－ | H2 | 23 |
| 8027201 | 1.205 | （0．012） | 1.592 | （0．023） | 0.268 | （0．004） | －－ | －－ | －－ | －－ | H2 | 24 |
| 8027301 | 1.820 | －9．014） | 1.685 | （0．026） | 0.281 | （0．004） | －－ | －－ | － | －－ | H2 | 25 |
| 8027401 | 1.580 | （0．014） | 1.924 | （0．029） | 0.202 | （0．003） | －－ | －－ | －－ | －－ | H2 | 26 |
| 8027501 | 2.060 | （0．015） | 1.835 | （0．029） | 0.250 | （0．004） | －－ | －－ | －－ | －－ | H2 | 27 |
| 8027601 | 2.026 | （0．019） | 2.105 | （0．039） | 0.226 | （0．003） | －－ | －－ | －－ | － | H2 | 28 |
| 8028001 | 1.379 | （0．022） | 0.148 | （0．017） | 0.392 | （0．008） | －－ | －－ | －－ | －－ | H2 | 1 |
| 8038101 | 0.814 | （0．012） | 0.372 | （0．012） | 0.186 | （0．007） | －－ | －－ | －－ | $\cdots$ | H2 | 2 |

Table F-7
1988 IRT Parameters, Geography Cross-sectional


Table F-7 (continued)
1988 IRT Parameters, Geography Cross-sectional

| MAEP ID | A | $\underline{S . E . E}$ | B | $\underline{S_{1} E_{1}}$ | C | $\underline{S . E .}$ | GRADE BLOCX | $\begin{gathered} / A G E 9 \\ \text { ITEM } \end{gathered}$ | GRADE BI,OCK | $\begin{aligned} & \text { /AGE } 13 \\ & \text { ITEM } \end{aligned}$ | $\begin{gathered} \text { GRADE } 1 \\ \text { BLOCK } \end{gathered}$ | $\begin{aligned} & \text { 2/AGL } 17 \\ & \text { ITEM } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| G005501 | 1.517 | (0.046) | -0.031 | (0.023) | 0.191 | (0.008) | -- | -- | -- | -- | G4 | 13 |
| G005601 | 0.490 | (0.022) | 1.115 | (0.054) | 0.206 | (0.007) | -- | -- | -- | -- | G4 | 14 |
| G005701 | 0.949 | (0.030) | 0.087 | (0.021) | 0.252 | (0.009) | -- | -- | -- | -- | G4 | 15 |
| 6005801 | 1.808 | (0.037) | 0.581 | (0.030) | 0.210 | (0.006) | -- | -- | -- | -- | G4 | 16 |
| G005801 | 1.476 | (0.038) | 0.407 | (0.028) | 0.275 | (0.007) | -- | -- | -- | -- | G4 | 17 |
| G006031 | 0.798 | (0.027) | 1.286 | (0.051) | 0.229 | (0.006) | -- | -- | -- | -- | G4 | 18 |
| G006101 | 2.311 | (0.042) | 0.688 | (0.035) | 0.250 | (0.006) | -- | -- | -- | -- | G4 | 19 |
| -G006201 | 0.276 | (0.025) | 2.294 | (0.213) | 0.322 | (0.007) | -- | -- | -- | -- | G4 | 20 |
| G006301 | 0.344 | (0.018) | 0.356 | (0.025) | 0.185 | (0.010) | -- | -- | -- | -- | G4 | 21 |
| G006501 | 1.149 | (0.027) | 0.852 | (0.031) | 0.146 | (0.006) | -- | -- | -- | -- | G4 | 22 |
| G006601 | 0.079 | (0.014) | 6.425 | (1.183) | 0.192 | (0.008) | -- | -- | -- | -- | G4 | 23 |
| G006701 | 1.542 | (0.048) | 0.180 | (0.028) | 0.293 | (0.008) | -- | -- | -- | -- | G4 | 24 |
| G006801 | 0.985 | (0.031) | 1.746 | (0.066) | 0.175 | (0.005) | -- | -- | -- | -- | G4 | 25 |
| G006901 | 1.071 | (0.027) | 1.037 | (0.037) | 0.176 | (0.006) | -- | -- | -- | -- | G4 | 26 |

Table F-8
1988 IRT Parameters, Mathematics Trend, Age
9

| MAEP ID | A | S. $\underline{H}^{\text {c }}$ | B | $\underline{S . E .}$ | C | S.E. | $\begin{aligned} & \text { AGE } \\ & \text { BLOCK } \end{aligned}$ | $\begin{aligned} & 9 \\ & \text { ITEM } \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| K250601 | 1.097 | (0.078) | -0.231 | (0.045) | 0.212 | (0.0.9) | M2 | 13 |
| H250602 | 0.791 | (0.053) | -0.584 | (0.054) | 0.189 | (0.023) | M2 | 14 |
| H250503 | 1.366 | (0.071) | 0.566 | (0.056) | 0.158 | (0.013) | M2 | 15 |
| H250701 | 0.743 | (0.044) | -0.850 | (0.059; | 0.139 | (0.022) | M1 | 7 |
| 1250702 | 1.001 | (0.048) | 0.841 | (0.054) | 0.117 | (0.011) | M1 | 8 |
| \$25070? | 1.054 | (0.064) | 0.015 | (0.033) | 0.123 | (0.016) | M1 | 9 |
| H250901 | 0.598 | (0) | -0.411 | (0.040) | 0.178 | (0.019) | M2 | 17 |
| \%250902 | 1.101 | ${ }^{\text {a }}$ | 1.181 | (0.072) | 0.157 | (0.010) | M2 | 18 |
| N250903 | 0.970 |  | 0.685 | (0.050) | 0.109 | (0.012) | M2 | 19 |
| H251401 | 0.654 | (0.042) | -0.265 | (0.038) | 0.151 | (0.021) | M2 | 16 |
| N252001 | 1.244 | (0.131) | 2.670 | (0.372) | 0.196 | (0.009) | M2 | 25 |
| H252101 | 0.839 | (0.060) | 1.752 | (0.143) | 0.170 | (0.012) | M1 | 25 |
| \%257201 | 1.233 | (0.084) | -0.533 | (0.055) | $0.28{ }^{3}$ | (0.020) | M1 | 11 |
| N257801 | 0.588 | (0.038) | -0.909 | 0.063) | 0.240 | (0.022) | M2 | 3 |
| N258501 | 0.876 | (0.056) | 1.029 | (0.092) | 0.236 | (0.012) | M3 | 19 |
| H261401 | 0.509 | (0.042) | -0.145 | (0.037) | 0.232 | (0.020) | N2 | 12 |
| ล262201 | 0.441 | (0.036) | -1.218 | (0.105) | 0.196 | (0.024) | M1 | 10 |
| H262401 | 0.594 | (0.069) | 0.928 | (0.116) | 0.300 | (0.013) | M3 | 18 |
| n262501 | 0.269 | (0.031) | -0.688 | (0.084) | 0.227 | (0.019) | M1 | 19 |
| 1262502 | 0.254 | (0.062) | 6.169 | (1.519) | 0.172 | (0.008: | M1 | 20 |
| \$263401 | 0.888 | (0.063) | -0.701 | (0.063) | 0.299 | (0.022) | M2 | 4 |
| \%263432 | 1.010 | (0.080) | -0.203 | (0.043) | 0.282 | (0.018) | M2 | 5 |
| R265401 | 1.582 | (0.164) | 2.224 | (0.360) | 0.340 | (0.011) | M1 | 21 |
| H266101 | 0.542 | (0.052) | 1.917 | (0.192) | 0.20 | (0.011) | M1 | 22 |
| H267001 | 0.597 | (0.045) | -1.392 | (0.110) | 0.249 | (0.026) | M3 | 16 |
| R267601 | 1.268 | (0.066) | -0.611 | (0.049) | 0.156 | (0.020) | M1 | 3 |
| 1267602 | 1.103 | (0.057) | -0.074 | (0.031) | 0.104 | (0.014) | M1 | 18 |
| N268201 | 1.248 | (0.058) | 1.026 | (0.068) | 0.201 | (0.010) | M1 | 24 |
| H269001 | 0.565 | (0.087) | 4.055 | (0.634) | 0.082 | (0.007) | M2 | 26 |
| N269101 | 0.540 | (0.071) | 2.970 | (0.402) | 0.238 | (0.009) | M1 | 23 |
| N270001 | 0.448 | (0.030) | -0.727 | (0.053) | 0.000 | (0.000) | M1 | 14 |
| H270901 | 0.894 | (0.037) | -2.165 | (0.098) | 0.000 | (0.000) | M1 | 1 |
| \$271101 | 0.626 | (0.034) | -0.305 | (0.028) | 0.000 | (0.000) | M2 | 24 |
| \$272101 | 0.980 | (0.096) | -0.533 | (0.071) | 0.286 | (0.024) | H3 | 17 |
| \$272102 | 0.992 | (0.082) | 0.034 | (0.039) | 0.173 | (0.018) | M1 | 15 |
| 5272301 | 0.946 | (0.052) | -1.947 | (0.123) | 0.180 | (0.040) | M2 | 1 |
| \$272801 | 0.576 | (0.049) | -2.007 | (0.176) | 0.180 | (0.036) | M3 | 15 |
| H273501 | 0.744 | (0.058) | -0.684 | (0.068) | 0.261 | (0.026) | M2 | 6 |
| K275401 | 0.985 | (0.043) | -0.478 | (0.033) | 0.000 | (0.000) | M2 | 7 |
| \$276001 | 0.878 | (0.037) | -0.975 | (0.049) | 0.000 | (0.000) | M2 | 21 |
| 1276002 | 0.778 | (0.035) | 1.507 | (0.074) | 0.000 | (0.000) | M2 | 22 |
| H276101 | 0.963 | (0 040) | -0.758 | (0.042) | 0.000 | (0.000) | M1 | 12 |
| R276601 | 1.061 | (0.062) | -1.010 | (0.076) | 0.170 | (0.029) | H2 | 2 |
| \$276801 | 0.490 | (0.045) | -3.763 | (0.353) | 0.000 | (0.000) | M1 | 4 |
| 1276802 | 0.725 | (0.038) | -1.591 | (0.090) | 0.000 | (0.000) | M1 | 5 |
| \$276803 | 0.621 | (0.035) | 0.147 | (0.027) | 0.000 | (0.000) | M1 |  |
| N277401 | 1.028 | (0.083) | -1.573 | (0.114) | 0.177 | (0.038) | M1 | 2 |
| \$277501 | 0.842 | (0.039) | -0.421 | (0.031) | 0.000 | (0.000) | M2 | 8 |
| H277801 | 1.438 | (0.049) | -0.522 | (0.037) | 0.000 | (0.000) | M2 | 9 |
| K277802 | 1.267 | (0.053) | 0.172 | (0.029) | 0.000 | (0.000) | M2 | 10 |
| 5277603 | 1.507 | (0.063) | -0.011 | (0.030) | 0.000 | (0.000) | M2 | 11 |
| H284001 | 0.981 | (0.050) | -0.383 | (0.033) | 0.000 | (0.000) | M1 | 16 |
| 8284002 | 0.792 | (0.037) | 2.054 | (0.103) | 0.000 | (0.000) | M1 | 17 |
| R286101 | 0.814 | (0.039) | -0.521 | (0.035) | 0.000 | (0.000) | M1 | 13 |

Table F-9
1988 IRT Parameters, Mathematics Trend, Age 13

| HAEP ID | $\therefore$ | S.E. | B | S.E. | C | S.E. | $\begin{aligned} & \text { AGE } \\ & \text { BLOCK } \end{aligned}$ | $\begin{aligned} & 13 \\ & \text { ITE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N250701 | 0.688 | (0.035) | -2.717 | (0.143) | 0.106 | (0.033) | M2 | 14 |
| N250702 | 1.145 | (0.051) | -0.797 | (0.047) | 0.102 | (0.018) | M2 | 15 |
| \$250703 | 0.649 | (0.031) | -2.110 | (0.106) | 0.110 | (0.028) | M2 | 16 |
| \$250901 | 0.423 | (0.029) | -2.565 | (0.176) | 0.152 | (0.027) | M1 | 25 |
| N250902 | 1.020 | (0.049) | -0.349 | (0.031) | 0.075 | (0.014) | M1 | 26 |
| N250503 | 0.820 | (0.039) | -1.510 | (0.078) | 0.096 | (0.025) | M1 | 27 |
| N252001 | 1.423 | (0.064) | 0.832 | (0.062) | 0.179 | (0.010) | M2 | 40 |
| N252102 | 0.933 | (0.056) | 0.623 | (0.054) | 0.240 | (0.013) | M1 | 4. |
| $\mathrm{N} 2528^{\text {n }} 1$ | 1.249 | (0.972) | -0.036 | (0.033) | 0.109 | (0.015) | M1 | 32 |
| N253701 | 0.361 | (0.031) | -0.504 | (0.050) | 0.271 | (0.016) | M2 | 22 |
| N254001 | 1.161 | (0.084) | -0.479 | (0.047) | 0.118 | (0.017) | M3 | 28 |
| N254601 | 1.092 | (0.054) | -1.553 | (0.089) | 0.284 | (0.030) | M1 | 15 |
| N254002 | 0.744 | (0.045) | 1.413 | (0.c95) | 0.235 | (0.009) | M1 | 46 |
| N255.01 | 1.317 | (0.044) | 1.268 | (0.063) | 0.139 | (0.008) | M1 | 50 |
| N25610: | 0.760 | (0.033) | -1.0.i6 | (0.05\%) | 0.000 | (0.000) | M2 | 17 |
| N258501 | $0.86{ }^{\circ}$ | (0.069) | 0.581 | :0.061) | 0.318 | (0.012) | M3 | 30 |
| N256801 | 1.05. | (0.069) | 0.841 | (0.072) | 0.312 | (0.011) | M3 | 32 |
| \%257601 | 1.280 | (0.055) | -0.538 | (0.035) | 0.000 | (0.000) | M1 | 35 |
| N 258801 | 1.273 | (0.055) | 1.124 | (0.076) | 0.397 | (0.010) | M1 | 38 |
| N258802 | 1.619 | (0.078) | 0.484 | (0.051) | 0.254 | (0.011) | M2 | 31 |
| N 258803 | 1.191 | (0.044) | 1.351 | (0.068) | 0.170 | (0.007) | M2 | 41 |
| \$260101 | 1.299 | (0.072) | 0.415 | (0.042) | 0.160 | (0.011) | M1 | 43 |
| \%261001 | 0.833 | (0.049) | . 011 | (0.070) | 0.219 | (0.010) | H1 | 47 |
| N261201 | 0.525 | (0.052) | 1.619 | (0.166) | 0.219 | (0.012) | M2 | 38 |
| N261301 | 0.700 | (0.048) | 0.768 | (0.062) | 0.113 | (0.012) | M2 | 37 |
| \$261501 | 0.661 | (0.056) | -0.545 | (0.055) | 0.131 | (0.020) | M2 | 34 |
| \$261601 | 0.344 | (0.043) | 1.903 | (0.239) | 0.155 | (0.012) | M2 | 36 |
| \$261801 | 0.679 | (0.053) | 0.044 | (0.033) | 0.223 | (0.017) | M2 | 35 |
| \$262201 | 0.520 | (0.037) | -1.789 | (0.132) | 0.361 | (0.023) | M2 | 18 |
| \$262401 | 0.854 | (0.054) | -0.556 | (0.048) | 0.323 | (0.017) | M1 | 28 |
| N262501 | 0.360 | (0.033) | -0.237 | (0.034) | 0.348 | (0.015) | M1 | 33 |
| N262502 | 1.216 | (0.068) | 1.974 | (0.151) | 0.379 | (0.008) | M1 | 34 |
| \$263101 | C. 527 | (0.027) | -0.291 | (0.024) | 0.000 | (0.000) | M1 | 39 |
| N263401 | 0.675 | (0.046) | -2.751 | (0.196) | 0.257 | (0.040) | M2 | 12 |
| ก263402 | 0.635 | (0.045) | -2.478 | (0.181) | 0.263 | (0.036) | M2 | 13 |
| 1263501 | 1.389 | (0.092) | 0.187 | (0.036) | 0.115 | (0.012) | M2 | 30 |
| N264701 | 1.175 | (0.056) | 0.867 | (0.059) | 0.206 | ( $\mathrm{C} . \mathrm{L} 10$ ) | M2 | -3 |
| N265201 | 0.810 | (0.062) | -1.548 | (0.127) | 0.339 | (0.032) | M1 | 36 |
| N265202 | 0.6 .13 | (0.074) | -0.176 | (0.041) | 0.338 | (0.018) | M1 | 30 |
| N265901 | 0.933 | (0.060) | 0.930 | (0.079) | 0.333 | (0.012) | M1 | 40 |
| N265902 | 1.077 | (0.073) | 1.170 | (0.103) | 0.328 | (0.011) | M3 | 31 |
| N266101 | 0.849 | (0.065) | -0.161 | (0.033) | 0.292 | (0.014) | M3 | 27 |
| N266801 | 0.559 | (0.038) | -1.108 | (0.080) | 0.248 | (0.021) | M1 | 31 |
| N267201 | 0.776 | (0.058) | -1.051 | (0.087) | 0.254 | (0.026) | M1 | 23 |
| N268001 | 1.012 | (0.053) | 0.382 | (0.036) | 0.152 | (0.011) | M1 | 44 |
| N268101 | 0.752 | (0.046) | -0.384 | (0.037) | 0.213 | (0.31) | M2 | ? 6 |
| N269801 | 0.664 | (0.049) | -6 274 | (0.035) | 0.288 | (0.015) | 43 | 29 |
| N270301 | 0.421 | (0.031) | -1.596 | (0.119) | 0.126 | (0.022) | M2 | 20 |
| N270302 | 1.018 | (0.047) | 2. 194 | (0.118) | 0.051 | (0.005) | M2 | 21 |
| N273801 | 1.786 | (0.111) | 0. . 35 | (0.047) | 0.184 | (0.023) | M1 | 37 |
| N274801 | 0.629 | (0.051) | -0.192 | (0.036) | 0.269 | (0.018) | M1 | 29 |
| N275001 | 0.946 | (0.040) | 0.363 | (0.027) | 0.000 | (0.000) | M1 | 42 |
| \$275301 | 0.372 | (0.028) | -1.728 | (0.432) | 0.147 | (0.022) | M3 | 25 |
| N276801 | 0.433 | (0.049) | -4.715 | (0.542; | 0.000 | (0.000) | M1 | 17 |
| N276802 | 0.493 | (0.044) | -3.957 | (0.359) | 0.000 | (0.000) | M1 | 18 |
| N276803 | 0.435 | (0.033) | -1.927 | (0.148) | 0.000 | (0.000) | M1 | 19 |
| N277401 | 0.778 | (6.056) | -2.903 | (0.220) | 0.145 | (0.042) | M2 | $d$ |
| 1277801 | 0.856 | (0.036) | -2.504 | (0.113) | 0.000 | (0.000) | M1 | 20 |
| 1277602 | 0.624 | (0.030) | -1.8.5 | (0.085) | 0.000 | (0.000) | M ${ }^{\text {P }}$ | 21 |
| 1277603 | 0.617 | (0.031) | -2.287 | (0.177) | 0.000 | (0.c00) | M1 | 22 |
| N277901 | 0.591 | (0 033) | -3.506 | (0 199) | 0.000 | (0.000) | M2 | 9 |
| +277902 | 0.688 | (0.036) | -3.301 | (0.178) | 0.000 | (0.000) | 1. 2 | 10 |
| N277903 | 0.573 | (0.030) | -2.859 | (0.154) | 0.000 | 10.000) | H 2 | 11 |
| - 278901 | 1.559 | (0.086) | 0.415 | (0.051) | 0.212 | (0.013) | M2 | 32 |

Table F-9 (continued)
1988 IRT Parameters, Mathematics Trend, Age 13

| NAEP ID | A | S.E. | B | $\underline{S_{1} E_{1}}$ | C | $\underline{S .}$ | $\begin{gathered} \text { AGE } \\ \text { BLOCK } \end{gathered}$ | $\begin{aligned} & 13 \\ & \text { ITEM } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H278968 | 0.720 | (0.051) | 1.338 | (0.107) | 0.216 | (0.012) | M2 | 29 |
| H278903 | 1.338 | (0.058) | 1.066 | (0.073) | 0.169 | (0.010) | M2 | 42 |
| H278904 | 1.315 | (0.057) | 1.487 | (0.097) | 0.194 | (0.010) | M1 | 49 |
| N281401 | 0.728 | (0.050) | 1.711 | (0.127) | 0.106 | (0.009) | M2 | 39 |
| H281901 | 0.925 | (0.040) | -2.181 | (0.105) | 0.146 | (0.034) | M1 | 15 |
| H282201 | 1.063 | (0.058) | 0.576 | (0.051) | 0.343 | (0.011) | 12 | 28 |
| H282202 | 0.936 | (0.066) | -0.458 | (0.045) | 0.255 | (0.017) | M3 | 26 |
| N283101 | 1.578 | (0.049) | 1.554 | (0.080) | 0.148 | (0.006) | M1 | 51 |
| *286201 | 0.88.. | (0.051) | -0.882 | (0.061) | 0.243 | (0.021) | M1 | 24 |
| H286301 | 1.189 | (0.050) | 0.660 | (0.046) | 0.205 | (0.010) | M1 | 45 |
| 8286501 | 1.256 | (0.042) | 1.161 | (0.058) | 0.141 | (0.008) | M1 | 48 |
| H286502 | 1.671 | (0.054) | 1.171 | (0.068) | 0.160 | (0.006) | M2 | 43 |
| N286601 | 1.698 | (0.059) | -0.194 | (0.029) | 0.000 | (0.000) | M2 | 23 |
| N286602 | 1.363 | (0.051) | -0.247 | (0.027) | 0.000 | (0.000) | : 2 | 24 |
| H2®5603 | 1.494 | (0.050) | 0.405 | (0.030) | 0.000 | (0.000) | M2 | 25 |

Table F-10
1988 IRT Parameters, Mathematics Trend, Age 17

| MAEP ID | A | $\underline{S_{1} \mathbf{E}_{1}}$ | B | $\underline{S_{1} E_{1}}$ | C | S, | $\begin{gathered} \text { AGE } \\ \text { BLOCK } \end{gathered}$ | $\begin{aligned} & 17 \\ & \text { ITEM } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N251101 | 1.166 | (0.035) | 0.949 | (0.041. | 0.000 | (0.000) | M1 |  |
| N251701 | 0.882 | (0.036) | 0.005 | (0.029) | 0.147 | (0.015) | M2 | 41 |
| N253901 | 1.647 | (0.083) | 0.011 | (0.041) | 0.258 | (0.013) | M1 | 39 |
| N25390? | 0.930 | (0.057) | 1.032 | (0.0l | 0.479 | (0.011) | M1 | 40 |
| N253903 | 1.168 | (0.048) | 0.915 | (0.060) | 0.322 | (0.011) | M1 | 41 |
| N253804 | 1.576 | (0.062) | 0.700 | (0.058) | 0.359 | (0.011) | Ki | 42 |
| N254001 | 0.923 | (0.044) | -0.847 | (0.050) | 0.186 | (0.020) | M2 | 21 |
| N254301 | 1.035 | (0.051) | 0.084 | (0.033) | 0.258 | (0.013) | M1 | 33 |
| N254601 | 1.300 | (0.049) | -1.815 | (0.089) | 0.237 | (0.037) | M2 | 15 |
| N254602 | 1.575 | (0.070) | -0.024 | (0.036) | 0.21 .1 | (0.012) | M1 | 27 |
| N255301 | 1.538 | (0.052) | 1.503 | (0.086) | 0.219 | (0.009) | M2 | 46 |
| N255501 | 0.808 | (0.054) | 0.668 | (0.059) | 0.232 | (0.013) | M3 | 33 |
| N255601 | 1.248 | (0.058) | 1.576 | (0.107) | 0.332 | (0.011) | M2 | 45 |
| N255701 | 1.451 | (0.061) | -0.609 | (0.045) | 0.201 | (0.018) | M1 | 32 |
| N255801 | 0.679 | (0.030) | 1.668 | (0.080) | 0.000 | (0.000) | M2 | 49 |
| N256001 | 1.055 | (0.068) | 0.066 | (0.027) | 0.000 | (0.000) | M3 | 34 |
| N256101 | 1.003 | (0.029) | -1.407 | (0.051) | 0.000 | (0.000) | M1 | 15 |
| N256801 | 1.300 | (0.062) | -0.268 | (0.038) | 0.265 | (0.015) | M1 | 36 |
| \$257101 | 0.578 | (0.054) | 1.853 | (0.181) | 0.254 | (0.c11) | M3 | 35 |
| N258801 | 1.904 | (0.110) | 0.216 | (0.048) | 0.284 | (0.012) | M2 | 38 |
| H258802 | 1.728 | (0.089) | -0.175 | (0.042) | 0.256 | (0.014) | M1 | 26 |
| स258803 | 0.992 | (0.045) | 0.250 | (0.033) | 0.222 | (0.012) | M1 | 37 |
| N258804 | 0.682 | (0.037) | -1.852 | (0.105) | 0.254 | (0.029) | M1 | 18 |
| N259001 | 1.188 | (0.045) | -0.218 | (0.025) | n. 000 | (0.000) | M2 | 31 |
| N258901 | 1.235 | (0.066) | -0.225 | (0.037) | U. 289 | (0.014) | M1 | 28 |
| N260101 | 1.460 | (0.055) | -0.973 | (0.054) | 0.185 | (0.023) | M2 | 20 |
| N260601 | 1.699 | (0.035) | -1.136 | (0.043) | 0.000 | (0.000) | M1 | 16 |
| N260801 | 1.301 | (0.044) | 0.388 | (0.030) | 0.000 | (0.000) | M2 | 43 |
| N260801 | 2.210 | (0.113) | 0.086 | ( 6.045 ) | 0.157 | (0.012) | M1 | 35 |
| N261001 | 0.806 | (0.045) | -0.734 | (0.052) | 0.216 | (0.022) | M2 | 40 |
| W261201 | 0.510 | (0.031) | -1.518 | (0.097) | 0.215 | (0.02い) | M2 | 26 |
| N261301 | 0.581 | (0.031) | -1.299 | (0.074) | 0.153 | (0.022) | M2 | 28 |
| N261501 | 0.775 | ( 0.036 ) | -2.237 | (0.113) | 0.166 | (0.035) | M2 | 24 |
| N261601 | 0.472 | (0.032) | 0.708 | (0.055) | 0.209 | (0.012) | M2 | 27 |
| H261801 | 0.589 | (5.032) | -1.985 | (0.114) | 0.211 | (0.029) | M2 | 25 |
| N262301 | 0.517 | (0.035) | -1.239 | (0.089) | 0.233 | (0.023) | M2 | 17 |
| N262401 | 0.820 | (0.040) | -1.326 | (0.068) | 0.255 | (0.025) | M1 | 17 |
| 1262501 | 0.878 | (0.060) | 0.217 | (0.043) | 0.477 | (0.013) | M2 | 35 |
| N262502 | 0.598 | (0.045) | 1.756 | (0.141) | 0.365 | (0.010) | M2 | 36 |
| N262601 | 0.756 | (0.038) | 0.432 | (0.038) | 0.233 | (0.012) | M1 | 38 |
| N2:3001 | 0.664 | (0.027) | 0.707 | (0.035) | 0.000 | (0.000) | M1 | 43 |
| N263101 | 0.754 | (0.032) | -0.569 | (0.033) | 0.000 | (0.000) | M2 | 37 |
| N263201 | 0.973 | (0.050) | -1.348 | (0.080) | 0.361 | (0.026) | M2 | 18 |
| N263202 | 0.659 | (0.042) | -0.434 | (0.041) | 0.352 | (0.C16) | M2 | 19 |
| N264301 | 0.800 | (0.028) | 0.388 | (0.040) | 0.000 | (0.000) | M1 | 47 |
| 1264701 | 1.578 | (0.082) | -0.033 | (0.038) | 0.216 | (0.J15) | M2 | 39 |
| N266501 | 0.775 | (0.060) | -0.326 | (0.041) | 0.244 | (0.017) | M3 | 31 |
| N268801 | 0.817 | (0.039) | 1.654 | (0.08.5) | 0.102 | (0.009) | M2 | 48 |
| N2C8801 | 1.691 | (0.062) | 0.639 | (0.054) | 0.184 | (0.012) | M2 | 47 |
| N268001 | 0.938 | (0.046) | -0.398 | (0.034) | 0.169 | (0.016) | M2 | 22 |
| N270301 | 0.942 | (0.036) | -1.403 | (0.063) | 0.140 | (0.026) | M1 | 30 |
| N270302 | 1.586 | (0.059) | 0.119 | (0.031) | 0.067 | (0.009) | M1 | 31 |
| N271301 | 1.374 | (0.120) | 0185 | (0.048) | 0.261 | (0.014) | M3 | 32 |
| N276501 | 1.030 | (0.033) | -0.759 | (0.035) | 0.000 | (0.000) | M1 | 23 |
| N278502 | 0.885 | (0.032) | -0.559 | (0.030) | 0.000 | (0.000) | M1 | 24 |
| N278503 | 0.800 | (0.030) | -0.831 | (0.037) | 0.000 | (0.000) | M1 | 25 |
| H278801 | 1.128 | (0.056) | -0.229 | (0.034) | 0.232 | (0.015) | M2 | 23 |
| N278802 | 1.162 | (0.065) | 0.014 | (0.036) | 0.236 | (0.016) | M2 | 42 |
| H278903 | 1.921 | (0.092) | 0.365 | (0.051) | 0.227 | (0.013) | M2 | 44 |
| H278805 | 1.178 | (0.046) | 1.053 | (0.063) | 0.283 | (0.010) | M1 | 44 |
| N280401 | 0.550 | (0.026) | -1 323 | (0.067) | 0.000 | (0.000) | M2 | 30 |
| N281401 | 0.685 | (0.032) | -0.24j | (0.027) | 0.108 | (0.015) | M2 | 29 |
| H282801 | 1.806 | (0.054) | 1.310 | (0.075) | 0.206 | (0.010) | M1 | 48 |
| N286001 | 0.766 | (0.035) | -0.944 | (3.051) | 0.169 | (0.020) | M1 | 19 |

Table F-10 (continued)
1988 IRT Parameters, Mathematics Trend, Age 17

| NAEP ID | 1 |  | B | $\underline{S_{1} \mathbf{E}_{1}}$ | C | $S_{\underline{L}} E_{1}$ | $\begin{aligned} & \text { AGE } \\ & \text { BLOCK } \end{aligned}$ | $\begin{aligned} & 17 \\ & \text { ITEM } \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| *286002 | 0.855 | (0.032) | -1.658 | (0.071) | 0.121 | (0.027) | M1 | 20 |
| N286301 | 1.350 | (0.071) | -0.450 | (0.043) | 0.221 | (0.017) | M2 | 33 |
| H286302 | 1.088 | (0.056) | -0.439 | (0.044) | 0.289 | (0.018) | M1 | 22 |
| N285501 | 1.142 | (0.049) | -0.847 | (0.049) | 0.149 | (0.021) | M2 | 34 |
| N286502 | 1.797 | (0.097) | -0.123 | (0.038) | 0.191 | (0.013) | M1 | 34 |
| K287101 | 1.358 | (0.060) | -0.382 | (0.037) | 0.202 | (9.014) | HI | 29 |
| K287102 | 1.114 | (0.050) | -0.556 | (0.040) | 0.172 | (0.018) | M2 | 32 |
| \$287301 | 0.793 | (0.030) | 0.120 | (0.022) | 0.000 | (0.000) | M1 | 45 |
| N287302 | 0.994 | (0.031) | 1.226 | (0.048) | 0.000 | (0.000) | M1 | 46 |

Table F-ll
1988 IRT Parameters, Science Trend, Age 9

| MAEP ID | A | $\underline{S .}$ | 日 | $\underline{S} \underline{E}^{1}$ | C | $\underline{S . E .}$ | $\begin{aligned} & \text { AGE } \\ & \text { BLOCK } \end{aligned}$ | $\begin{aligned} & 9 \\ & \text { ITEM } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \%400001 | 0.650 | (0.056) | -1.173 | (0.109) | 0.237 | (0.030) | S1 | 6 |
| 8400101 | 0.294 | (0.069) | 2.732 | (0.643) | 0.460 | (0.016) | S1 | 15 |
| H40U102 | 0.455 | (0.076) | 1.909 | (0.329) | 0.424 | (0.015) | S1 | 16 |
| \%400301 | 0.993 | (0.113) | -0.130 | (0.055) | 0.340 | (0.021) | S1 | 8 |
| 1400401 | 1.246 | (0.092) | -1.214 | (0.117) | 0.417 | (0.035) | S1 | 9 |
| H400402 | 1.825 | (0.126) | -0.733 | (0.089) | 0.280 | (0.027) | S1 | 10 |
| K400403 | 0.566 | (0.063) | -1.941 | (0.223) | 0.422 | (0.036) | S1 | 11 |
| 8400404 | 1.164 | (0.098) | -0.651 | (0.078) | 0.322 | (0.026) | S1 | 12 |
| \%400405 | 1.012 | (0.095) | -0.748 | (0.090) | 0.390 | (0.027) | S1 | 13 |
| 8400501 | 0.545 | (0.063) | 0.593 | (0.083) | 0.330 | (0.018) | S1 | 14 |
| \%400601 | 0.648 | (0.062) | -0.202 | (0.044) | 0.225 | (0.021) | S1 | 17 |
| 8400701 | 0.741 | (0.066) | 0.070 | (0.040) | 0.202 | (0.019) | S1 | 18 |
| H400901 | 0.333 | (0.049) | 1.804 | (0.268) | 0.253 | (0.015) | S1 | 19 |
| 8401J01 | 0.542 | (0.053) | 0.729 | (0.082) | 0.210 | (0.016) | S1 | 20 |
| \%401101 | 0.292 | (0.048) | 1.737 | (0.288) | 0.275 | (0.016) | S1 | 21 |
| \%401201 | 0.851 | (0.080) | 2.036 | (0.215) | 0.243 | (0.011) | S1 | 22 |
| H401301 | 0.504 | (0.060) | 1.478 | (0.183) | 0.269 | (0.014) | S1 | 23 |
| \%401501 | 0.260 | (0.047) | 0.249 | (0.060) | 0.347 | (0.019) | S2 | 1 |
| \%401601 | 0.598 | (0.058) | -1.492 | (0.150) | 0.207 | (0.033) | S2 | 2 |
| \%401702 | 0.304 | (0 059) | C. 556 | (0.118) | 0.452 | (0.018) | S2 | 4 |
| \%401703 | 0.298 | (0.059) | 1.035 | (0.209) | 0.443 | (0.017) | S2 | 5 |
| \%401801 | 0.686 | (0.109) | -0.035 | (0.057) | 0.447 | (0.021) | s2 | 6 |
| \$401802 | 0.570 | (0.082) | -0.962 | (0.147) | 0.432 | (0.028) | S2 | 7 |
| \%401803 | 0.455 | (0.075) | -0.279 | (0.068) | 0.440 | (0.023) | S2 | 8 |
| H401804 | 0.346 | (0.068) | 1.698 | (0.338) | 0.424 | (0.016) | S2 | 9 |
| \$401901 | 0.469 | (0.072) | 1.855 | (0.291) | 0.318 | (0.015) | S2 | 10 |
| \%402001 | 0.935 | (0.091) | -1.045 | (0.118) | 0.381 | (0.032) | S2 | 11 |
| \%402002 | 1.224 | (0.106) | -1.036 | (0.115) | 0.386 | (0.034) | S2 | 12 |
| H402005 | 0.712 | (0.103) | -0.510 | (0.091) | 0.411 | (0.026) | S2 | 15 |
| 8402101 | 0.562 | (0.061) | -0.332 | (0.051) | 0.206 | (0.022) | S2 | 16 |
| H4J2201 | C. 231 | (0.039) | 0.333 | (0.067) | 0.245 | (0.019) | S2 | 17 |
| \%402401 | 0.253 | (0.051) | 2.764 | (0.561) | 0.235 | (0.015) | S2 | 18 |
| \%402501 | 0.62? | (0.090) | 2.692 | (0.407) | 0.258 | (0.011) | S2 | 19 |
| H402602 | 0.401 | (0.063) | -0.686 | (0.117) | 0.439 | (0.022) | S2 | 21 |
| \$402701 | 0.453 | (0.058) | 1.980 | (0.261) | 0.199 | (0.013) | S2 | 23 |
| H402801 | 1.084 | (0.083) | 2.031 | (0.189) | 0.161 | (0.009) | S2 | 24 |
| N402901 | 0.373 | (0.094) | 4.734 | (1.194) | 0.185 | (0.010) | S2 | 25 |
| 8403001 | 0.422 | (0.062) | -5.043 | (0.745) | 0.228 | (0.053) | S3 | 12 |
| \%403101 | 0.638 | (0.062) | -3. 422 | (0.342) | 0.232 | (0.051) | S3 | 13 |
| \%403201 | 0.404 | (0.048) | -3.042 | (0.368) | 0.212 | (0.039) | S3 | 14 |
| H403202 | 0.291 | (0.038) | -1.195 | (0.161) | 0.238 | (0.024) | S3 | 15 |
| H403301 | 0.624 | (0.056) | -1.079 | (0.105) | 0.218 | (0.029) | S3 | 16 |
| H403402 | 0.355 | (0.043) | 0.596 | (0.089) | 0.338 | (0.017) | S3 | 17 |
| H403501 | 0.563 | (0 067) | 0.257 | (0.057) | 0.400 | (0.019) | S3 | 18 |
| \$403502 | 0.551 | (0.059) | -1.918 | (0.211) | $0.40{ }^{\prime}$ | (0.034) | S3 | 19 |
| N403503 | 0.412 | (0.060) | 0.152 | (0.054) | $0 \% 09$ | (0.020) | S3 | 20 |
| N403601 | 0.811 | (0.069) | 0.534 | (0.065) | 0.254 | (0.016) | S3 | 21 |
| N403701 | 3.290 | (0.390) | -0.287 | (0.108) | 0.312 | (0.021) | S3 | 22 |
| N403702 | 3.150 | (0.247) | -0.496 | (0.118) | 0.374 | (0.023) | S3 | 23 |
| \$403703 | 2.076 | (0.204) | -0.326 | (0.077) | 0.302 | (0.021) | S3 | 24 |
| H403801 | 0.359 | (0.057) | 1.082 | (0.180) | 0.428 | (0.017) | S3 | 25 |
| H403803 | 0.497 | (0.056) | -0.991 | (0.119) | 0.393 | (0.026) | S3 | 27 |
| N403804 | 0.484 | (0.063) | -0.506 | (0.080) | 0.408 | (0.023) | S3 | 28 |
| N403901 | 0.653 | (0.056) | -0.309 | (0.046) | 0.193 | (0.023) | S3 | 29 |
| 8404001 | 0.203 | (0.036) | 1.764 | (0.317) | 0.223 | (0.016) | S3 | 30 |
| N404201 | 0.425 | (0.050) | 1.363 | (0.165) | 0.216 | (0.015) | S3 | 31 |

Table F-12
1988 IRT Pa"ameters, Science Trend, Age 13

| MAEP ID | A | $\underline{S_{1} E_{1}}$ | B | $\underline{S_{\text {, }} \mathbf{E}_{1}}$ | C | $\underline{S . E}$ | $\begin{gathered} \text { AGE } \\ \text { BLOCK } \end{gathered}$ | $\begin{aligned} & 13 \\ & \text { ITEM } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18400201 | 0.464 | (0.041) | -1.666 | (0.151) | 0.206 | (0.029) | S1 | 16 |
| N401201 | 0.544 | (0.049) | 0.415 | (0.051) | 0.249 | (0.016) | S1 | 28 |
| N404501 | 1153 | (0.055) | -2.021 | (0.119) | 0.164 | (0.042) | S1 | 12 |
| N404601 | 0.318 | (0.038: | -0.641 | (0.084) | 0.228 | (0.021) | S1 | 13 |
| 11404701 | 0.601 | (0.043) | -1.538 | (0.117) | 0.194 | (0.029) | S1 | 14 |
| H404702 | 0.449 | (0.041) | -0.140 | (0.033) | 0.201 | (0.018) | S1 | 15 |
| N404802 | 1.372 | (0.085) | -1.624 | (0.136) | 0.422 | (0.043) | S1 | 20 |
| N404802 | 1.610 | (0.140) | -0.514 | (0.077) | 0.360 | (0.022) | S1 | 21 |
| $\mathrm{K404803}$ | 0.856 | (0.078) | 0.240 | (0.049) | 0.321 | (0.016) | S1 | 22 |
| K404901 | 0.691 | (0.051) | -0.629 | (0.057) | 0.209 | (0.022) | S1 | 17 |
| N405001 | 0.348 | (0.038) | 0.200 | (0.037) | 0.214 | (0.017) | S1 | 23 |
| R405101 | 0.784 | (0.052) | 0.968 | (0.077) | 0.199 | (0.012) | S1 | 24 |
| N405201 | 0.515 | (0.036) | -0.124 | (0.033) | 0.182 | (0.018) | S1 | 25 |
| N405301 | 0.623 | (0.049) | 1.251 | (0.107) | 0.199 | (0.012) | S1 | 26 |
| 3405401 | 0.801 | (0.053) | 1.138 | (0.087) | 0.181 | (0.011) | S1 | 27 |
| N405301 | 0.628 | (0.052) | -0.031 | (0.035) | 0.197 | (0.019) | S1 | 29 |
| \%405601 | 0.233 | (0.034) | 1.041 | (0.153) | 0.198 | (0.016) | S1 | 30 |
| N405701 | 1.012 | (0.067) | 0.715 | (0.065) | 0.185 | (0.013) | S1 | 31 |
| N405801 | 0.493 | (0.044) | 1.324 | (0.124) | 0.166 | (0 012) | S1 | 32 |
| 3405901 | 0.637 | (0.049) | 1.658 | (0.137) | 0.158 | (0.011) | S1 | 33 |
| H406001 | 0.455 | (0.107) | 4.846 | (1.148) | 0.174 | (0.008) | S1 | 34 |
| H406101 | 0.531 | (0.120) | 4.384 | (1.008) | 0.207 | (0.008) | S1 | 35 |
| N406201 | 0.360 | (0.089) | 5.620 | (1.399) | 0.098 | (0.007) | S1. | 36 |
| H406301 | 0.356 | (0.052) | -1.563 | (0.231) | 0.430 | (0.026) | 52 | 10 |
| N506302 | 0.386 | (0.051) | -0.408 | (0.069) | 0.428 | (0.021) | S2 | 11 |
| H406303 | 0.606 | (0.063) | 1.470 | (0.166) | 0.392 | (0.013) | 52 | 12 |
| N406304 | 0.471 | (0.066) | 1.354 | (0.200) | 0.419 | (0.015) | S2 | 13 |
| N406401 | 0.504 | (0.066) | -0.157 | (0.050) | 0.461 | (0.020) | S2 | 14 |
| H406402 | 0.861 | (0.090) | 0.303 | (0.062) | 0.405 | (0.018) | S2 | 15 |
| N406403 | 0.753 | (0.074) | -1.328 | (0.142) | 0.419 | (0.031) | S2 | 16 |
| N406404 | 0.910 | (0.111) | -0.305 | (0.067) | 0.457 | (0.022) | S2 | 17 |
| H406403 | 0.628 | (0.066) | -n.528 | (0.075) | 0.402 | (0.625) | S2 | 18 |
| B406501 | 0.495 | (0.043) | 0.6i? | (0.064) | 0.170 | (0.016) | S2 | 19 |
| 8406601 | 0.491 | (0.044) | -0.855 | (0.082) | 0.175 | (0.023) | S2 | 20 |
| H406701 | 0.576 | (0.049) | 0.093 | (0.034) | 0.240 | (0.016) | S2 | 21 |
| N406801 | 1.128 | (0.074) | -1.417 | (0.114) | 0.366 | (0.036) | S2 | 22 |
| H406802 | 0.342 | (0.047) | 0.687 | (0.104) | 0.445 | (0.0i5) | S2 | 23 |
| H406803 | 0.816 | (0.074) | -0.660 | (0.074) | 0.382 | (0.022) | S2 | 24 |
| H 406804 | $1 .(57$ | (0.073) | -1.014 | (0.086) | 0.371 | (0.027) | S2 | 25 |
| H406805 | 1.037 | (0.097) | 1.523 | (0.181) | 0.550 | (0.011) | S2 | 26 |
| H406806 | 0.440 | (0.053) | 0.226 | (0.050) | 0.423 | (0.017) | S2 | 27 |
| H406901 | 0.613 | (0.052) | 0.019 | (0.934) | 0.231 | (0.01?) | S2 | 28 |
| W407001 | 0.263 | (0.035) | 0.158 | (0.038) | 0.182 | (0.019) | S2 | 29 |
| H407101 | 0.817 | (0.055) | 2.218 | (0.168) | 0.126 | (0.009) | S2 | 30 |
| H407201 | 0.470 | (0.041) | 0.137 | (0.050) | 0.207 | (0.015) | S2 | 31 |
| 8407301 | 0.319 | (0.039) | 1.672 | (0.208) | 0.234 | (0.013) | S2 | 32 |
| H407302 | 0.346 | (0.046) | 1.817 | (0.245) | 0.270 | (0.014) | S2 | 33 |
| H407601 | 0.453 | (0.044) | 1.743 | (0.173) | 0.180 | (0.012) | S2 | 35 |
| H407701 | 0.564 | (0.044) | 1.273 | (0.107) | 0.144 | (0.012) | S2 | 37 |
| H407801 | 0.666 | (0.055) | 2.158 | (0.189) | 0.199 | (0.010) | S2 | 38 |
| H407901 | 0.383 | (0.037) | 0.849 | (0.089) | 0.168 | (0.015) | S2 | 39 |
| \$408001 | 0.846 | (0.050) | 1.268 | (0.087) | 0.176 | (0.010) | S2 | 34 |
| H408201 | 0.567 | (0.070) | 3.245 | (0.415) | 0.206 | (0.009) | S2 | 40 |
| H406301 | 0.788 | (0.061) | 0.970 | (0.089) | 0.288 | (0 013) | S3 | 10 |
| N408302 | 0.708 | (0.065) | -1.545 | (0.152) | 0.408 | (0.033) | S3 | 11 |
| H408303 | 0.647 | (0.060) | -1.687 | (0.163) | 0.415 | (0.031) | S3 | 12 |
| H408304 | 0.971 | (0.079) | -1.384 | (0.129) | 0.414 | (0.034) | S3 | 13 |
| 14.08401 | 0.240 | (0.032) | -1.476 | (0.199) | 0.223 | (0.02.2) | S3 | 14 |
| K408501 | 0.733 | (0.056) | -0.896 | (0.077) | 0.205 | (0.025) | S3 | 15 |
| N408502 | 0.390 | (0.040) | 1.337 | (0.140) | 0.154 | (0.013) | S3 | 16 |
| K408601 | 0.388 | (0.035) | -1.071 | (0.102) | 0.153 | (0.022) | S3 | 17 |
| N408701 | 0.346 | (0.038) | -0.101 | (0.031) | 0.212 | (0.018) | S3 | 18 |
| 14088801 | 0.174 | (0.030) | 0.655 | (0.117) | 0.234 | (0.017) | S3 | 19 |
| K408901 | 0.743 | (0.079) | 0.274 | (0.0.j5) | 0.445 | (0.015) | S3 | 20 |

Table F-12 (continued)
1988 IRT Parameters, Science Trend, Age 13

| NAEP ID | A | $\underline{S_{1} E_{1}}$ | 且 | $\underline{S .}$ | C | $\underline{S . E}$ | $\begin{gathered} \text { AGE } \\ \text { BLOCK } \end{gathered}$ | $\begin{aligned} & 13 \\ & \text { ITEMS } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N408902 | $0.88{ }^{\text {a }}$ | (0.069) | -1.740 | (0.149) | 0.410 | (0.038) | S3 | 21 |
| K408903 | 0.656 | (0.066) | 0.434 | (0.062) | 0.404 | (0.015) | S3 | 22 |
| N408904 | 0.540 | (0.060) | 0.877 | (0.107) | 0.411 | (0.014) | S3 | 23 |
| R409001 | 0.599 | (0.045) | -0.364 | (0.040) | 0.163 | (0.018) | S3 | 24 |
| K409101 | 0.635 | (0.043) | -1.484 | (0.113) | 0.238 | (0.029) | S3 | 25 |
| H409102 | 0.556 | (0.047) | 0.178 | (0.036) | 0.229 | (0.016) | S3 | 26 |
| N409103 | 0.518 | (0.059) | 2.017 | (0.235) | 0.306 | (0.011) | S3 | 27 |
| K409201 | 0.292 | (0.039) | 0.383 | (0.061) | 0.261 | (0.017) | S3 | 28 |
| R409301 | 0.706 | (0.056) | -0.145 | (0.035) | 0.165 | (0.218) | S3 | 29 |
| K409501 | 0.607 | (0.052) | 2.148 | (0.191) | 0.134 | (0.009) | S3 | 33 |
| R409601 | U. 708 | (0.061) | 1.717 | (0.162) | 0.290 | (0.011) | S3 | 34 |
| R409701 | 0.633 | (0.060) | 2.485 | (0.248) | 0.165 | (0.009) | S3 | 35 |

Taille F-13
1988 IRT Parameters, Science Trend, Age 17

| MAEP ID | 4 | $\underline{S_{1} E_{1}}$ | B |  | C | $\underline{S} \underline{E}_{1}$ | $\begin{gathered} \text { AGE } \\ \text { BLOCK } \end{gathered}$ | $\begin{aligned} & 17 \\ & \text { ITEM } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1400201 | 0.543 | (0.116) | -1.669 | (0.370) | 0.196 | (0.049) | S1 | 12 |
| 1401201 | 0.613 | (0.124) | -0.226 | (0.097) | 0.229 | (0.040) | S1 | 30 |
| N404601 | 0.542 | (0.118) | -0.565 | (0.150) | 0.197 | (0.043) | S1 | 13 |
| H405001 | 0.462 | (0.098) | -0.305 | (0.102) | 0.198 | (0.039) | S1 | 29 |
| 1405101 | 0.585 | (0.111) | 0.272 | (0.103) | 0.235 | (0.035) | S3 | 14 |
| 240.5201 | 0.444 | (0.085) | -0.703 | (0.168) | 0.152 | (0.040) | S1 | 31 |
| N405401 | 0.618 | (0.104) | 0.631 | (0.138) | 0.145 | (0.031) | S3 | 18 |
| R405501 | 0.584 | (0.121) | -0.285 | (0.108) | 0.196 | (0.041) | S3 | 21 |
| H406001 | 0.471 | (0.115) | 2.129 | (0.536) | 0.187 | (0.026) | S1 | 33 |
| 8406101 | 0.484 | (0.142) | 2.885 | (0.854) | 0.214 | (0.025) | S1 | 35 |
| R406201 | 0.658 | (0.130) | 2.184 | (0.457) | 0.116 | (0.022) | S1 | 37 |
| N406301 | 0.334 | (0.091) | -1.322 | (0.371) | 0.410 | (0.047) | S1 | 21 |
| 1406302 | 0.420 | (0.105) | -0.246 | :0.118) | 0.401 | (0.06\%) | S1 | 22 |
| \$406303 | 0.506 | (0.128) | 0.383 | (0.147) | 0.387 | (0.037) | S1 | 25 |
| N40630i | 0.511 | (0.138) | -0.276 | (0.133) | 0.395 | (11.044) | S1 | 24 |
| H406401 | 0.632 | (0.158) | -0.678 | (0.205) | 0.385 | (11.049) | 32 | 10 |
| N406402 | 0.675 | (0.189) | -0.075 | (0.124) | 0.391 | ( 1.043 ) | S2 | 11 |
| N406403 | 0.815 | (0.189) | -1.522 | (0.388) | 0.395 | ( 0.003 ) | S2 | 12 |
| N406404 | 0.721 | (0.182) | -1.204 | (0.333) | 0.393 | (0 056) | S2 | 13 |
| N405405 | 0.637 | (0.171) | -0.963 | (0.292) | 0.387 | (0.054) | S2 | 14 |
| H496601 | 0.547 | (0.115) | -0.915 | (0.210) | 0.151 | (11042) | S1 | 28 |
| \%406801 | 0.672 | (0.157) | -1.921 | (0.471) | 0.386 | (,.059) | S2 | 16 |
| N406802 | 0.452 | (0.121) | 1.281 | (0.367) | 0.403 | ().033) | S2 | 17 |
| H406803 | 0.575 | (0.136) | -1.248 | (0.314) | 0.386 | (J.051) | S2 | 18 |
| N406804 | 0.709 | (0.147) | -1.539 | (0.344) | 0.391 | (0.056) | S2 | 19 |
| H406805 | 0.458 | (0.117) | 0.473 | (0.164) | 0.408 | (0.037) | S2 | 20 |
| N406806 | 0.396 | (0.105) | 0.270 | (0.128) | 0.406 | (0.040) | S2 | 21 |
| H406901 | 0.500 | (0.109) | -0.532 | (0.142) | 0.186 | (0.042) | S2 | 27 |
| K407001 | 0.333 | (0.079) | -0.920 | (0.222) | 0.155 | (0.042) | S2. | 33 |
| N407101 | 0.618 | (0.126) | 1.878 | (0.410) | 0.150 | (0.026) | S2 | 38 |
| N407201 | 0.500 | (0.106) | 0.120 | (0.084) | 0.153 | (0.035) | S2 | 32 |
| 11407301 | 0.346 | (0.083) | 0.510 | (0.147) | 0.204 | (0.036) | S2 | 36 |
| K407302 | 0.445 | (0.110) | 0.917 | (0.249) | 0.246 | (0.035) | S2 | 37 |
| K407401 | 0.652 | (0.143) | 0.348 | (0.136) | 0.375 | (0.036) | 52 | 28 |
| N407403 | 0.581 | (0.151) | -0.258 | (0.137) | 0.383 | (0.046) | S2 | 30 |
| 18407404 | 0.714 | (0.166) | -1.370 | (0.349) | 0.395 | (0.057) | S2 | 31 |
| H407701 | 0.450 | (0.098) | 0.883 | (0.214) | 0.152 | (0.032) | S2 | 35 |
| N408101 | 0.625 | (0.124) | 1.626 | (0.344) | 0.142 | (0.026) | S1 | 38 |
| H408301 | 0.834 | (0.186) | -0.241 | (0.125) | 0.381 | (0.041) | S3 | 10 |
| H408302 | 0.457 | (0.119) | -1.685 | (0.456) | 0.401 | (0.056) | S's | 11 |
| \$408303 | 0.543 | (0.122) | -2.012 | (0.470) | 0.398 | (0.057) | 53 | 12 |
| R408304 | 0.640 | (0.162) | -1.585 | (0.426) | 0.396 | (0.058) | S3 | 13 |
| N408601 | 0.426 | (0.091) | -1.329 | (0.295) | 0.164 | (0.043) | S1 | 19 |
| N408801 | 0.505 | (0.101) | -0.360 | (0.105) | 0.198 | (0.039) | 53 | 24 |
| H408901 | 0.769 | (0.168) | -1.213 | (0.292) | 0.393 | (0.053) | S3 | 15 |
| \$408902 | 0.836 | (0.165) | -1. 1122 | (0.422) | 0.395 | (0.062) | S3 | 16 |
| H408903 | 0.563 | (0.127) | -0.172 | (0.112) | 0.392 | (0.041) | 53 | 17 |
| N408904 | 0.586 | (0.135) | -0.374 | (0.135) | 0.398 | (0.043) | S3 | 18 |
| K409301 | 0.625 | (0.122) | -1.324 | (0.274) | 0.149 | (0.044) | 31 | 20 |
| K409501 | 0.714 | (0.129) | 1.100 | (0.225) | 0.133 | (0.028) | S1 | 34 |
| H409901 | 0.867 | (0.168) | -0.931 | (0.208) | 0.191 | (0.046) | S1 | 18 |
| N410003 | 0.508 | (0.121) | -1.988 | (0.486) | 0.400 | (0.055) | S1 | 16 |
| 8410004 | 0.498 | (0.129) | -1.225 | (0.334) | 0.401 | (0.050) | S1 | 17 |
| \%410101 | 0.626 | (0.158) | -0.700 | (0.207) | 0.394 | (0.046) | S1 | 25 |
| N410102 | 0.433 | (0.113) | -0.401 | (0.144) | 0.404 | (0.043) | S1 | 26 |
| He 10103 | 0.566 | (0.139) | -1.408 | (0.365) | 0.396 | . 0.053$)$ | S1 | 27 |
| H410201 | 0.491 | (0.119) | 1.880 | (0.476) | 0.1 .9 | (0.030) | S1 | 32 |
| 8410401 | 0.396 | (0.093) | 0.086 | (0.088) | 0.244 | (0.039) | S2 | 15 |
| H410501 | 0.415 | (0.088) | -0.420 | (0.118) | 0.150 | (0.039) | S2\% | 22 |
| N410601 | 1.051 | (0.208) | 2.077 | (0.507) | 0.229 | (0.025) | S2 | 23 |
| N410602 | 0.430 | (0.122) | -2.476 | (0.714) | 0.405 | (0.058) | S2 | 24 |
| H410693 | 0.768 | (0.170) | 1.333 | (0.336) | 0.338 | (0.029) | S2 | 25 |
| N410604 | 0.414 | (0.110) | -2.138 | (0.577) | 0.405 | (0.055) | S2 | 26 |
| R410701 | 0.542 | (0.120) | 0.833 | (0.208) | 0.201 | (0.033) | S2 | 34 |

Table F-13 (continued)
1988 IRT Parameters, Science Trend, Age 17

| NAEP ID | $\Delta$ | $\mathrm{S}_{\boldsymbol{L}}$ | B | S.E. | C | $\underline{S, E_{1}}$ | $\begin{aligned} & \text { AGE } \\ & \text { BLOCK } \end{aligned}$ | $\begin{aligned} & 17 \\ & \text { ITEM } \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H410801 | 0.54\% | (0.124) | 1.554 | (0.376) | 0.193 | (0.030) | S2 | 39 |
| \$410901 | 0.707 | (0.134) | 1.777 | (0.367) | 0.155 | (0.024) | S2 | 40 |
| 2411001 | 0.545 | (0.145) | 2.730 | (0.751) | 0.193 | (0.024) | si | 41 |
| N411101 | 0.508 | (0.096) | 0.255 | (0.083) | 0.150 | (0.035) | S3 | 22 |
| N411201 | 0.566 | (0.105) | 0.480 | (0.126) | 0.185 | (0.033) | S3 | 23 |
| H211301 | 0.469 | (0.138) | 3.814 | (1.163) | 0.120 | (0.023) | S3 | 20 |
| K411401 | 0.846 | (0.151) | 0.534 | (0.137) | 0.152 | (0.030) | S3 | 25 |
| W411501 | 0.860 | (0.125) | 1.748 | (0.300) | 0.179 | (0.024) | S3 | 26 |
| W411502 | 0.619 | (0.131) | -1.037 | (0.240) | 0.237 | (0.048) | S3 | 27 |
| W41:801 | 0.609 | (0.108) | 1.227 | (0.244) | 0.184 | (0.030) | S3 | 28 |
| K411701 | 0.745 | (0.118) | 1.385 | (0.256) | 0.169 | (0.027) | S3 | 29 |
| K411801 | 1.068 | (0.175) | 0.650 | (0.161) | 0.167 | (0.031) | S3 | 30 |
| K411901 | 0.782 | (0.122) | 1.428 | (0.261) | 0.142 | (0.025) | S3 | 31 |
| N412001 | 0.572 | (0.118) | 2.048 | (0.453) | 0.187 | (0.028) | S3 | 32 |

## APPENDIX G

## NAEP Reporting Subgroups

Composite and Derived Common Background Variables
Subject-specific Composite and Derived Reporting Variables

## Appendix G

## NAEP REPORTING SUBGROUPS

DSEX (Gender)
The variable SEX on the student file is the gender of the studert being assessed, as taker. from school records. Fos a few studencs, data for this variable was missing and was imputed by ETS after the assessment. The resulting variable DSEX on the student file contains a value for every student and is used for gender comparisons among students.

## RACE (Observed Race/Ethnicity)

The variable RACE on the student file is the race/etinnicity of the student being assessed, as observed and recorded by the exercise adminish ator. Observed race/ethnicity was used in NAEP assessments before 1984. This variable is used for race/ethnicity subgroup comparisons to assessments conducted before 1984.

## DRACE (Imputed Race/Ethnicity)

The variable DRACE on the student file is an imputed definition of race/ethnicity, derived from up to three sources of information. This variable is used for race/ethnicity subgroup comparisons within the 1988 assessment and amorig the 1988, 1986, and $1984^{1}$ assessments.

Two common background items were used in the determination of race/ethnicity:

Commn Background Item Number 2;
2. If you are Hispanic, what is your Hi panic background?
0 I am not Hispanic.
0 Mexican, Mexican American, or Chicano
0 Puerto Rican
0 Cuban
0 Other Spanish or Hispanic background

[^124]Students who responded to item number 2 by filling in the second, taird, fourth, or fifth oval were considered Hispanic. For students whe filled in the first oval, did not respond to the item, or pic ded information that was illegible or could not be classified, iesponses to item number 1 were examined in an effort to determine race/ethnicity. Item numer ? read as follow. ${ }^{2}$ :

## Common Background Item Ni:mber l;

1. Which best describes you?

| 0 | White |
| :---: | :---: |
| $\bigcirc$ | Black |
| $\bigcirc$ | Hispanic |
| 0 | Asian or Pacific Islander |
| 0 | American Indian or Alaskan |
| $\bigcirc$ | Other (What?) |

Students' race/ethnicity was then assigned to correspond with their selection. For students who filled in the sixth oval ("Other"), p=orided illegible information or information that could not be classified, or did not respond at a!l, observed race/ethnicity (RACE), if provided by the exercise administrator, was used.

Imputed race/ethnicity could not be determined for students who did not respond to bacikground items 1 or 2 and for whom an sbserved race/ethnicity was not provided.

## STOC (Size and type of community)

NAEP assigned earh participating school to one of seven size and type of community categories designed to provide information about the communities ir which the schools are located.

The STOC reporting categories consist of three "extreme" types of communities and four "residual" community sizes. Schools were placed f:ato SIOC categories on the basis of information about the type of community, the size of its population (as of the 1980 Census), and an occupational prof.le of residents provided by school principals before the assessment. The principals completed estimates if the percentage of students whose parents fit into each. of s'x occupational. -ategories.

Two versions of STOC were created: a weighter version used for csoss sectional analyses and an unweigh. $\circ$ version, whi $:$ h was the version used historically. For both versions, $s c^{\prime}$ lls were ranked in order based or principals' responses about the type of cummunity, size of its popuiaviun. and occupational profile of the students' parents. For the weighted version of STOC, schools were assigned to the extreme STUC categories ( 1,2 , and 3 ) so as

[^125]to give the result that 10 percent of sampled students (weighted) were enrolled in schools in each such category. For the unweighted version, the extreme 10 percent of the schools (unweighted) werc assigned to each of the extreme STOC categories. For both versions of STOC, the remaining schools were classified according to one of the four residual STOC categories. The extreme STOC categories are as follows:

STOC 1 - Extreme Rural: This category was uscd for schools in rural areas where the principal reported that a high proportion of students' parents were farmers or farm workers and a luw proportion were professional, managerial, or factory workers. At least some of the students in each of these schools were from open country or places with a population of fewer than 2,500 and no students were from a place with population in excess of 10,000 .

STOC 2 - Low Metro: The low metro STOC category was used for schools in areas where the principal reported that a high proportion of students' parents were either not regularly employed or on welfare and a low proportion were employed in professional or managerial positions. The schools in STOC 2 were located in cities, or the urbanized area of cities, with a population greater than 200,000 .

STOC 3 - High Metro: High metro schools were located in areas where the principal reported that a high proportion of students' parents were employed in professional or managerial positions and a low proportion were factory or farm woskers, not regularly employed, or on welfare. STOC 3 schools were located in cities or the urbanized area of cities with populations greater than 200,000 .

Schools that did not £all into STOC 1. 2, or 3 were classified according to four "residual" STOC categories, depending on the size of the community in which they were located. The four residual STDC reporting categories are as follows:

STOC 4 - Main Big City: STOC 4 schools were located within the limits of cities with populations greater than 200,000 but not classified as high or low metro.

STOC 5 - Urban Fringe: The schools assigned to STOC 5 were located in the urbanized area outside the limits of cities with 'pulations greater than 200,000, but not classified as low or high metro.

STOC 6 - Medium City: STOC 6 schools were located in cities with populations between 25,000 and 200,000 that were not classified as belonging to the urbanized area of a big city.

STOC 7 - Small Place: The schools assigned to STOC 7 were located in communities with populations of fewer than 25,000 . These communities were not located in the urbanized areas of big cities and were not classified as extreme rural.

PARED (Parental education)
The variable PARED on the student file is derived from responses to two common background items, B003501 and B003601. ${ }^{3}$ Students were asked to indicate the extent of their father's education (item B003601) by choosing one of the fcllowing:

O He cid not finish high school.
O He graduated from high school.
O He had some education after higt iool.
© He graduated from college.
O I don't know.
Students were asked to provide the same information about the extent of their mother's education (item B003501) by choosing one of the following:

O She did not finish high school.
O She graduated from high school.
O She had some education after high school.

- She graduated from college.
- I don't know.

The information was combined into one parental education reporting category as follows:

If a student indicated the extent of education for only one oarent, that level was incl: ded in the data. If a student indicated the extent of education for both parents, the higher of the two levels was included in the data. For students who did not know the level of education for both parents or did not know the level of education for one parent and did not respond for the other, the parental education level was classified as unknown. If the student did not respond for both parents, the student was recorded as having provided no response.

[^126]In addition to overall responses, NAEP computed data for four geographical regions in the United States. States were assigned to r-sions as follows:

| Northeast | Southeast | Central | West |  |
| :--- | :--- | :--- | :--- | :--- |
| Connecticut | Alabama |  |  |  |
| Delaware | Arkansas | Illinois | Alnska |  |
| District of | Florida | Indiana | Arizona |  |
| Columbia | Corgia | Iowa | California |  |
| Maine | Kentucky | Mansas | Colorado |  |
| Maryland | Louisiana | Minnesota | Hawaii |  |
| Massachusetts | Mississippi | Missouri | Idaho |  |
| New Hampshire | North Carolina | Nebraska | Montana |  |
| New Jersey | South Carolina | North Dakota | Nevada |  |
| New York Mexico | Tennessee | Ohio | Oklahoma |  |
| Pennsylvania | Virginia* | South Dakota | Oregon |  |
| Rhode Island | West Virginia | Wisconsin | Texas |  |
| Vermont |  |  |  | Utah |
| Virginia* |  |  |  | Washington |
|  |  |  |  | Wyoming |

[^127]DGRADE, MODGRD (Grade in school)
To enhance the usefulness of the data, in 1984 NAEP began sampling students by grade as well as by age. The ages sampled in assessments sirce 1984-9, 13, and 17-match the ages sampled in earlier assessments. Howeve $r$, some of the modal grades (the grade attended by most students $o^{-}$a particulat age) for the ages sampled have varied in the last three assessments because of changes in how student age was determined and caranges in the times of th.c year that students were tested.

In the 1988 main assessment, the respective modal grades for ages 9, 13, and 17 are 4,8 , anc 12 . Student age for all three cohorts was determined on a calenciar-year basis; all students were tested at the same times of the year. The 1988 bridge samples, by definition designed to match previous assessment characteristics, sampled varying student cohcrts.

The 1988 main sample included many students in each cohort who were both age-eligible (age 9, 13, or 17) and grade-eligible (attendin, respective?y grade 4, 8, or 12). However, because NAER collected data by grade or $a_{x}{ }^{-2}$, each cohort also included students who were age-eligible lut not i:. cne modal
grade, and stadents who were grade-eligible but not of the modal age (the age of most students attending the particular grade).

For each 1988 sample, results for students in a particular grade can be selected using (1) the variable DGRADE, the student's actual grade at time of testing, on the student file, or (2) the student file variable MODGRD (setting MODGRD to a value of 2 will select those students who are in the modal grade).

DAGE, MODAGE (Student age)
For the 1988 main sample, student age for all three grade/age cohorts was calculated as of December 31, 1987. Because NAEP collected data by grade or age, each main sample student cohort includes students who were both ageeligible and grade-eligible, students who were age- eligible but not in the modal grade, and students who were grade-eligible but not of the modal age. The modal ages for each grade/age cohort in the main sample were defined by the following birth dates, based on a calendar year:

Age 9: born between January 1 and December 31, 1978
Age 13: born between January 1 and December 31, 1974
Age 17: born between January 1 and December 31, 1970
For che bridge to 1982, samples of age 13 and age 17 were selected based on the following birth dates:

Age 13: born between January 1 and December 31, 1974
Age 17: born between October 1, 1970 and September 30, 1971
The sample of grade 4/age 9, grade 8/age 13, and grade 11/age 17 students for the bridge to 1984 were selected according to the following birth dates:

Age 9: born between January 1 and December 31, 1978
Age 13: born between January 1 and December 31, 1974
Age 17: born between October 1, 1970 and September 30, 1971
The samples of ages 9 and 13 and grade 11 /age 17 students for the bridge to 1986 were selected according to the following birth dates:

Age 9: born between January 1 and December 31, 1978
Age 13: born between January 1 and December 31, 1974
Age 17: born between October 1, 1970 and September 30, 1971
For all 1988 samplos, results for students in a particul $r$ age can be selected using (l) the variable DAGE, the student's actual age at jime of testing, on the student file or (2) the student file variable MODAGE (setting MODAGE to a value of 2 will select those students who are of the modal age).

## COMPOSI'IE AND DERIVED COMMON BACKGROUND VARTABLES

Several NAEP variables are formed from the systematic combination of response values for one or more common background items (items given to every student concerning subjects such as materials in the home, languages spoken, hours spent watching televisicn, and after-school activities).

The derived background variables maximize use of the data, incorporate a larger segment of the population, and save analysis costs by groupis.g items that measure similar characteristics into one variable. Some of these variables were used in the NAEP subject area reports. The derivation of each of these variables is explained in the following sections.

HOMEENV (Home Environment-Articles in the Home)
For all three age classes, the variable HOMEENV was created from the responses to background items B000901 through B000905 concerning articles found in the student's home (newspaper, dictionary, encyclopedia, more than 25 books, and magazines). The values for this variable were derived as follows.

1 0-3 ARTICLES The student responded to at least tl ree items and answered YES to inree or fewer.

24 ARTICLES The student answered YES to four items.
: 5 ARTICLES The student answered YES to five items.

8 NO RESPONSE The student answered fewer than three items.

HOMEEN2 (Home Enviromment-Articles [of 4 נ in the Home)

For all three age classes, the variable HOMEEN2 was created from te responses to background items B000901, B000903, B000904, ard B000905 concer.ing articles founc in the student's home 'newspaper, encyclopedic, more than 25 books, and magazines). The values for this variable were derived as follows:

1 0-2 ARTICLES The student responded to at least two items and answered VES to two or fewer.

23 ARTICLES The student answered YES to three items.

34 ARTICLES The student answered YES to four items.
8 NO RESPONSE The student answered _ewer than two items.

## NCOMP (Number of Computer Science Courses Teken)

For age ciass 17, NCOMP was created from responses to items B005312 and B005313 concerning the student's coursework in computer science. The values for NCOMP were derived as follows:

10
21
32
8 NO RESPONSE The student did not respond to one or both items.
9 MULT. \& OUT-OF-RANGE The student filled in more than one oval for both items.

## NMATH 'Highest Level of Mathematics Courses Taken)

For age class 17, NMATH was created from responses to items B005301 thiough B005307 concerning the student's coursework in mathematics. The values for NMATH were derived as follows:

1 GEN. AATH OR The student answered HAVE r:OT to all items or HAVE to PRE•ALGEBRA

2 ALGEBRA The student answered HAVE to B005303 and HAVE NOT to B005304, B005305, B005306, and B005307.

3 GEOMETRY The student answered HAVE to both Bu05303 and B005305 and HAVE NOT to B005304, B005306, and B005307.

4 ALGEBRA 2 The student answered HAVE to B00530 or B005306 but HAVE NOT to B005307.

- CAICULUS The student answered HAVE to B005307.

6 SOMETHING ELSF Any other response combination
8 NO RESPONSE The student did not respond to any item.

NSCI (Highest Level of Science Courses Taken)
For age class 17, NSCI was created from responses to items 8005308 through B005311, which concerned the studert's coursework in science. The values for NSCI were derived as follows:

1 NO BIOLOGY The student answered HAVE NOT to all items or HAVE to
BOO5308 and othe: than HAVE to all other items.

2 BIOLOGY The student answered HAVE to B005309 and other than HAVE to both B005310 and B005311.

3 CHEMISTRY The student answered HAVE to both B005309 and -. 15310 and other than HAVE to B00531l.

4 PHYSICS The student answered HAVE to B005309, B005310, and B005311.
5 SOMETHING ELSE Any other response combination
8 NO RESi ONSE The student answered none of the items.

NSIBS (Number of Siblings)
For a.l age classes, NSIBS was created from responses to item B005801 (How many brothers and sisters do you have?). The values for NSIBS were derived as follows:

1 NONE The student answered NONE.
21 The student answered ONE.
32 The student answered TWO.
43 The student answered THREE.
54 OR MORE The student answered FOUR, FIVE, or SIX OR MORE.
8 NO RESPONEE The student did not respond.
9 MULT. The student filled in more than one oval.

PARWK4, PARWK5 (Economic Support-Which Parents Work)
For age class 9, PARWK4 was created from responses to items B005901 and B006101, which asked if the student's mother (or stepmother) and father (or stepfather) worked for pay. The values for PARWK4 were derived as follows.

1 BOTH MOTHER \& FATHER The student answered YES to both B005901 and B006101.
2 FATHER ONLY The student answered NO or DON'T LIVE WITH to B005901 and YES to B006101.

3 MOTHER ONLY The student answered NO or DON'T LIVE WITH to B006101 and YES to B005901.

4 SOMETHING ELSE Any other combination of responses
8 NO RESPONSE The student did ot respond to one or both items.

9 MOLT.
The student filled in more than one oval for both items

For age classes 13 and 17, PARWK5 was created from responses to items
 father or (stepfather) worked part-time or full-time for pay. The values for PARWK' were derived as follows:

1 BOTH FULL TIME 'The student answered YFS, FULL-TIME to both B006001 and B006201.

2 BOTH WORK SOME The student answered YES, FULL-TIME or YES, PART-TIME to BOO 201 and YES, FULL-TIME or YES, PART-TIME to B006001.

3 FATHER ONLY The student answered YES, FULL-TIME or YES, PART-TIME to B006201 and NO or DON'T LIVE WITH to BOO6001.

4 MOTHER ONLY The student: answered YES, FULL-TIME or YES, PART-TIME to B006001 and NO or DON'T LIVE WITH to BCO6201.

5 SOMETHING ELSE Any other combination of responses
8 NO RESPONSE The student did not respond to one or both items.
9 MULT. The student filled in more than one oval fc : both items.

RACLANG (By Race, Language Other than English is Spoken by Student in Home)

For all age classes, the variable RACLANG was created from responses to item B003401 (Do you speak a language other than English in your home?) and the imputed race/ethnicity variable DRACE. The values for PACLANG were derived as follows:

I HISPANIC The student answered YES to B003401, ana DRACE was HISPANIC.
2 ASIAN The student answered YES to B003401, and DRACE was ASIAN.
3 OTHER RACE The student answered YES to B00340l, and DRACE was anything other than HISPANIC or ASIAN.

4 NO The student answered NO to B003401.
8 NO RESPONSE The student did not respond to B00340i.
9 MULT. The student filled in more than one oval for B003401.

RACOFTN (By Race, How Often Language Other than English is Spoken by Others in Home)

For age class 9, the variable RACOFTN was created from item B003201 (How often to the people in your home speak a language other than English?) and the imputed race/ethnicity variable DRACE. The values for RACOFTN for age clase 9 were derived as follows:

1 HISPANIC The stućent answered SOMETIMES or ALKAYS to B00²00, and DRACE was HISPANIC.

2 ASIAN The student answered SOMETIMES or ALWAYS to B003201, and DRACE was ASIAN.

3 OTHER RACE The student answered SOMETIMES or ALWAYS to B003201, and DRACE was not HISPANIC or ASIAN.

4 NEVER The student answered NEVER to B003201.
8 NO RESPONSE The student did not respond to B003201.
9 MULT. The student filled in more than one oval for B003201.
For age classes 13 and 17, the variable RACOFTN was created from item B003301 (How often do the people in your home speak a language other than English?) and the imputed race/ethnicity variable DRACE. The values for RACOFTN for these age classes were derived as follows:

1 HISPANIC The student answered ABOIJT HALF THE TIME, MOST OF THE TIME, or ALWAYS to B003301, and DRACE was HISPANIC.

2 ASIAN The student answered ABOUT HALF THE TIME, MOST OF THE TIME, or ALWAYS to B003301, and DRACE was ASIAN.

3 OTHER RACE The student answered ABOUC HALF THE TIME, MOST C THE TIME, or ALWAYS to B003301, and DRACE was not HISPANIC r ASIAN.

NEVER The student answered NEVER or CCCASIONALLY to B003301.
8 NO RESPONSE The student did not respond to B003301.
9 MULT. The student filled in more than ove oval for B003301.

## SINGLEP (How Many Parents Live at Home)

For all three age classes, SINGLEP was created from items B005601 and B005701, which asked whether the student's mother (or stepmother) and father (or stepfather) lived at home with the student. The values for SINGLEP were derived as follows:

12 PARENTS f.T HOME The student answered YES to both items.

21 PARENT AT HOME

3 NEITHER AT HOME

3 NO RESPONSE

9 MULT.

The s.udeni an rered YF? to B005601 and NO to B005701, or YES to B0057Ul and NO to B005601.

The student answered NO to both items.
The student did not respond to one or both items.
The student filled in more than one oval for one or both items.

## SINGPB (Which Parents Live at Home)

For all age classes, SINGPB was created from items B005601 and B005701 concerning whether the student's motner ( $O_{1}$ stepmother) and father (or stepfather) live at home with the student. The values for SINGPB were derived as follows:

1 MOTHER AND FATHER The student answered YES to both items.
2 FATHER ONLY The student a.1swered YES to B005701 and NO to B005601.
3 MOTHER ONLY The student answered YES to B005601 and NO to B005701.
4 NEITHER The student answered NO tc both items.
8 NO RESPONSE The student did not respond to one or both items.
9 MULT.

The student filled in more than one oval for one or both items.

SINGFEM (Single Female Head of Household-Working)
SINGFEM was created from the variables SINGPB and PARWK5 (PARWK4 for age class 9) concerning, respectively, which parents live at home aid which parents work. The values for SINGFEM were derived as follows:

1 YES SINGPB was 3 and PARWK4 was 3 (age class 9); SINGPB was 3 and PARWK5 was 4 (other age classes).

2 NO SINGPB was 3 and PARWK4 was 4 (age class 9); SINGPB was 3 and PARWK5 was 5 (other age classes).

3 SOMETHING ELSE Any ocher response combination.
8 NO RESPONSE No slue was derived for one or both variables because of nonresponse.

9 MULT. No value was derived for one or both variables because of multiple resporse.

TVWATCH (Amount of Television Viewing Each Day)

For all three age classes, the variable TVWATCH was created from item BOO1801 (How much television do you usually watch sach day?). The valuts for TVWATCH were derived as follows:

1 0-2 HOURS The student answered NONE, ONE HOUR OR LESS, or TWO HOURS to B001801.

2 3-5 HOURS The student answered THREE HOURS, FOUR HOURS, or FIVE HOURS to BOO1801.

36 OR MORE HOURS The student answered SIX HOURS OR MORE to B001801.

8 NO RESPONSE The student did not respond.
9 MULT. The student filled in more than one oval.

## Reading Trend Reporting Variables

RTENGAG (Engagement in Reading-related Activities)
For ages 9, 13, and 17, ETENGAG was created from items S003502, S003503, S003504, and S003506, which asked how often students engaged in certain activities related to reading. The values for these items were recoded as follows:
Daily, weekiy, monthly, yearly $\quad-\quad$ Ever
Never

The recoded responses for all four items were then combined as follows:

```
Never for all four items or
    ever for one item - 0-1 activity
Ever for two items - 2 activities
Ever for three items - 3 activities
Ever for four items - 4 activities
```

RTHOME (Extent of Reading in the Home)
For ages 13 and 17, RTHOME was created from items S004501, S004502, and S004503, which asked students how often the people they live with read newspapers, magazines, and books. The items were recoded as follows:

| Daily | $=5$ |
| :--- | :--- |
| Weekly | $=4$ |
| Monthly | $=3$ |
| Yearly | $=2$ |
| Never | $=1$ |

The average of the thres recoded responses was then assigned one of the following labels:

$$
\begin{aligned}
& 1.0-3.5=\text { Low (Never/Yearly/Monthly) } \\
& 3.51-4.5=\text { Medium (Weekly) } \\
& 4.51-5.0=\text { High (Daily) }
\end{aligned}
$$

RTPLEAS (Reading of Books, Newspapers, and Magazines)
For ages 9, 13, and 17, RTPLEAS was created from items S004301, S004304, and S004305, which asked students how often they read stories or novels, newspapers or magazines. The items were recoded as follows:

| Daily | -5 |
| :--- | :--- |
| Heekly | -4 |
| Monthly | -3 |
| Yearly | -2 |
| Never | -1 |

The ave, age of the three recoded responses was then assigned one of the following labels:

$$
\begin{aligned}
& 1.0-3.5-\text { Tow (Never/Yearly/Monthly) } \\
& 3.51-4.5 \text { - Medium (Weekly) } \\
& 4.51-5.0 \text { - High (Daily) }
\end{aligned}
$$

## Writing Cross-sectional Reporting Variables

WENJOY (Reported Frequency of Enjoyment of Writing)
For grades 4, 8, and 12, item SOOl201 was recoded as:
Almost always - 5
More than half the time - 4
Half the time - 3
Less than half the time -2
Never -1

WINST2 (Frequency of Writing Process Instruction)
Foi grades 8 and 12, items S000606, S000608, S000609, and S000610 were recoded as:

Almost always - 5
More than half the time - 4
Half the time - 3
Less than half the time - 2
Hever - 1
The average response :o these four items was then rounded to the nearest integer and the same ive categories were used to classify the variable.

WPLANNG (Reported Frequency of Planning)
For grade 12, items S000901 and S000902 were recoded as:

| Almost always | $-j$ |
| :--- | :--- |
| More than half the time | -4 |
| Half trie time | -3 |
| Less than haif the time | -2 |
| Never | -1 |

The average response to these two items was then rounded to the rearest integer and the same five categories were used to classify the variable.

WREVTSE (Reported Frequency of Revis:ng and Editing)
For grade 12, items S001302, S001303, S001304, S001308, and S001310 were recoded as:

Almost always - 5
More than half the time - 4
half the time - 3
Less than half the time -2
Never - 1
The average re. onse to these five items was then rounded to the nearest integer and the same five categories were used to classify the variable.

## Writing Trend Reporting Variables

WVALUE (Overall Value Placed on Writing)
For grades 8 and 12, items S001501, S001502, S001503, 3001504, S001401, and S001402 were recoded as follows:

Almost always -5
More than half the time - 4
Half the time - 3
Less than half the time - 2
Never - 1
The average response to these six items was chen convorted to three categories:

Low - less than 3.5
Medium - between 3.5 and 4.5
High - greater than or equal to 4.5

WATTID (General Attitude Toward Wriこing Composites)
For grades 4, 8, and 11, items S001201, S001202, S001204, S001205, and S001207 were recoded as follows:

| Alaost always | -5 |
| :--- | ---: |
| More than half the time | -4 |
| Half the time | -3 |
| Less than half the time | $=2$ |
| Never | -1 |

The average response to these five items was then rounded and $c$ werted into three categories:

| Low | - less than 2.5 |
| :--- | :--- |
| Medium | - between 2.5 and 3.5 |
| High | - greater than or equal to 3.5 |

WP'JSE (Personal and Social Uses of Writing)
For grades 8 and 11, items S001601, S001602, S001603, S001604, and S001609 were recoded as follows:

$$
\begin{array}{ll}
\text { Daily } & -4 \\
\text { Weekly } & -3 \\
\text { Monthly } & -2 \\
\text { Never } & -1
\end{array}
$$

The average responst to these five items was then rounded and converted to three categories:

```
Low - less than 1.5
Merlium - between 1.5 and 2.5
High - greater than or equal to 2.5
```

WREVED (Revising Strategies)
For grades 4, 8, and i1, items S002002 and S002003 were first recoded as:

$$
\begin{array}{ll}
\text { Yes } & -1 \\
\text { No } & -5
\end{array}
$$

Then items S000904, S000906, and S000907 were recoded as:

| Almost always | $=5$ |
| :--- | :--- |
| More than half the time | $=4$ |
| Half the time | $=3$ |
| Less than half the time | $=2$ |
| Never | $=1$ |

The average response to these five items was then rounded and convested co three categories:

Low - less than 2.5
Medium - between 2.5 and 3.5
High $\quad$ - greater than or equal to 3.5

WTFEED (Teachers' Feedback on Writing)
For grades 4, 8, and 11, items S002501, S002502, S002503, S002504, S002505, and S002506 were recoded as:

| Almost always | $=5$ |
| :--- | ---: |
| Yore than half the time | $=4$ |
| Half the time | $=3$ |
| Less than half the time | $=2$ |
| Never | $=1$ |

The average respons ${ }^{-}$to these five items was then rounded and converted into three categories:

Low - less than 3.5
Medium - between 3.5 and 4.3
High $\quad=$ greater than or equal to 4.5

## Civics Cross-sectional Repor $=$ ing Variables

PTOPICl (Variety of Topics Studied)
For grade 4/age 9, items P800601, P800701, P800801, P800ヶ01, P801001, and $P 801101$ asked students to inuicate whether they had studied particular civics-related topics a lot, some, or not at all. Each of the six items was coded as follows:
A lot $=3$
Some $=2$
Not at all $=1$
Missing $=M$

The average $i$ the six recoded variables was then assigned the labels and codes:

$$
\begin{aligned}
& 2.5-3=\text { A lot }=3 \\
& 1.6-2.4=\text { Some }=2 \\
& 1-1.5 \\
& \text { M for all }=\text { None }=1 \\
& \text { Missing }=0 \text { or } M
\end{aligned}
$$

The average was across all items that had a response. PTOPICl appears in the data sets on the public-use data tapes fer students in the focused-BIB samples.

PSTUDY2 (Whether Civics Was Studied)
For grade $8 / a_{g} \mathrm{ge} 13$, items 8800101 to P 800104 asked students whether they had studied American government or civics in grades 5 to 8 , respectively. Each of the four items was coded as:

| Yes | -1 |
| :--- | :--- |
| No | -0 |
| I don't know | $=0$ |
| Missing | $=M$ |

The sum of the four recoded variables was then assigned the foilowing labels and codes:

$$
\begin{array}{lll}
1-4 & =\text { Studied at least } 1 \text { year } & =1 \\
0 & =2 \\
M \text { for all } & =\text { Nissing } &
\end{array}
$$

The sum was across all items tha: had a response. PSTUDY2 appears in the data sets un the public-use data tapes for student- in both the focused-BIB and intercorrelation sanples.

PTOPIC2 (Variety of Topics Studied - Mean of 10 Questions)
For grade 8/age 13, items P801201 to 8801210 askad students to indicate whether they had studisd particular civics-related topics a lot, some or not at all. Each of the ten it'sms was soded as follows:

| A lot | $=3$ |
| :--- | :--- |
| Some | -2 |
| Not at all | $=1$ |
| Missing | $-M$ |

The average of the ten recoded variables was then assigned the following labels and codes:

| $2.5-3$ | $=$ A Lot $=3$ |
| :--- | :--- |
| $1.6-2.4$ | $=$ Some $=2$ |
| 1.1 .5 | - None $=1$ |
| M for all | $=$ Missing $=0$ or $M$ |

The average was across all items that had a response. PTOPIC2 appears in the data sets on the public-use data tapes for students in the focused-BIB sampies.

## PSTUDY3 (Whether Civics Was Studied)

For grade 12/age 17, items P800201 to P800204 asked students whether they had studied American government or civics in grades 9 to 12 , respectively. Each of the four items was coded as:

| Yes | $=1$ |
| :--- | :--- |
| No | $=0$ |
| I don't know | $=0$ |
| Missing | $=M$ |

The sum of the four recoded variables was then assigned the following labels and sodes:

| $1-4$ | $=$ Siudied at least 1 year $=1$ |  |
| :--- | :--- | :--- |
| 0 | $=$ Not studied | -2 |
| M for all - Missing | $=0$ or $M$ |  |

The sum was across ail items that had a eesponse. PSTUDY3 appears in the data sets on the public-use data tapes for students in both the fccused-BIB and intercorrelation samples.

PTOPIC3 (Variety of Topics Studied)
For grade 12/age 17, items F 801301 to P 801310 asked students to indicate whether they ha studied particular civics-related topics a lot, some, or not at all. Each of the ten items was coded as follows:
A lot $=3$
Some $=2$
Not at all $=1$
Missing $=\mathrm{M}$

The average of the ten recoced variables was then assigned the following labels and codes:

$$
\begin{array}{ll}
2.5-3 & - \text { A Lot }-3 \\
1.6-2.4 & \text { - Some }=2 \\
1-1.5 & \text { - None }=1 \\
\text { M for all } & \text { - Missing }-0 \text { or } M
\end{array}
$$

The average was across all items that had a response. PTOPIC3 appears in the data sets on the public-use data tapes for students in the focused-BIB samples.

## PHMWK (Civics Homework)

For grade 12/age 17, values for item $P 801901$ sere assigned the foilowing labels and codes:

| No assignments | - None | -1 |
| :--- | :--- | :--- |
| Don't do assignment: | - Don't do | -2 |
| Less than 1 hour | - Hr/less | -3 |
| 1 hour | $=$ Hr/less | -3 |
| 2 hours | -2 hrs | -4 |
| 3 hours | $-3 /$ more | -5 |
| 4 hours | $-3 /$ more | -5 |
| 5 hours or mole | $=3 /$ more | -5 |
| Miss ng | - Missing | $=0$ or $M$ |

Qivics Trend Reporting Variables
PPARED (Parent's Education - 2nd Set of Categories)
For ages 13 and 17, a parents' education variable was derived for $1, f 22$ dač, so that comparisons with 1988 data be made for students having a parent *ho graduated from college. This variable is based or the 1982 variahles PARED, FCLGRAD, and MCLGRAD (whether the father or mother graduated from college). The categories for PPARED are coded as:

| 1 | <. High school | if PARED - 1 ( HS ) |
| :---: | :---: | :---: |
| 2 | High school graduate | if PARED $=2$ (HS Grad) |
| 3 | Post high school | if PARED = 3 (post-HS), FCLGRAD - 2 (No), and MCLGRAD - 2 (No) |
| 4 | College graduate | if PARED - 3 and either FCLGRAD $=1$ (Yes) or MCLGRAD = 1 (Yes) |
|  | Missing | if otherwise |

HTOPICS (Topics studied)
For grade 4/age 9, responses to items H801101, H801201, H801301, H801401, H801501, H801601, and H801701 were recoded as follows:
A lot
= 3
Some

- 2
Not at all
- 1

The average of the seven recoded responses was then transformed to form the HTOPICS veriable as follows:

$$
\begin{array}{rlrl}
>1.5 \text { but }<2.5 & \text { A lot } & =3 \\
& \leq 1.5 & \text { Some } & \text { Not at all }
\end{array}
$$

HTAKEN (United States history studied or expected to study)
For grade 8/age 13, responses to items H 800701 to H 800704 were collapsed as follows:

| Yes to any item | $=1$ |
| :--- | :--- |
| All "I don't know" | $=2$ |
| Ho "Yes" but at least one "No" | $=3$ |
| Insufficient data | -0 |

HTOPICS (Topics studied)
For grade 8/age 13, responses to items H 801801 to H 801811 were recoded as follows:

| A lot | $=3$ |
| :--- | :--- |
| Some | $=2$ |
| Not at all | -1 |

The average of the $l_{1}$ recodud res, unses was then transformed to form the HTOPICS variable as follows:

$$
\begin{array}{rlr}
\geq 1.5 \text { but } & \geq 2.5 & \text { A lot } \\
\leq 1.5 & \text { Some } & \text { Not at all } \\
& =2 \\
& \text { Insufficient data } & =1 \\
& =0
\end{array}
$$

HTAKEN (United States history studied or expected to study)

For grade 12/age 17, responses to items H 800801 to H 800804 were collapsed as follows:

| Any Yes | $=1$ |
| :--- | ---: |
| All "I don't know" | -2 |
| No "Yes" but at least one "No" | $=3$ |
| Insufficient data | -0 |

HTOPICS (Topics studied)
For grade 12/age 17, responses to ftems H 801901 to H 801913 were recoded as follows:

| A lot | $=3$ |
| :--- | :--- |
| Some | $=2$ |
| Not at all | $=1$ |

The average of the 13 recoded responses was then transformed to form the HTOPICS variable as follows:

$$
\begin{array}{rlr} 
& \geq 2.5 & \text { A lot }
\end{array} \quad-3
$$

Geography Cross-sectional Reporting Variables (Grade ĺ́/Age 17)
GSKILLS (Using the sikills and tools of geography)
Responses to items G800201. G8002C2, and G800203 were recoded as follows:
A lot

- 3
Some
- 2
Very little
- 1
Not at all
$=0$

The average of the three recoded responses was then transformed to form the GSKILLS variable as follows:

$$
\begin{array}{rlr} 
& \begin{array}{ll}
亡 2.5 & \text { A lot }
\end{array} & -3 \\
1.5 \text { to } & -2.5 & \text { Some } \\
<1.5 & \text { Very little/Not at all } & -1 \\
& \text { Inswfficient data } & -0
\end{array}
$$

glocat
Responses to items G800204, G800205, G800208, and G800209 were recoded as follows:

| A lot | $=3$ |
| :--- | ---: |
| Some | -2 |
| Very little | -1 |
| Not at all | -0 |

The average of the four recoded responses was then transformed to form the GLOCAT variable as follows:
$\geq 2.5$ A l.ot

- 3
1.5 to $<2.5$ Some
- 2
$<1.5$ Very little/Not at all $=1$
Insufficient data $\quad-0$

GPHYSIC (Understanding physical geography)
Responses to items G600206 and G800207 were recoded as follows:
A lot:

- 3
Sowe
- 2
Very little
$=1$
Not at all $\quad-0$

The average of the two rer oded responses as then transformed to form the GPHYSIC -iable as follows:

$$
\begin{array}{rlr}
1.5 \text { to }<2.5 & \text { A Iot } & =3 \\
& \text { Some } & -2 \\
& 1.5 & \text { Very little/Not at all } \\
& \text { Insufficient data } & =0
\end{array}
$$

GCULT (Understanding cultural geography)
Respor.ses to items $\mathbf{G 8 0 0 2 1 0}$ to $\mathbf{3 0 0 2 1 5}$ were recoded as follows:
A lot
$-3$
Some

- 2
Very litt.'e
$=1$
Nor at all $=0$

The average of the six recoded responses was then transformed to form the GCULT variable as follows:

$$
\begin{array}{rlr}
\geq 2.5 & \text { A lot } & -3 \\
1.5 \text { to }<2.5 & \text { Enme } & =2 \\
<1.5 & \text { Very little/Not at all } & =1 \\
& \text { Insufficient data } & =0
\end{array}
$$

GTAKEN (Geography courses taken or expected to take)
Responses to items 6800301 to $\mathbf{G 8 0 0 3 0 4}$ were collapsed as follows:

$$
\begin{array}{ll}
\text { Yes to any item } & " 1 \\
\text { No "Yes" but at least one "NO" } & =2 \\
\text { All I don't know } & =3 \\
\text { Insufficient data } & =0
\end{array}
$$

GWORLD (World history an, geography course work completed)
Responses co items 6800101 and 6800102 were recoded as follows:

```
Yes, in grade 9 - 1
Yes, in grade 10 := 1
Yes, in grade ll - = 
Yes, in grade 12 - = 
No, I haven't taken = 2
```

The two items were then collapsed as follows:

$$
\begin{array}{ll}
\text { Yes to either item } & =1 \\
\text { No to both items } & =2 \\
\text { Insufficient data } & =0
\end{array}
$$

GEOUS
(U.S. history and geography course work completed)

Responses to items 6800103, G800104, and G800105 were r :oded as foliows:

```
Yes, in grade 9 = 1
Yes, in grade 10 = i
Yes, in grade ll -1
Yes, in grade l2 - = 
No, I haven't taken - - 2
```

The three items were then collapsed as follows:
Yes to either iter $=1$ No to both items =: Insufficient data $=0$

GPHY.E (Pirysical geography/earth science course work completed)
Responses to item $\mathbf{G 8 0 0 1 0 6}$ were recoded as follows:

| Yes, in grade 9 | $=1$ |
| :--- | :--- |
| Yes, in grade 10 | $=1$ |
| Yes, in grade 11 | -1 |
| Yes, in grade 12 | $=1$ |
| No, I haven't taken | $=2$ |

The item was then collapsed as follows:
Yes to either item =1
No to both items =2
Insufficient data $=0$

GECONCM (Economic, political, human, cultural and urban course work completed)

Responses to items 6800197 , 6800108 , and 6800109 were recoded as follows:

| Yes, in grade 9 | $=1$ |
| :--- | :--- |
| Yes, in grade 10 | $=1$ |
| Yes, in grade 11 | $=1$ |
| Yes, in grade l2 | $=?$ |
| No, f her 2n't taken | $=2$ |

The three items were then collapsed as follows:

| Yes to either item | $=1$ |
| :--- | :--- |
| No to both items | $=2$ |
| Insufficient data | $=0$ |

GTOPICS (Average of GSKILLS, GLOCAT, GPHYSIC and GCULT)
The average of the four variables GSKILLS, GLOCAT, GPHYSIC, and GCULT was transformed to form the GTOPICS variable as follows:
$\geq 2.5$ A lot of study $=3$
$>1.5$ but < 2.5 Some study $=$ ?
0 - 1.5 Little or No study $=1$
Insufficient data $=0$

## GLOSSARY OF TERMS

# Focusing the New Design: The NAEP 1988 Technical Report 

GLOSSARY OF TERMS
anchoring. The process of characterizing score levels in terms of predicted observable behavior.
assessment session. The period of time during which a NAEP booklet is administered to ore or more individuals.
average response method (ARM). A regressionbased technique to predict for a respondent the conditional distribution of an average score on a set of items given responses to at least one of the items and other information.
background questionnaires. The instruments used to collect information about students'demographics and educational experiences.
bias. In statistics, the difference between the expe. icd value of an estimator and the population parameter being estimated. If the average value of the estimator over all possible samples (the estimator's expected value) equals the parameter being estim ted , the estimator is said to be urbiased; otherwise, the estimator is biased.

BIB (Balanced Incomplete Block) spiraling. A complex variant of multiple matrix sampling, in which items are administered in such a way that each pair of items is administered to a nationally representative sample of respondents.

BILOG. A computer program for estimating item parameters.
block. A group of assessment items created by dividing the item pool for an age/grade into subse's. Used in the implementation of the BIB spiral sample design.
booklet. The assessment instrument created by combining blocks of assessment items.
bridglng. An administration of the same set of exercises under two different conutions or to two different populations to aliow a statistical
link (bridge) to be established between results under the different circumstances.
calibrate. To estimate the parameters of a set of items from responses of a sample of examinces.
clestering. The process of forming sampling units as groups of other units.
codebrok. A formatted printout of NAEP data for each student, excluded student, teacher, and school in a particular grade/age.
coefficient of variation. The ratio of the standard deviation of an estimate to the value of the estimate.
combined ratio estimator. The ratio estimator resulting from firs' estimating the numeratur and the denominator values and then using the quotient of these as the estimate of the ratio.
common block. A group of background itcms includeu in the beginaing of every assessment booklet.
conditional probability. Probability of an event, given the occurience of another event.
conditioning variables. Demograpi... and othar background variables characterizing a respondent. Used in construction of plausible values.
cross-sectional assessment. An assessment that provides information aioout differences in educational performance across sabgroups of students. It does not provide information about changes in students' educational performance across time. It may, however, provide baseline data for measuring future trends.

Current Por slation Survey. A houschold sample survey conducted monthly by the Burcau of the Census to provide estimates of employment, unemployment, and other
characteristic of the gencral labor force, the population as a whole, and various subgroups of the population.
degnees of freedom. [of a variance estimator] The number of independent pieces of information used to gencrate a variance estimate.
derived variables. Subgroup data the: were not obtained directly from assessment responses, but through procedures of interpretation, classification, or calculation.
design effects. The ratio of the variance for the sample design to the variance for a simple random sample of the same size.
distractor. An incorrect response choice included in a multiple-choice item.
excluded student questionnaire. An instrument completed for every student who was sampied but excluded from the assessment.
excluded students. Sampled students determined by the school to be unable to participate. because they have limited English proficiency, are mildly mentally retarded (educable), or are functionally disabled.
expected value. The average of the sample estimates given by an estimator over all possible samples. If the estimator is unbiased, then its expected value will equal the population value being estimated.
field test. A pretest of items to obtain informat' Jn regarding clarity, difficulty levels, timing, feasibility, and special administrative situations; performed before revising and selecting items to be used in the assessment.
focused-BIB spiraling. A variation of BIB spiraling in which items are administered in such a way that cach pair of items within a subject area is administered to a nationally representative sample of respondents.
foils. The correct and in . rect response choices included in a multiple-choice item.
group effect. The difference between the mean for a group and the mean for the nation.
holistic scoring. A method of evaluating students'
writing for overall fluency in responding to a task.
imputation. Prediction of a missing value according to some procedure, using a mathematical model in combination with available information. Sce plausible values.
imputed race/ethnicity. The race or cthnicity of an assessed student, as derived from his or her responses to particular common background items. A NAEP reporting subgroup.
item response theory (IRT). Test analysis procedures that dssume a mathematical model for the probability that a given examince will respond correctly to a given exercise.

Jackknife. A procedure to estimate standard errors of percentages and other statistics. Particularly suited to $\mathbf{~ o m p l e x ~ s a m p l e ~ d e s i g n s . ~}$
machine-readable catalog. Computer processing control information, IRT parameters, foil codes, and labels in a computer Jabic format.
major strata. Used to stratify the primary sampling frame within each region. Involves stratification by size of community and degree oi ruralization (SDOC).

Metropolitan statistical area (MSA). An area defined by the federal government for the purposes of presenting jencrel-r urpose statistics for metropolitan areas. Typically, an MSA contains a city with a population of at least 50,000 plus adjacent arcas.
modal age. The age of the majority of a group of grade-eligible students.
modal grade. The grade attended by the majority of a group of age-eligible students.
mode of administration. The method by which students are administered assessment instruments. Both printed and tape-recorded administration methods are used.
multistage sample design. Indicates more than one stage of sampling. An example of th. stage sampling: 1) sample of counties (primary sampling units or PSUs); 2) sample of schools within each sample county,
3) sample of students within each sample school.
multiple matrix sampling. Samnling plan in which different samples of espondents take different samples of items.

NAEP scales. The anchoied sciles common across age/grade levels and assessment years used to report NAEP results.
nonresponse. The failure to obtain responses or measurements for ai ample elements.
nonsampiling error. A gencral term applying to all sources of error except sampling error. Includes errors from defects in the sampling frame, response or measurement error, and mistakes in processing the data.
objective. A desirable education goal agreed upon by scholars in the ficld, educat ors, and concerned laypersons, and estavlished through the consensus appreach.
observed race/ethniclty. Race or ethnicity of an assessed student as perceived by the excrcise administrator.
op:n-ended response item. A non-multiple-cheice item that requires some t $\}$. $\quad \therefore$ writte, ar oral respense.
oversparpling. Deliberatcly sampling a portion of tire population at a higher rate then the remainder of the population.
paced tapes The audo recording that accompanies some booklets to assure uniformity in administration. R.ecorded instructions prevent reading difficultics from interfering with an individual's ability to respond.
parental education. The level of cducation of the mother and father of an assessed student as derived from the student's response to two assessment items. A NAEP reporting subgroup.
percent correct. The percent of a target population that would answering a particular exercise correctly.
plausibie values. Proficiency values drawn at randon from a conditional distribution of a

NAEP respondent, giver bis or her response to copnitive exercises and a specified subset of background variables (conditioning variables? The selection of a plausible value is a $\mathbf{i} \mathrm{Jrm}$ of imputation.
poststratification. Classification and weighting to correspond to external values of sclected sampling units by a set of strata definitions after the sample has been selecied.
primary sampling unit (FSU). The basic geographic sampling unit for NAEP Fi.uer a single county or a set of contiguous counties.
primary trait scoring. A method of evaluating students' writing for cffectiveness in accomplishing the specific goal or purpose - -f each writing task.
principal questionaaire. A data collection form given to school principals before assessments. The principals respond to questions concerning enrollment, size ani occupational composition of the community, ctc.
probability sample. A sample in which every eleinent of the population ha a known, nonzero probability of bre , cr: $\quad, \quad:=1$.
pseudnreplicate. The value of a statistic based on an ultered sample. Used by the jackknife variance estimator.
public-use data tapes. Computer tapes containi $g$ respondent-level cognitive, backgrounci and attitude, and demographic data. Availablr or use by rescarchers sishing to do scoonda. analyses of NAEP čata.

QED. Quality Education Data, Inc. A supplicr of
 school data.
random variable. A variable that takes on any value of a specificd :c with a particular probability.
reglots. One of four geographic areas used in gathering and reporting 'ata: Northeast, Southeast, Central, and West (as defired $b$ the Office oi Business Eionomics, U.S. Department of Commerce). A NAEP reporting subgroup.
reporting subgroup Groups within the national
population for which NAEP data are reported: for example, gender, race/ethnicity, grade, age, level of parental education, region, and size and type of community.
respondent. A person who is eligible for NAEP, is in the sample, and responds by completing one or more items in an assessment booklet.
response eptions. In a multiple-chr:ce question, alternatives that i in be se!-cred by a respondent.
sample. A portion of a population, or a subset from a set of units, selected by some Frooability mechanism for the purpose of investigating the properties of the population. NAEP does not assess an entire population but rather selects a representative sample from the group to answer assessment items.
sampling error. The error in survey estimates that sccurs because only a sample c.? he population is observed. Measurid ty sampling standard error.
sampligg frame. The list of sampling units from which the sample is selected.
sampling weight. A multiplicative factor equal to the reciprocal of the probability of a respondent being selected for assessment with adjustment for nonresponse and perhaps also for poststratification. The sum of the weights provides an estinate of the number of persons in the pr- ulation represented by a respondent in th- sample.
school characteristics and policy questionnaire. A questionnaire completed for each school by the principal or other official; ssed to gather information concerning school administration, staffing patterns, curriculum, and student services.
selection probability. The chance that a panicular sampling unit has of being selected in the sample.
simple random sample. Process for selecting n sampling units from a population of N sampling units so that each sampling unit has an equal chance of being in the sample and every combination of $n$ sampling units has the same chance of being in the sample chosen.
size and type of community (STOC). One of the NAEP reporting subgroups, dividing the communities in the nation into seven groups on the basis of size and other characteristics.
standard error. A measure of sampling variability and measurement error for a statistic. Because of NAEP's complex sample design, sampling standard errors are estimated by jacniknifing the samples from first-stage sample estimates. Standard errors may also include a component due to the error of measurement of individual scores estinaied using plausible values.
stratificstion. The division of a population into parts, called strata.
stratified sample. A sample selected from a population that has been stratified, with a sample selected independently in each stratum. The strata are defined for the purpose of reducing sampling error.
student ID aumber. A unique identification number assigned to each respondent to preserve his or her anonymity. NAEP does not record the names of any iespondents.
subject area. One of the areas assessed by National Assessment; for example, art, civics, computer competerice, geography, literature, mathernatics, musis, reading science, U.E history, or writing.
systematic sample (syster atic random sample). A sample selected by , systematic method; for example, when inits are selected from a list at equally spaced intervals.
teacher questionnaire. A questionnaire completed by selected teachers of sample students; used to gather information concerning years of teaching experience, frequency of assignments, teaching materials used, and availability and use of computers.
trend assessment. An assessment based on replicating past procedures in order to report changes in educational achievement across time.
variance. The average of the squared deviations of a random variable from the expected value of the variable. The variance of an estimate is the squared standard error of the estimate.

## REFERENCES CITED IN TEXT

## Fiocusing the New Design: The NAEP 1988 Technical Report

## REFERENCES CITED IN TEXT

Allen, R., Rettis, N., Kurfman. D., MacDonald, W., Mullis, I. V. S., \& Salter, C. (190n). The geography leaming of high-school seniors. (No. 19 G 01 ) Princeton, NJ. Educational Testing Service, Natiunal Assessment of Educational Progress.

Anderson, L., Jenkins, L. B., Leming, J., MacDonald, W. B., Mullis, I. V. S., Turner, M. J., \& Wooster, J. S. (1990). The 1988 civics report card: Trends in achievement from 1976 to 1988 at ages 13 and 17 and achievement in 1988 at grades 4, \& and 12. Princeton, NJ. Educational Testing Service, National Assessment of Educational Progress.

Applebee, A. N., Langer, J. A., \& Mullis, I. V. S. (1986). The writing report card. Writing achievement in American schools. (No. 15-W-02) Princeton, NJ. Educational Testing Service, National Assessment of Educational Progress.

Applebee, A. N., Langer, J. A., \& Mullis, I. V. S. (1988). Who reads best? Factors related to reading achievement in grades 3, 7, and 11. (No. 17-R-01) Princeton, NJ: Educational Testing Service, National Assessment of Educational Progress.

Applebee, A. N., Langer, J. A., \& Mullis, I. V. S. (1989). Understanding direct writing assessments. Reflections on a South Carolina writing study. Princuton, NJ: Educational Testing Scrvice.

Applebee, A. N., Langer, J. A., Mullis, I. V. S., \& Jenkins, L. B. (1990). The vriting report curd, 198488. Findings from the Nation's Report Card. (No. 19-W-U1) Princeton, NJ. Educational Testing Scrvice, National Assessment of Educational Progress.

Applebee, A. N., Langer, J. A., Mullis, I. V. S., Jenkins, L. B., \& Foertsch, M. A. (1990). Learning to write in our nation's schools: Instruction and achi.vement in 1988 at grades 4, 8, and 12. Princeton, NJ. Educational Testing Service, National Assessment of Educational Progress.
B. ton, A. E. (1987a). The NAEP reading scale. In A. E. Beaton, Implementing the new design. The NAEP 1583-84 technical report (pp. 381-390). (No. 15-TR-20) Princeton, NJ. Educational Testing Service, National Assessment of Educational Pregress.

Beaton, A. E. (1987b). Impiev:uenting the new design. The NAEP 1983-84 technical report. (No. 15 TR 20) Princeton, NJ: Educational Testing Service, National Assessment of Educational Progress.

Beaton, A. E. (1988). Expanding the new design: The NAEP 1985-86 technical report. (No. 17-TR 20) Princeton, NJ. Educational Testing Service, National Assessment of Educational Progress.

Beaton, A. E., \& Johnson, E. G. (1990). The average response method of scaling. Joumal of Educutionu: Statistics, 15, 9-38..

Beator, A. E., \& Johnson, E. G. (1987). The average response method (ARM) of scaling. In A. E. Beatun, Implementing the new design. The NAEP 1983-84 technical report (pp. 435-480). (No. 15-TR-20) Princeton, NJ. Educational Testing Service, National Assessment of Educational Progress.

Beaton, A. E., \& Zwick, R. (1990). The effect of changes in the National Assessment. Disentungling the NAEP 1985-86 reading anomaly. (No. 17-TR-21) Princeton, NJ. Educational Testing Scrvice, National Assessment of Educational Progress.

Bock, R. D., Gibbons, R. D., \& Muraki, E. (1985). Full-information item factor analysis. (MRC Report Nu. 85-1) Chicago: National Opinion Research Center.

Buck, R. D., Muraki, E., \& Pfeiffenberger, W. (1988). Item pool maintenance in the presence of itcm parameter drift. Joumal of Educational Measurement, 25, 275-285.

Breland, H. M., Camp, R., Jonec, R. J., Morris, M. M., \& Rock, D. A. (1987). Assessing writing skill. (Research Monograph Number 11) New York: College Entrance Examination Board.

Caldwell, N., Moore, D., \& Slobasky, R. (1989). Repon on field operutions and duta collection activities NAEP 1988. Rockville, MD: Westat, Inc.

Campbell, A. (1987). Professional scoring. In A. E. Beatun, Implementing the new design. The NAEP 1983 84 technical report (pp. 175-184). (No. 15-TR-20) Princeton, NJ. Educational Testing Service, National Assessment of Educational Progress.

Chambers, J. M., Cleveland, W. S., Kleiner, B., \& Tukcy, P. A. (1983). Graphical methods for data analysis. Boston: Duxbury Press.

Cochran, W. F. (1977). Sampling techniques. New York: John Wiley \& Sons.
Educational Testing Service. (1987). ETS standards for quality and faimess. Princcton, NJ. Educational Testing Service.

Educational Testing Service. (1990). NAEP. On the culting edge of measurement sirce 1969. Princcton, NJ. Educatiozal Testing Service, National Assessment of Educational Progress.

Frankel, M. R. (1971). Inference from survey samples. Ann Arbor. Institute for Social Research., The University of Michigan.

Hambleton, R. K. (1989). Principles and selected applications of item response theury. In R. L. Linn (Ed.), Educational measurement (3rd edition). New York. American Cour il on Education/Macmillan.

Hammack, D. C., Hartoonian, M., Howe, J., Jenkius, L. B., .evvstik, L. S., MacDonald, W. B., Mullis, I. V. S., \& Owen, E. (1990). The U.S. history report card: The achievement of fourth, eighth, and twelfthgrade students in 1988 and trends from 1986 to 1988 in the factual knouledge of high school juniors. Princeton, NJ: Educational Testing Scrvice, National Assessment of Edurational Progress.

Juhnson, E. G. (1988). Mathematics data analysis. In A. E. Beaton, Expanding the new desigr. The NAEP 1985-86 tecanical report (pp. 215-240). (No. 17-TR-20) Princeton, NJ. Educational Testing Service, National Aisessment of Educational Progress.
Johnson, E. G. (1989). Considerations and techniques for the analysis of NAEP dat a. Joumal of Ein ational Statistics, 14, 303-334.
Johnson, ․ G. \& King, B. F. (1987). Generalized variance functions for a complex sample survey. Journal of Oficial Statistics, 3, 235-250.

Johnson, J. R. (1987). Instrument and item information. In A. E. Beaion, Implementing the new design. The NAEP 1983-84 technical report (pp. 119-134). (No. 15-TR-20) Princcton, NJ: Educational Testing Service, National Assessment of Educational I'rogress.

King, B. F., Bertrand, R. \& Dupuis, F. A. (1989). A wortd of aifferences. An intemational assessment of mathematics and science. Technical report. Princeton, NJ: Educational Testing Scrvice, International Assessment of Educational Progress.

Kirsch, I. S., \& Jungeblut, A. (1986). Literacy: Profiles of America's young adults, final report. (No. 16-PL-01). Princeton, NJ. Educational Testing Service, National Assessment of Educational Progress.

Kish, L. (1965). Surve' sampling. New York: John Wiley \& Sons.
Kish, L. \& Frankel, M. R. (1974). Inference from complex samples. Journal of the Royal Statistical Sucict, Series B, 36, 1-22.

Krewski, D. \& Rao. J. N. K. (1981). Inference from stratified samples: Properties of linearization, jackhnifc and balanced repeated replication. Annals of Statistics, 9, 1010-1019.

Langer, J. A., Applebee, A. N., Mullis, I. V. S., \& Foertsch, M. A. (1990). Leaming to read in our nation's schools: Instruction and achievement in 1988 at grades 4, 8, and 12. Princeton, NJ. Educational Testing Service, National Assessment of Educational Progress.

Little, R. J. A., \& Rubin, D. B. (1983). On jointly estimating parameters and missing data. .4merica . Statistician, 37, 218-220.

Lord, F. M. (1980). Applications of item response ...eory to practical testing problems. Hillsdale, NJ. Lawrence Erlbaum Associates.

Messick, S. J., Beaton, A. E., \& Lord, F. M. (1983). NAEP reconsidered: A new design for a new era. (NAEP Report ${ }^{82}$-1) Princeton, NJ: Educational Testing Service.

Mislevy, R. J. (1984). Estimating latent distributions. Psychometrika, 49(土), 359-381.
Misievy, R. J. (1985). Estimation of latent group effects. Journal of the American Statistical Assoriution, SO, 993-997.

Mislevy, R. J. (1988a). Randomization-based inferences about latent variables from complex sampics. (ETS Research Report RR-88-54-ONR) Princeton, NJ: Educational Testing Service.

Mislevy, R. J. (1988b). Scaling procedures. In A. E. Beaton, Expanding the new design. The N.4EP 1985-86 technical report (pp. 177-204). (No. 17-TR-20) Princeton, NJ: Educational Testing Service, Natiunal Assessment of Educational Progress.

Mislevy, R. J. (in press). Randomization-based inferences about latent variables from complex samples. Psychometrika.

Mislevy, R. J., \& Bock, R. D. (1982). BILOG. Item analysis and test scoring with binary logistic models [Computer program]. Mooresville, IN: Scientific Software.

Mislevy, R. J., \& Bock, R. D. (1989). PC-BILOG 3. Item analysis and test scoring with binary logistic models. Mooresville, IN: Scientific Software.

Mislevy, R. J., \& Shechan, K. M. (1987). Marginal estimation procedures. In A. E. Beat a, Inplementing the new design: The NAEP 1983-84 technical repor (pp. 293-360). (No. 15-TR 20) Princeton, NJ. Educational Testing Service, National Assessment of Educinional Progress.

Mislevy, R. J., \& Sheehan, K. M. (1989). The role of collateral information about examinees in itcm parameter cstimation. Psychometrika, 54, 661-679.

Mislevy, R. J., \& Wu, P-K. (1988). Infering examinee ability when some item responses are missing. (ETS Research Report RR-88-48-ONR) Princeton, NJ: Educational Testing Service.

Mullis, I. V. S., \& Jenkins, L. B. (1990). The reading report card, 1971-88. Trends from. the Nation's Repurn Card. (No. 19-R-01) Princeton, NJ: Educational Testing Service, National Assessment of Educational Progress.

National Assessment of Educational Progress. (1085). The reading report card. Progress toward excellence in our schools. (No. 15-R-01) Prince'on, NJ: Educational Testing Service, National Assessment of Educational Progress.

National Assessment of Educational Progress. (1987a). Reading objectives, 1986 and 1988 assessments. (Nu. 17/19-R-10) Princeton, NJ: Educational Testing Service, National Assessment of Educational Progress.

National Assessment of Educational Progress. (1987b). Civics objectives, 1988 assessment. (No. 19-C-10) Princeton, NJ: Educational Testing Service, National Assessment of Educational Progress.

Rogers, A. M. (1987). Data entry system. In A. E. Beaton, Implementing the new design. Tho NAEP 198384 technical report (pp. 185-199). (No. 15-TR-20) Princeton, NJ: Educational Testing Service, National Assessment of Educational Progress.

Rogers, A. M., Barone, J. L., \& Kline, D. L. (1989). A guide to the NAEP item information database. Princeton, NJ: Educational Testing Service, National Assessment of Educational Progress.

Rogers, A. M., Barone, J. L., \& Kline, D. L. (1989). A guide to the NAEP restricted-use data files. Princeton, NJ: Educat.jnal Testing Service, National Assessment of Educational Progress.

Rogers, A. M., Kline, D. L., Barone, J. L., Mychajlowycz, A. W., \& Forer, D. C. (1989). A primer for the NAEP item information database. Princeton, NJ. Educational Testing Service, National Assessment of Educational Progress.

Rogers, A. M., Kline, D. L., Johnson, E. G., Mislevy, R. M., \& Rust, K. F. (1990). National Assessment of Edscational Progress 1988 public-use data tapes version 2.0 user guide. Princeton, VJ. Educational Testing Service, National Assessment of Educational Progress.

Rogers, A. M., Kline, D. L., Johnson, E. G., \& Rust, K. F. (1989). National Aissessn:ent of Educational Progress 1988 public-use data tapes version 1.0 user guide. Princeton, NJ. Educational Tcoting Service, National Assessment of Educational Progress.

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York. John Wiley \& Sons.
Rust, K. (1985). Variance estimation for complex estimators in sample surveys. Journal of Official Statistics, 1(4), 381-397.

Rust, K. F., Bethel, J., Burke, J., \& Ha^ sen, M. H. (1990). The 1988 National Assessment of Educational Progress-Sampling and weighting procedures, final resort. Rockville, MD: Westat, Inc.

Satterthwaite, F. E. (1941). Synthesis of variance. Psychometrika, 6, 309-316.
Sheehan, K. M. (1985). M-GROUP: Estimation of group effects in multivariate models [Cumputer program]. Princeton, NJ: Educational Testing Service.

S :han, K. M. (1988). The IRT linking procedure used to place the 1986 intermediary scaling results onto the 1984 reading calibration scale. In A. E. Beaton, Expanding the new design. The NAEP 1985-86 technical report (pp. 555-565). (No. 17-TR 20) Princeton, NJ. Educational Testing Service, National Astessment of Educational Progress.

Stocking, M. L. (1986). TBLT: Transforming b's using á least squares technique [Computer program]. Princeton, NJ: Educational 'íesting Service:
stocking, M. L., \& Lord, F. M. (1983). Developing a cemmon metric in item response theory. Applied Psychological Measurement, 7, 201-210.

Wilson, D., Wood, R. L., \& Gibbons, R. D. (1983). TESTFACT: Test scoring and item factor analysis [Computer projram]. Chicago: Scientific Software.

Wingersky, M., Kaplan, B. A., \& Beaton, A. E. (1587). Joint estimation procedures. In A. E. Beaton, Implementing the new design: The NAEP 1983-84 technical report (pp. 285-292). (No. 15-TR-20) Princeton, NJ: Educational Testing Service, National Assessment of Educational Progress.

Wolter, K. M. (1985). Introduction to variance estimation. New York: John Wiley \& Sons.
Yamamoto, K. (1988). Science data analysis. In A. E. Beaton, Expanding the new design: The NAEP 1985 86 technical report (pp. 243-255). (No. 17-TR-20) Princeton, NJ: Educational Testing Service, National Assessment of Educational Progress.

Yamamoto, K. (1990). Mathematics and science trend data analysis. In A. E. Beaton \& R. Zwick, The effect of changes in the National Assessment: Disentangling the NAEP 1985-86 reading anomaly (pp. 111-144). Princeton, NJ: Educational Testing Service, National Assessment of Educational Progress.

Zwick, R. (1987a). Assessing the dimensionality of NAEP reading data. Joumal of Educational Measurement, 24, 293-308.

Zwick, R. (1987). Use of the NAEP almanacs. In A. E. Beaton, Implementing the new design. The NAEP 1983-84 technical report (pp. 517-522). (No. 15-TR-20) Princeton, NJ: Educational Testing Service, National Assessment of Educational Progress.

Zwick, R. (1988). Professionally scored items. Technical memorandum.

INDEX

## Focusing the New Design: The NAEP 1988 Technical Report

## INDEX

Absentee data
adjustment of, for makeup sessions, 164
data entry ior, 114
editing of, 155
Administration Schedulc, 93, 95, 96
materials processing, 112, 1i4-15
Age definition, 15,16
for all student samples, 16
changes in, 7, 15
for civics cross-sectional samples, 299
for civics trend samples, 299
effect of changes in, 189
for geography cross-sectional samples, 326
for mathematics trend samples, 330,332
for reading cross-section al samples, 253
for reading trend samples, 253
for science trend samples, 330,332
for U.S. history cross-sectional samples, 318
for U.S. history trend sample, 318
for writing cross-sectional semples, 268
for writing trend samples, 268
Anchoring, 6, 182-83
of civics cross-sectional scale, 308-9
of reading trend scale, 256
of U.S history cross-sectional scale, 322, 323
Answer documents. See also Resp ?nse methods/modes
evolution of, 101
key-entered booklets, 101
and placement of open-ended item scores, 128
scannable answer sheets, 101, 110
scannable booklets, 101
ARM. See Average response method
Asscssment instruments, 27-31, 69-83. See also Booklets; Item blocks; Excluded student questionnaire; School characteristics and policies questionnaire; Teacher questionnaire
Assessment items, summary statistics for, 344 . See aiso Item blocks; Item development
Assessment Policy Committec, 33, 34, 43, 47
Assessment sessions
summary statistics for, 345
types of, 60-63
Assistant field directors
responsibilities, 85
Average response method (AKM), 275-78
application to the writing cross-sectional scale, 291-93
application to the writing trend scale, 287-88 composite, 275, 276, 277
computation of plausible values for, 240-42
estimable correlations for writing cross-sectional analysis, 293
estimable correlations for writing tr id analysis, 281
estimation ố cross-products matrix
directly estimable terms, 278-82
imputation of inestimable correlations, 279, 283-88
terms estimable from other grades or years, 279, 282-83
and scaling, 235
use of, in writing data analysis, 182
Background and attitude question development, 26-27, 33-50
for civies and U.S. history, 45
for geography, 46
for reading, 39
for writing, 42
Balar ?d incomplete block (BIB) spiral design, $\pm+15,27-29$. See also Focused-BIB spiral design
introduction of, in NAEP, 4
Bias
consideration of, in secondary analyses, 245-247
review of item text for, 34, 39, 42
BIB-spiral design. See Balanced incomplutc bluck spiral design
BILOG computer program, 181, 261, 233, 239, 305, 321, 327, 337
Blocks. See Item blocks
Bookicts
arrangement of blocks in, for main samplc., 70
assignment to students, 29
blocks used, for bridge booklets, 71, 78-82, for focused-BIB booklets, 69, 72-74; for intercorrelation booklets, 69, 72-74; for special study booklets, 70, 72-74
civics, 298, 311, 312
design of, for bridge samples, 29-30; for focused-BIB samples, 6, 27-28; for intercorrelation samples, 6,28
mathematics trend, 330
nur.iocr administered, for bridge samplus, 78-80; for そain samples, 72-74

Booklets (continued)
number created for main samples, 71
response methods, for bridge samples, 78-8C; for main samples, 72, 73, 74; for reading, 254
science trend, 330
summary statistics, 344
used for all samples, 16
Bridge samples, 17-18, 179, 189-90. See also Trend samples
age definition for, 16
block contents for, 78-80
booklets used for, 16, 71, 78-82
for civics trend analysis, 311
introduction of, in NAEP, $\mathbf{y}$
for mathematics trend analysis, 329
modal grades for, 16
mode of administration for, 16
number of booklets administered in, 78-80
for reading anomaly analysis, 6,255
for readirg trend analysis, 252, 255
response methods for booklets in, 78-80
sample sizes for, 16
for science trend analysis, 329
student cohorts assessed for, 16
time of testing for, 16
for U.S history trend analysis, 317
for writing trend analysis, 268
Calculator items, 331
Chief State School Officers, 31, 87, 88
Civics assessment development
background questions, 45
items, 44
objectives, 43
Civics cross-sectional data analysis, 297-310
anchoring, 308
conditioning effects, 306, 574-85
conditioning variables, 306, 529-36; composite and derived, 306, 309, 620-28
dichotomization of open-ended items, 310
differential item functioning, 305
dimensionality, 301, 304-5
effect of block position, 301, 303
item analysis, 301
item calibration, 306
item classification, 310
item parameters, 305, 654-57
items excluded from scaling, 305
items used, 298, 300
KR-20 reliabilities for item blocks, 301, 302
not-reached percents for item blocks, 301, 302
parameter estimation, 305
plausible values, 305-6
populations assessed, 297
proficiency estimation, 306-7
reporting variables, composite and derived, 309,

699-702
sample sizes, 300
samples used, 258
scaling, 306-9
transformation of plausible values, 307
Civics cross-sectional samples
age definition for, 299
booklets used for, 299
modal grades for, 299
sample sizes for, 299
time of testing for, 299
Civics data analysis, 297-316. See also Civics cross-sectional data analysis; Civics trend data analysis
Civics trend data analysis, 311-316
conditioning effects, 314, 586-92
conditioning variables, 314, 537-44; composite
and derived conditioning varisbles 315,628
dichotomization of open-ended items, 316
equating, 314
item analysis, 313
item calibration, 313
item parameters, 314, 658-61
item response function, 313
items excluded from scaling, 311, 313
items used, 311, 312
KR-20 reliabilities iur item blocks, 313
not-reached percents for item blocks, 313
parameter estimation, 313
plausible values, 314
populations assessed, 311
proficiency estimation, 315
reporting variables, composite and derived, 315. 702
sample sizes, 312
samples used, 311
transformation of plausible values, 315
Civics trend samples
age definition for, 299
booklets used for, 295
modal grades for, 299
mode of administration for, 311, 313
sample sizes for, 299
time of testing for, 299
Cocfficient of variation
definition, 347
Common background questions
composite and derived, for reporting, 687-93
content of, 47
development of, 47
timing of, 47
Conditioning effects
for civics cross-sectional data, 306, 574-85
for civics trend data, 314, $386-92$
for geography cross-sectional data, 327, 599-600
for mathematics trend data, 334, 335, 601-6
for reading cross-scectional data, 262, 559-68
for reading teacher data, 264, 569-70
for reading trend data, 256, 571-73
for science trend data, 339, 607-9
for U.S. history cross-sectional data, 322, 593-98
Conditioning variables
for 1988 scales, 248, 249
for civics cross-sectional data, 306, 529-36;
composite and derived, 306, 309, 620-23
for civics trend data, 31 , 537-44; composite anu derived, 315, 628
common, 503-7
for geography cross-sectional data, 327, 549; composite and derived, 635-36
for mathematics trend data, 334, 335, 550-54; composite and derived, 637-38
and plausible values, 238,240
for reading cross-sectional data, 262, 508-19; composite and derived, 613-14
for reading teacher data, 264
for reading trend data, 256, 520-22
and reduction of potential bias in secondary analyses, 246
for science trend data, 339, 555
for U.S. history cross-sectional data, 322, 545-48; composite and derived, 628-35
for writing cross-sectional dat $2,291,523-25$; composite and derived, 294-295, 615-18
for writing trend data, 275, 279, 526-28; composite and derived, 619-20
Consultants
for objectives and item development, 35, 471-80
Data analysis, 179-85. See also Civics data analysis, Geography data analysis; Mathematics data analysis; Reading data analysis; Science data analysis; Tcacher data analysis; U.S. history data analysis; Writing data analysis
anchoring, 182-83
average response method, 182
dichotomization, 181
differential item functioning, 181
item analysis, 180
item response function, 181
item response theory, 181
parameter estimation, 181
plausible values, 181
proficiency estimation, 181
reliability for item blocks, 180
samples of students, 179-80
scaling, 18i-83
speededness checks, 180
Data entry
for absentec data, 114
for excluded student questionnaire, 123
for school characteristics and policies
questionnaire, 124
for school workshect, 111-12
system, 152-53
for teacher questionnaire, 124
Data processing. See also Data transcription, Database creation; Editing data; Materials processing
flow, 102
scope of work, 100
systems, 100
Data transcription, 145-53
accuracy of, 100
entry and sesolution, 152-53
for excluded student questionnaire, 102
loading, 150-52
quantities, 100
scanning, 145, 148-49
for school questionnaire, 102
for teacher questionnaire, 102
time period for, 100
Database. See also Database creation
overvicw of, 105
size, 107
structure, 106
Database creation, 105, 163-66
derivation of weights for, 163-64
master catalog for, 165-66
merging files for, 164-65
Database products, 167-75 See also Item information database; Public-use data tapes/files; Restricted-use data files usefulness, 8, 106
Degrees of freedom
of jackknife variance estimator, 220, 222-38
Design and Analysis Committec, members of, 1
Design effects
for proportion-correct statistics, 212-17
for simple regression cocfficients, 220, 221
for subgroup mean proficiency scores, 217-19
usc of, in estimating sampling variability, 212-20
Design of assessment, 13-31. See also Assessment instruments; Background and attitude question development; Item development; Objectives development; Sample design
$a_{c} c$ definition, 15
assessment instruments, 27-? 1
background question development, 26-27
BIB spiral design, 14-15, 27-29
booklet design, 27-30
bridge samples, 17-18
considerations in, 14
focused-BIB samples, 15, 17
focused-BIB spiral design, 15, 28
half-samples, 17
improvements in, 14

Design of assessment (continued)
intercorrelation samples, 17
item block design, 27
item development, 26-27
modal grades, 15
objectives development, 26-27
overview of design, 14-15
populations assessed since 1969, 19-22
sample selection, 19, 23-26
special study samples, 17
subject areas assessed in 1988, 13; since 1909, 19-22
time of testing, 15
Dichotomization of open-ended items, 181
for civics, 310, 316
for reading, 257
for U.S. history, 319
Differential item functioning (DIF), 181
for civics cross-sectional data, 305
consideration of, in scalizg, 233
for reading cross-sectional data, 261
Dimensionality
of civics cross-sectional items, 301, 304-5
consideration of, in scaling, 334
of read. 3 trend items, 255
District supervisors
nu:nbers of, 86
responsibilities, 86, 9́, 91, 93-94
training, 86-87
Document literacy, 7, 180
booklet conteatis for, 70
number of open-ended items for, 127
preliminary item analysis for, 252
scoring of open-ended items for, 131
Editing data, 155-58
for absentecs, 155
for assessed students, 156
for professionally scored items, 157
for questionnaires, 156-57
Education Comemission of the States, 229, 242
Eligibility
distribution of students by, 345
for students in bridge samples, 23
for students in main samples, 19
Equating
for civics trend data, 314
for mathematics trend data, 330, 331, 334, 335
for reading cross-sectional data, 263
and scaling, 235
for science trend data, 330, 331, 337
Error analysis. See Quality control
"Estimate" items, 335
Excluded student questionnaire
content, 47, 48, 83
data transcription, 102
development, 47
editing data from, 156-57
and field administration, 95,96
materials processing for, 122-25
number of items in, 344
quality control error analysis for, 161
Excluded students
distribution of, by age class and sample, 345
introduction of, in NAEP, 4
population estimates (wcighted) for, 347
rates of exclusion, 66, 96, 98
and sample design, 64, 66
Excrcise administratros, 93,91
recruitment, 86, 91
resporisibilities, 86, 93, 95, 96
rraining, 91
Field administration, 31-32, 85-98. See also Field administration foıms; Ficld administration staff
arranging assessments, 94
distributing and collectırg questionnaires, 95-96
distact supervisors' resporisibilities, 86, 90, 91, 93-94
makeup sessions, 93
obtaining cooperation of districts and schools, 87-91
organization of, 85-86
participation rates, for schools, 90, 92; for sludents in fall assessments, 96, 97; for students in wincer/cpring assessments, 97, 98
preparing reports and siipping materials, 96
sample sizes, for students in fall assessments, 26, 97; for students in winter/spring assessments, 97,98
selection of students, 94-95
raining of dis.rict supervisors, 86-87
Ficld administration forms. See Adeninistration Schedule; Introductory Mecting Form; Results of Contact Form; Roster of Questionnaires; School Update Form, School Workshect; Session Assignment Form; Student Listirg Form; Teacher Survey Roster
Field administration staff. See Assistant ficla directors, District supervisors; Exercise administraioiz; Field director; Project director; School coordinators
Ficld directur, 94
responsibilities, 85-87
Ficld testing
and item development process, 48-49
Focused-BIB samples, 15, 17, 180
age definition for, 16
block used, 72 -74
booklet contents, 69
booklets used for, 16
ior civics cross-sectional analysis, 297, 298
for geography analysis, 325
modal grades for, 16
mode of administration for, 16
number of booklets administered for, 72-74
for reading cross-sectional analysis, 252,256
response methods used for, 72-74
sample sizes for, 16
student cohorts assessed for, 16
time of testing for, 16
for U.S. history cross-sectional analysis, 317
for writing cross-sectional analysis, 268, 289
Focused-BIB spiral design, 5-6, 15, 28
and reduction of potential bias in secondary analyses, 246

Geography assessment development
background questions, 46
items, 46
objectives, 4.5
Geography cross-sectional data analyois, 325-28
conditioning effects, 327, 599-600
conditioning variables, 327,549 ; composite and
derived, 635-36
item analysis, 325
item calibration, 327
item classification, 327-28
item parameter estimation, 327
item parameters, 666-67
item response theory, 327
items excluded from scaling, 325
KR-20 reliabilities for item blocks, 326
mean proportion correct for itcm blocks, 326
zot-reached percents for item blocks, 325
plausible values, 327
proficiency estimation, 327
reporting variables, composite and derived, 704-7
samples used, 325
scaling, 327
Geography crors-sectional samples
age definition for, 326
booklets used for, 326
modal grades for, 326
sample sizes for, 326
tine of testing for, 326
Geography daîa analysis. See Geography crosssectional data analysis
Grade/age. See Student cohorts
Half-samples
purpose of, 17
student weights for, 202
Holistic data
analysis of, for writing trend, 288
correlation of scores with primary trait scores, 132
items used for, in writing trend, 289
sample sizes for writing trend, 289
scoring, 133-34
training of scorers, 138-39
Implementation of assessment. See Field administration; Materials processing; Professional scoring
Imputation. See Plausible values
Instruments, 27-31, 69-83. See also Booklets; Item blocks; Excluded student questionnaire; School characteristics and policies
questionnaire; Teacher questionnaire
Intercorrelation samples, 17, 180
age definition for, 16
block used for, 72-74
booklet contents for, 69
booklets used for, 16
for civics cross-sectional analysis, 297
for geography cross-sectional analysis, 325
modal grades for, 16
mode of administration for, 16
number of booklets administered for, 72-74
purpose of, 6
for reading cross-sectional analysis, 252, 256
response methods used for, 72-74
sample sizes, 16
student cohorts assessed for, 16
time of testing for, 16
for U.S. history cross-sectional analysis, 317
Intraclass correlation coefficient, calculation of, 140n
Introductory Meeting Form, 88, 89, 90
IRT. Sie Item response theory
Iter ar: Aysis, 180
wr. :usration of, in scaling 234
fr civics cross-sectional data 301
for civics trend data 313
for document literacy items 252
for geography cross-sectional data 325
for mathematics trend data 331
for reading cross-sectional data 258
for reading trend data 255
for science trend data 337
for U.S. isistory cross-sectional data 319
Item blocks
arrangement of, 70
assembly of, for field test, 39; for final assessment, 49
background items : n , for main samples, 75-77
cognitive blocks: number created for main samples, 70 ; use in bridge sample booklets, 78-80; use in main sample booklets, 72-74
cogntive items in, for main samples, 75-77
common background, 69 ; used in bridge sample booklets, 78-80; used in main sample

Item blocks (continued)
booklets, 72-74
design of, 27
effect of position of, in booklets: fur civics, 301 , 303; for reading, 258; for writing, 294
for mathematics trend samples 330
for science trend samples 330
subject srea backgroun $\_$: use in bridge sample bookle's, 78-80; us; in main sample booklets, 72-74
timing of, for bridge samples, $71,81,82$; for main samples, 70
total of, by subject area, 50
total open-ended items in, for main samples, 75-77
Item calibration
for civics cross-sectional data, 306
for civics trend data, 313
for geography cross-sectional data, 327
for reading cross-sectional data, 261
for reading trend data, 256
for U.S. history cross-sectional data, 321
Item classification
for sivics cross-sectional data, 310
for geography cross-sectional data, 327-28

- U.S. history cross-sectional data, 323-24

Item development, 26-27, 33-50
for civics and U.S. history, 44
consensus process, 34
consultants £or, 35, 471-30
general procedures for, 37-38
for geography, 46
major considerations in, 34
for reading, 39
schedule, 35
for writing, 41
Item information database, 8, 99, 167-68
creation procedures, 167
overview, 106
purpose of, 167
size, 100
structure, 167
Item response function, 181
for civics trend data, 313
for mathematics trend data, 335
sor reading cross-sectional data, 261
for reading trend data, 256
Item respense theory (IRT). See also Item response theory parameter estimation; Item response theory parameters
introdution of, in NAEP, 4
and scaling, 232
use in data analysis, 181
Item response theory parameters
for civics cross-sectional data, 305, 65 $\downarrow-57$
for civics trend data, 314, 658-61
for geography cross-sectional data, 666-67
for mathematics trend data, 334, 335, 668-72
for reading cross-sectional data, $262,647-50$
for reading trend data, 256, 651-53
for science trend data, 337, 673-77
for U.S. history cross-sectional data, 662-65
Item response theory parameter estimation, 181
for civics cross-sectional data, 305
for civies trend data, 313
for geography cross-sectional data, 327
for mathematics trend data, 331, 335
for reading cross-sectional data, 261
for reading trend data, 256
and scaling, 233
for science trend data, 337
for U.S. nistory cross-sectional data, 321
Items used in assessment, summary statistics for, 344. See also Item blocks; Ite.n development

Items excluded froms -caling
for civics cross-sectional analysis, 305
for civics trend analysis, 311, 313
ior gcography cross-sectional analysis, 325
for mathematics trend analysis, 331
for reading trend analysis, 256
for science trend analysis, 331
for U.S. history cross-sectional analysis, 321
Jackknife variance estimator. See Sampling variability, estimation of

Key entry
quantities, 100
KR-20 reliabilities
for civics cross-sectional item biocks, 301, 302
for civics trend item blocks, 313
for geography cross-sectional item blocks, 326
for reading cross-sectional item blocks, 258
for reading trend item blocks, 255
for U.S. history cross-sectional item blocks, 319, 320

Learning Area Committees
and item development, $34,35,37,39-42,44-46$
and objectives development, $34,35,36,40$, 43-45
selection of, 35,36
M-GROUP computer program, 181, 238, 305, 327, 334
Main samples, 15-17, 189. See also Focused-BIB samples; Intercorrelation samples; Special study samples
Makeup sessions, 93
number of, by age class and sample, 345
Materials processing, 102, 109-25
for administration schedules, 112, 114-15
data entry, 111, 113, 114, 123, 124
flow, 102
loading scanned data, 117-19, 123
for professionally scored respinces, 115-16
quality control, 120,125
for questionnaires, 122
receipt of materials, 109-11
resolution processing, 119-22, 123
scanning, 110, 116-17, 125
for school worksheets, 111-12, 113
for student instruments, 115-22
validation, 120, 124
verification, 120
Mathematics data analysis. See Mathematics trend data analysis
Mathematics trend data arialysis, 329-337
conditioning effects, $334,335,601-6$
conditioning variables, $334,335,550-54$;
compo;ite and derived, 637-38
equating, $330,331,334-35$
"estimate" items, 335
item analysis, 331
item parameter estimation, 331, 335
item parameters, 334, 335, 668-72
item response function, 335
items excluded from scaling, 331
main objective of, 330
mean proportion correct for item blocks, 333
plausible values, 334
proficiency estimation, 334
proficiency scores, 335
scaling, 331, 333-37
Mathematics trend samples
age de'inition for, 330, 332
booklets for, 330
modal grades for, 332
mode ol admioistration for, 329,330
sample sizes, 332
time F f testing for, 330, 332
Mechanics data
analysis of, for writing trend, 288
items used for writing trend, 288
sample sizes for writing trend, 288
scoring, 133
training of scorers for, 138
Modal grades
for all student samples, 16
changes in, 15
for civics cross-sectional samples, 299
for civics trend samples, 299
for geography cross-sectional samples, 326
introduction of, in NAEP, 5
for mathematics trend samples, 332
for reading cross-sectional samples, 253
for reading trend samples, 253
for science trend samples, 332
for U.S. history cross-sectional samples, 318
for U.S. history trend sample, 318
for writing cross-sectional samples, 268
fo: writing trend samples, 268
Mode of administration
for all student samples, 16
for civies trend samples, 311, 313
effect of changes in, 189
for mathematics trend samples, 329, 330, 332
for science trend samples, 329, 330, 332
National Center for Education Statistics, 4
National Geographic Society, 33, 34, 45
Nouresponse, adjustments for. See Weighting procedures
Not-reached percents
for civics cross-sectional item blocks, 301, 302
for civics trend item blocks, 313
consideration of, in scaling, 234
for geography cross-sectional item blocks, 325
for reading cross-sectional item blocks, 258, 259
for reading trend items, 255
for U.S. history cross-sectional item blocks, 319
Objectives booklets
review and publication, 49
Objectives development, 26-27, 33-50
for civics, 43
consensus process, 34
consultants for, 35, 471-80
general procedures for, $35-36$
for geography, 45
for reading, 38
major considerations in, 34
schedule, 35
for U.S. history, 43
for writing, 40
Office of Educational Research and Improvement (OERI) review of publications, 35
Office of Management and Budget (OMB) clearance
for all iteriss, 35, 49, 50
for background questionnaires, 47
for civics and U.S. history items, 44
for geography items, 46
for reading items, 39
for writing items, 42
Open-ended items
and civics data analysis, $298,300,310316$
numbers of, in bridge s: aples, 127; in main samples, 127
and reading data analysis, 256,257,253, 263
response times for, in bridge samples, 130 ; in main samples, 129
score ranges for, in bridge samples, 130; in main samples, 129

Open-ended items (continised)
scorer reliability for, in bridge samples, 14-44;
in main samples, 141-42
total of, in each main sample block, 75-77
and U.S. history data analysis, 317, 319
Oversampling
of Black and Hispanic students, 5, 52, 57, 188, 190-191
of Black students, for writing mech. rius analysis, 288

Paced tape. See Mode of administra:ion
Parental notification or permission, 94
Participation rates
for schools, in bridge samples, $61,90,92$; in main samples, $60,90,92$; summary, 90,92
for students, in fall assessments, 96,97 ; in winter/spring assessments, 97, 98; by age class, 66
Percent correct
definition, 258 m
for civics cress-sectional item blocks, 302
for civics trend item blocks, 313
for reading cross-sectional item blocks, 260
Plausible values, 236-248
for civics cross-sectional scale, 305-6
for civics trend scale, 314
somputation of, in average response method scales, 240-42; in IRT-based scales, 237-40
and conditioning variables, 238, 240
and data analysis, 181
on database, 165
example of use in secondary analyses, 247-48
as intermediary computations only, 237
for mathematics trend samples, 334
methodolog;, for scaling, 235-37
for nonrespondents, 237
on public-use data tapes, 243
purpose of, 6, 236
teacher-based, for readir~, 264
transformation to profi ency scale, 182; for civics cross-sectional, 307 ; for civics trend, 315 ; for geography cross-sectional, 327; for mathematics trend, 334,337 ; for science trend, 337, 339; for U.S. history cross-sectional, 322
for U.S. history cross-sectional scale, 322
use of, in secondary analyses, 242-48
for writing cross-sectional scale, 291
for writing trend scale, 275-278, 288
Population estimates
excluded stuients, 347
students, 346
Populations assessed
in 1988,188
since 1969, 19-22
Poststratification, 198-202
to adjust for oversampling in writing trend analysis, 288
changes in procedures, 199-201
effect of changes in procedures, 201-202, 203-205
for excluded student weights, 96
improvements in, 8
revisicns for 1984 weights, 201, 641-42
for teacher-student we'ghts, 207
Primary sampling units (PSUs), 23-24, 52-56
certainty and noncertainty, 53
designation by seas ${ }^{\circ}$ n for main assessments, 55
designation for bridge assessments, 55-56
drawn for multiple assessment years, 55
final sample of, 54
formation of, 52-54
stratification of, by geographic region, 53; by minority population, 54 ; by MSA or nonMSA, 53; by socioeconomic characteristics, 54
Primary trait data
agreement and reliability of scores, 139-144, 271-273
correlation of scores with hol: stic scores, 132
effect of across-year variation : 1 scores, 270
analysis of, for writing cross-sectional, 289-91; for writing trend, 268, 270-75
sample sizes, for writing cross-sectional, 290, for writing trend, 274
scoring, 132-33
training for scoring, 137-38
Principal questionnaire, 60
Professional scoring, 127-44. See also Open-ended items: Primary trait data
answer documents and placement of scores, 128
editing data for, 157
guidelines for scoring of open-ended items, for civics, 135-36; for document literacy, 131; for mathematics, 134-35; for reading, 128, 131; for science, 135; for U.S. history, 136; for writing, 131-34
tolistic scoring, 133-34
materials processing, 115-16
mechanics scoring, 133
number of items scored, 100
number of responses scored, 100
primary trait scoring, 132-33
reliability and resolution, 139-44
scoring supervisor, 137
scoring teams, 128, 137
training of scorers, 137-39
work schedule, 139
Proficiency estimates
of students, by suobpopulation, 347
Proficiency estimation, 181
difference in, for reading trend, 255
for civics cros' sectiunal scale, 306-8
for civics trend scale, 315
for geography cross-sectional scale, 327
fcr mathematics trend samples, 334, 335
for reading cross-sectional scale, 262
for reading trend scale, 256
for science trenc' samples, 337
for U.S. history cross-sectional scale, 322
Project director (field administration)
responsibilities, 86, 87
Proportion correct
for gecgraphy cross-sectional item blocks, 326
for mathematics trend item blocks, 333
for science trend item blocks, 338
for U.S. history cross-sectional item blocks, 320
FsiJs. See Primary sampling units
Pubic-use data tapes/files, 8, 99, 168-. 5
contents, 14
codehooks for, 173-74
control statement files for, 174-75
data definition for, 171-72
data file catalogs for, 173
data file layouts for, 172-73
file definition for, 100-70
machine-readable caialog files for, 175
overview, 106
plausible vaiues on, 243
purpose of, 168, 343
size, 100
variables definition for, 170-71
Quality control
confidence limits for, 159, 161
of data entry, 159-62
:rror analvsis, for questionnaire data entry, 161;
for student daia entry, 161
for materials processing, 120, 125
observed error rate for, 159,160
quantities involved in, 100
Quality Education Data, Inc. (QED), 57, 59, 165
Questionnaires. See Excluded student questionnairc; Principal questionnaire; School characteristics and policies questionnaire; Teacher questionnaire

Reading assessment development
background questions, 39
items, 39
objectives, 38
Reading ancmaly, 179, 235
data analysis for, 251
samples used for analysis of, 6, 255
Reading cross-sectional data analysis, 256-65
conditioning effects 262, 559-68; for teacher data, 264, 569-570
conditioning variables $262,508-19$; for teacher
data, 264; composite and derived, 613-14
dichotomization of open-ended items, 257
differential item functioning, 261
effect of block position, 258
cquating, 263
item analysis, 258
item calibration, 261
item parameters, 262, 647-50
item =esponse function, 261
KR-20 reliabilities, 258
not-reached percents for itera viocks, 258, 259
number of items administered, 257
parameter estimation, 261
percent correct for item blocks, 258, 260
proficiency estimation, 262
purpose of, 257
samples used, 252,256
scaling, 262
scaling metric, 262-64
speededress, 258
teacher data analyses, 264-65
teacher-based plausible values, 264
Reading cross-sectional samples
age definition for, 253
booklets used for, 253
modal grades for, 253
response inodes for, 254
sample sizes, 253
time of testing for, 253
Reading data analysis, 251-65. Sec also Reading cross-sectional data analysis; Reading trend data analysis
and reading anomaiy, 251, 255
document literacy iiems, 252
main goals of, 251
sample characteristics, 253
Reading trend data analysis, 255-56
anchoring, 256
conditioning effects, 256, 571-73
conditioning variables, $256,520-22$
dimensionality, 255
item analysis, 255
item calibration, 256
item parameters, 256, 051-53
item response function, 256
items excluded from scaling, 256
KR-20 reliabilities for item blocks, 255
not-reached percents for items, 255
parameter estimation, 256
proficiency estimation, 256
purpose, 255
reporting variables, composite and derived, 695-96
samples used, 252, 255
scaling, 256

Reading trend samples
age definition for, 253
booklzts used for, 253
modal grades for, 253
response modes for, 254
sample sizes, 253
time of testing for, 253
Reliability
internal consistency, for item blocks, 180; for civics cross-sectional blocks, 301, 302; for civics trend blocks, 313; for geography cross-sectional blozks, 325; for reading cross-sectional blocks, 258; for reading trend blocks, 255 ; for U.S.
history cross-sectional blocks, 319
of professional scoring results, 139-44
rater, for writing trend scores, 270-273
Reporting subgroups, 681-86
age, 686
gender, 681
grade in school, 685-86
parental education, 684
race/ethnicity, imputed, 681-82
race/ethnicity, observed, 681
region of the country, 684
size and type of community (STOC), $882-83$
Reporting variables, composite and derived
civics cross-sectional, 309, 699-702
civics trend, 315, 702
common background, 687-93
geography cross-sectional, 704-7
reading trend, 695-96
U.S. history cruss-sectional, 703-4
writing cross-sectional, 696-97
writing trend, 697-99
Repuits
list of, for 1988 subject areas, $3 n$
RESOLVE computer program, 263
Response r.ethods/modes. See also Answer documents
for main sample booklets, 72-74
for reading booklets, 254
Restricted-use data files, 8, 99, 168
creation procedures, 168
overview, 106
purpose of, 168
structure, 168
Results of Contact form, 88-90
Roster of Questionnaires, 93
Sample design, 19, 23-26, 51-68, 188-190
assignment of sessions to schools, $60-63$
excluded students, 64,66
exclusion rates for students, 66
oversampling of minority students, 52,57
participation rates for schools in bridge samples, 61; in main samples, 60
participation rates for siudents, 66
participatios rates, overai!. 68
populations sampled, 51
primary sampling units, 52-56
sample sizes for schools in bridge samples, 61 ; in main samples, 60
selection of schools for bridge samples, 60-63;
for main samples, 57-60
selection of students, 63-64
selection of teachers, 67
session types for bridge samples, 60
size and type of community (STOC), 60, 682-83
stages of selection, 51
time of testing, 52
types of assessment, 52
Sample size(s)
for all student samples, 16
for civics cross-sectional samples, 299, 300
for civics trend samples, 299, 312
for geography cross-sectional samples, 326
for mathematics trend samples, 332
for reading cross-secticnal samples, 253
for reading trend samples, 253
for schools in bridge samples, 61 ; in main samples, 60; by session type, 65
for science trend samples, 332
for students in fall assessments, 96,97 ; in winter/spring assessments, 97,98 ; by session type, 65
for U.S. history cross-sectional samples, 318
for U.S. history trend sample, 318
for writing cross-sectional primary trait analysis, 290
for writing trend holistic analysis, 289
for writing trend mechanics analysis, 288
for writing trend primary trait analysis, 274
summary statistics, 344-45
Sample weights. See also Weighting procedurcs and database creation, 163-64
excluded student weights, 206
jackknife replicate weights, 207, 208, 210
student full-sample weight, 202, 206
student season-specific weight, 202, 206
teacher-student weights, 206
used for reading teacher analysis, 265
Samples of students, 15-23, 179-80. See also Bridge samples; Focused-BIB samples; Intercorrelation samples; Special study samples
Sampling variability, estimation of, 187-88, 207-28 degres of frcedom of jackknifc variance estimator, 220, 222-28
effect of sample design on, 187, 208
jackknife replicatc weights, 208, 210
using design effects, 212-20
using jackknife variance estimator, 208-11

Scaling, 181-83, 229-49. See also Plausible values advantages and disadvantages, 230
average response method (ARM) model for, 235
biases in secondary analyses, 245-47
and changes in item context, 235
and changes in speededness conditions, 235
for civics cross-sectional data, 306-9
for civics trend data, 313-315
comparison of reporting scale and Consumer
Price Index, 230-31
computing plausible values in ARM scales, 240-42
computing plausible values in IRT-based scales, 237-40
detection of conditional dependence in, 233
and differential item functioning, 233
and dimensionality, 234
and equating, 235
eximple of use in secondary analyses, 247-48
fer geography cross-sectional data, 327
and item response theory, 232
and item analysis, 234
for mathematics trend data, 331, 333-37
methodology, 231-42
metric, for reading cross-sectional data, 262-64
and not-reached items, 234
overview of 1988 scales, 248-49
parameter estimation, 233
plausible values methodology for, 235-37
for reading cross-sectional data, 262
for reading trend data, 256
for science trend data, 337-39
in secondary analyses, 242-48
statistical tests for secondary analyses, 244-45
three-parameter logistic IRT model for, 232-35
for U.S. history cross-sectional data, 319, 321-22
for writing cross-sectional data, 291-93
for writing trend data, 275-88
Scanning, 110, 116-17, 123, 145, 148-49
quantitics, 100
School characteristics and policies questionnaire 60
contents, 47, 48, 83
data transcription, 102
development, 47
editing data from, 156-57
field administration of, 95, 96
materials processing, 122-25
number of items in, 344
quality control error analysis for, 161
timing of, 48
School coordinators, 93, 94
assignment, 94
responsibilities, 93, 95, 96
School districts
obtaining cooperation of, 87-91
School Update Form, 88-90

School Worksheet, 93
materials processing, 111-12, 113
Schools
obtaining cooperation of, 87-91
participation rates, for bridge samples, 61,90 , 92 ; for main samples, $60,90,92$; summary, 90, 92, 344
sample sizes, for bridge samples, 61 ; for main samples, 60 ; by session type, 65
selection of, for bridge samples, 60-63; for main samples, 57-60
summary statistics, 344
Science data analysis. See Science trend dy ${ }^{\prime}$, analysis
Science trend data analysis, 329-31, 337-39
conditioning effects, 339, 607-9
conditioning variables, 339, 555
equating, 330, 331, 337
item analysis, 337
item parameter estimation, 337
item parameturs, 337, 673-77
items excluded from scaling, 331
main objective of, 330
mean proportion correct for item blocks, 338
proficiency estimation, 337
scaling, 337-39
Science trend samples
age definition for, 330, 332
booklets used for, 330
modal grades for, 332
mode of administration for, 329, 330
sample size, 332
time of testing for, 330, 332
Session Assignment Form, 63, 91, 95
Sessions
summary statistics for, 345
types of, 60-63
Size and type of community (STOC), 60, 682-83
Special study samples, 7, 17, 180
age definition for, 16
booklets used, 16; contents, 70
modal grades for, 16
mode of admin:stration for, 16
sample sizes, 16
student cohorts assessed for, 16
time of testing for, 16
Speededness
checks for, in item analysis, 180
considerations of, in scaling 235
and reading cross-sectional analysis, 258
State Advisary Committee, 43, 44
State education agencies
and assessment development, 42
State Testing Directors, 43
STOC. See Size and type of community
Stratification. See Primary sampling units

Student cohorts
for all student samples, 16
for civics cross-sectional samples, 299
for civics trend samples, 299
for geography cross-sectional samples, 326
for mathematics trend samples, 330, 332
for reading cross-sectional samples, 253
for reading trend samples, 253
for science trend samples, 330,332
target populations, 19, 23
for US.S. history cross-sectional samples, 318
for U.S. history trend sample, 318
for writing cross-sectional samples, 268
for writing trend samples, 268
Student data
editing of, 156
materials processing, 115-22
quality control error analysis for, 160
Student Listing Form, 93
Students
cohorts assessed for each sample, 16
distribution of, by age class and sample, 345
population estimates (weighted) for, 346
proficiency estimates for, by subpopulation, 347
Subject areas
assessed in 1988, 3, 13
assessed since 1969, 19-22
list of reports for, 3
rationale for including, 33
TBLT computer program, 263, 314
Teacher data analysis
for reading, 264-65
for writing, 295
'feacher questionnaire
changes in, 8
contents, 47,82
data editing, 156-57
data transcription, 102
development, 47
field administration of, 95, 96
materials proc ssing, 122-25
number of items in, 344
quality control error analysis for, 161
summary statistics, 345
timing, 48
Teacher sample
selection of, for reading, 67; for writing, 67
Teacher Survey Roster, 93
Technical report
audience, 3
organization of, 9
purpose, 3
TESTFACT computer pregram, 301
Three-parameter logistic model compu:ing plausible values for, 237-40
us, in data analysis, 181; for geography, 327; for reading, 261; for U.S. history, 321
$u, e$ in scaling, 232-235
Time of testing, 15
for all student samples, 16
:hanges in, 15
for civics cross-sectional samples, 299
for civics trend samples, 299
effect of changes in, 189
for geography cross-sestional samples, 326
for mathematics trend samples, 330, 332
for reading cross-sectional samples, 253
for reading trend samples, 253
for science trend samples, 330, 332
by type of assessment, in sample design, 52
for U.S. history cross-sectional samples, 318
for U.S. history trend sample, 318
for writing cross-sectional samples, 268
for writing trend samples, 268
Trend samples. See Bridge samples; Civics trend samples; Mathematics trend samples; Reading trend samples; Science trend samples; U.S. history trend sample, Writing trend samples
U.S. history assessment development
background questions, 45
items, 44
objectives, 43
U.S. history cross-sectional data analysis, 317-24 anchoring, 322, 323
conditioning effects, 322, 593-98
conditioning variables, 322, 545-48; composite and derived, 628-35
dichotomization of open-ended items, 319
item analysis, 319
item calibration, 321
item classification, 323-24
item response theory, 321
items excluded from scaling, 321
item paraméers, 662-65
items used, 317, 321
KR-20 reliabilities for item blocks, 319, 320
mean proportion ©orrect for item Jlocks, 320
not-reached percents for item blocks, 319
parameter estimation, 321
plausible values, 322
proficiency estimation, 322
reporting variables, composite and derived, 703-4
scaling, 319, 321-22
U.S. history cross-sectional samples
age definition for, 318
broklets used for, 318
modal grades for, 318
sample sizes, 318
time of testing for, 318
U.S. history data analysis, 317-24. See also U.S. history cross-sectional data analysis; U.S. history trend data analysis
U.S. history trend data analysis, 324
item analysis, 324
item classification, 324
items used, 324
U.S. history trend sample
age definition for, 318
booklets used for, 318
modal grades for, 318
sample size, 318
time of testing for, 318
Weighting procedures, 190-207
adjustments for age-only eligibics nonresponse, 195; school nonresponse, 193; sussion nonresponse, 194; student nonresponse, 196
distribution of weight components for 1988 samples, 483-96
for excluded student weight;, arr
nonresponse adjustments for excluded student weights, 206; for stucuent weights, 192-97; for teacher-student weights, 207
poststratification of excluded student weights, 206; of student weights, 198-202; of teacher-student weights, 207
for student base weight, 191-92
tape and spiral sample designations for, 190
for teacher-student weights, 206
trimming of excluded student weights, 206; of student weights, 197-98; of teacher-studeni weights, 207
Writing assessment development
background questions, 42
items, 41
longer response time for items, $7,41,50$; booklets used to measure, 70
objectives, 40
Writing cross-sectional data analysis, 289-96
average response method, 291-93
components of, 289
conditioning variables, 291, 523-25; composite and derived, 294, $5.5,615-18$
effect of block position on performance, 294
effect of longer response time on performance, 295-96
items used, 290
plausible values, 291
primary trait a alalysis, 289
$\ddagger$ nress and instruction analysis, 294-95
$p_{1}$. sse of, 267
reporting variables, composite and derived, 696-97
sample sizes, 290
samples used, 268
scaling, 291-93
teacher data analysis, 295
Writing cross-sectional samples
age definition for, 268
modal grades for, 268
time of testing for, 268
Writing data analysis, 267-96. See also Writing cross-sectional data analysis; Writing tread data analycis
objectives of, 267
Writing trend data analysis, 268-89
agreement and reliability for p -imary trait scores, 271-273
average response method (ARM), 275
conditioning variables, 275, 279, 526-28; composite and derived, 619-20
effect of across-year variation in primary trait scoring, 270-75
holistic data analysis, 288, 289
items used, 208, 269, 288, 289
plausible values, 275-278, 288
primary trait analysis and scoring, 268
purpose of, 267
reporting variables, composite and derived, 697-99
rescoring of 1984 writing papers, 270
sample sizes, for holistic anaiysis, 289; for mechanics analysis, 288; for primary trait analysis, 274
samples used, 268
scaling, 287-88
Writing trend samples
age definition for, 268
modal grades for, 268
time of testing for, 268

## END

# U.S. Dept. of Education <br> Office of Education <br> Research and <br> Improvement (OERI) 

## ERIC

```
            Date Filmed
                March 29, 1991
```


[^0]:    ${ }^{1}$ The Reading Report Card, 1971 to 1988: Trends from the Nation's Report Card (Mullis \& Jenkins, 1990); Learning to Read in Our Nation's Schools: Instruction and Achievement in 1988 ac Grades 4, 8, and 12 (Langer, Applebee, Mullis, \& Foertsch, 1990); The Writing Rer :t Card, 1984-88: Findings from the Nation's Report Card (Applebee, Langer, Mullis, \& Jenkins, 1990); Learning to Write in Our Nation's Schools: Instruction and Achievement in 1988 at Grades 4, 8, and 12 (Applebee, Langer, Mullis, Jenkins, \& Foertsch, 1990); The 1988 Civics Report Card: Trends in Achievement from 1976 to 1988 at Ages 13 and 17, and Achievement in 1988 at Grades 4, 8, and 12 (Anderson, Jenkins, Leming, MacDonald, Mullis, Turner, \& Wooster, 1990); The U.S. History Report Card: The Achievement of Fourth-, Eighth-, and Twelfth-grade Students in 1988 and Trends from 1986 to 1988 in the Factual Knowledge of High-school Juniors (Hammack, Hartoonian, Howe, Jenkins, Levstik, MacDonald, Mullis, \& Owen, 1990); and The Geography Learning of High-school Seniors (Allen, Bettis, Kurfman, MacDonald, Mullis, \& Salter, 1990).

[^1]:    ${ }^{1}$ The author is indebted to Albert Beaton and the authors of Chapters 2 through 6 for portions of this chapter, and to Mary Varone for ably typing the manuscript.

[^2]:    LHr - Long Hriting
    Doc = Document Literacy
    RW = Reading and Writing
    RHS = Reading, Mathematics, and Science
    CY Calender year

[^3]:    a Ase 17 students who had dropped out of school or had graduated prior to assessment.
    Small, special-intarest assessment conducted on limited samples at specific grades or ases.

[^4]:    ${ }^{1}$ Although reading, writing, civics, and U.S. history were the four subject areas approved for the 1988 assessment by the Assessment Policy Committee at their October 18-19, 1985 meeting, the committee also authorized NAEP to seek funds for a geography assessment. Thus, the fifth subject, geography, was added later when funding was obtained from the National Geographic Society to help support an assessment of high-school seniors.

[^5]:    ${ }^{2}$ Reading Objectives, 1986 and 1988 Assessments (Princeton, NJ: Educational Testing Servıce, National Assessment of Educational Progress, Jurie 1987).

[^6]:    ${ }^{3}$ Writing Objectives, 1988 Assessment (Princeton, NJ: Educational Testing Service, National Assessment of Educational Progress, August 1987).

[^7]:    ${ }^{6}$ Geography Objectives, 1988 Assessment (Princeton, NJ: Educational Testing Service, National Assessment of Educational Progress, June 1988).

[^8]:    * That part of Virginia that is included in the Washingion, DC. metropolitan statistical area is included in the Northeast region, the remainder of the state being included in the Southeast region.

[^9]:    * The ratcs quoted for 1986 are for the grade $3 / a g e 9$ and grade $7 / a g e 13$ spring samples reapectively.
    ** Ro assessment for srade $12 /$ age 1 : mas conducted before 1988 . Thio rate quoted here is for the 1986 sreçe $11 / a 8{ }^{2} 17$ spring sample.

[^10]:    ${ }_{0}$ The next highest was 159.
    The per-item sample sizes foz the main samples are lor the major crosesectional amplos only. They do not cover auch assessment omponents as geosraphy (at ase class 17) or international mathematics (at aga class 13).
    for booklots 61-66
    d for booklet 67
    The next highest was 200 .

[^11]:    ${ }^{1}$ The author is heavily indebted to the Nationa! Assessment of E'ucational Progress 1988 Puolic-use Data Tapes Version 1.0 User Guide (Regers, Kline, Johnson, \& Rust, 1989) and in particular to Debra Kline for portions of this chapter.

[^12]:    t B=scannable booklct

[^13]:    † B = scannable booklot, C m circled-answor booklot
    | Sub,ject area background quostions ero included in the cogritivo blocks ine this booklet.

[^14]:    
    \& Subject area background questions are inc'uded in the cognitive blocks for this booklet

[^15]:    | $B=$ scannable booklet,, circled-answer booklet
    : Subject area background questions are included in the cognitive blocks for this booklet.

[^16]:    ${ }^{1}$ The summary numbers presented in Table 5-1 sefer to individual schools, whereas Tables $5-2, \quad 364$, and $16 \cdot 5$ refer to grade/age samples. Since a school may be selected for more than one grade/age santple, che school appears in the counts for each of the appropriate assessment samples in Tables 5.4, 16.4, and 16-5.

[^17]:    * Cooperation rate

[^18]:    * Number includes 5,098 13-year-old students who were assessed as part of the International Assessment of Mathematice and Science (see A World of Differences: An International Assessment if́ lathematics and Science. Technical Report [King, Bertrand, \& Dupuis, 1989]).

[^19]:    ${ }^{1}$ Robert Mislevy and Norma Norris provided helpful comments on this chapter.

[^20]:    ${ }^{1}$ The statistical programming for this chapter was provided by Javid Freund, Bruce Kaplan and Lee Ann Held of Educational lasting Service, and Dalia Kahane of Westat, Inc.

[^21]:    Resions are the seme as for stratifientior and reporting (see Chapter 3), except that all of Virginia is included in the southeast region for poststratification purposes

[^22]:    *SDCC (Sample Doscription of Commity) catebories. 1-Bis City, 2-Fringe of Bis City. 3--Medium City; 4-Scoall Place; and 5-Extreme Rural.

[^23]:    * Design effects are based on the conventional and jackknife variances of subgroup means of the first plausible values of reading proficiency.

[^24]:    * Regressions are based on the first. plausible values of reading proficiency.

[^25]:    * Design effects are based on the first plausible values of reading

[^26]:    * Regressions are based on the first plausible values of reading proficiency.

[^27]:    ${ }^{1}$ The contributions of Albert Beaton, Eugene Johnson, David Freund, Bruce Kaplan, Jennifer Nelson, Kathleen Sheehan, Minhwei Wang, and Rebecca Zwick to this chapter are gratefully acknowledged.

[^28]:    *. Imputations constructed with conditional distributions that inciuded 64 contrasts, including those

[^29]:    ${ }^{1}$ David Freund provided statistical programming, with the assistance of Minhwei Wang and Kate Pashley. Robert Mislevy provided consultation on scaling. Jo-Ling Liang assisted with analyses.

[^30]:    M - Mathematics
    S - Science
    CY - Calendar year: birth dates in 1978, 197.
    and 1970 for ages 9, 13, and 17
    not CY - (Age 17 only): birth dates between October 1, 1970 and September 30, 1971

[^31]:    ${ }^{5}$ Percent correct is defined as $R /(R+W+O+D K)$, where $R, W, O$, and $D K$ represent the sum of the student weights for those who got the ..en right, those who got the item wrong, those who reached the item but raittte it, and those who indicated that they did not know the answer, respective?y. The 3 K option is included only in certain trend items. Students who did not reac'a the item are not included in the computation. An iten is considered "not reached" if the student did not respond to the item and did not give a valid response to any of the succeeding items within $t$ ie item block. Each block of items is separately timed and therefore, the determination of which tems are to be considered "not reached" is made separately by block.

[^32]:    ${ }^{6}$ The metric in which the item parameters ind Appendix $F$ are given differs by a linear tr "sformation from the reading scale used for reporting: Letting $\theta$ represent the roticiency metric that corresponds to the i'em parameters and letting RS represent the metric of the reporting scale, the raquired transformation is RS $=500+250.5$.

[^33]:    ${ }^{1}$ The statistical programing for the average response method was ably performed by Bruce Kaplan Data analysis and additional statistical programming were performed by Bruce Kaplan, Jo-Ling Liang, Mike Narcowich, and Inge Novackoski. The authol is indebted to Mary Varone for typing the manuscript.

[^34]:    * All selected 1984 papers wore also rescored for primary trait.

[^35]:    * All 1984 rescored papers were also holisticaily scored.

[^36]:    4: correlation estimable at Grade 4
    8: correlation estimable at Grade 8
    T: correlation estimeble at Grade 12

[^37]:    * Standard arrors in parentheses

[^38]:    ${ }^{1}$ Data analysis and scaling were performed by John J. Ferris, Edward Kulick, Jennifer Nelson, Norma Norris, Kate Pashley, and Minhwei Wang. Eugene Johnson, Robert Mislevy, and Kentaro Yamamoto consulted on IRT scaling and generation of plausible values.

[^39]:    * Booklet 30 did not contain a civics block; the number of students that were administered a civics block in this sample is 1,621 .

[^40]:    ${ }^{2}$ Exercises from the 1970 citizenship assessment were also administered; however, the sparsity of items and test objectives common to the 1970 assessment and any of the three later assessments precluded using 1970 data in the scaling process or extrapolating the 1970 mean $p$-values onto the trend scale.

[^41]:    ${ }^{1}$ The contributions of Rebecca Zwick, Kentaro Yamamoto, and Lynn Jenkins to this chapter are gratefully acknowledged.

[^42]:    R- Reading
    C - Civics
    $\mathrm{H}=$ U.S. history
    G - Geography

[^43]:    ${ }^{1}$ The contributions of Kentaro Yamamoto, Rebecca Zwick, and Lynn jenkins to this chapter are gratefully acknowledged.

[^44]:    * Number of age-only students who answered any one of the trend blocks.

    Note: 1) For all three ages, mathematics 1988 trend blocks are identical to those administered in 1986; 2) Only the subset of the $86: 17$ and 17 [Br86-RMS] samples that were age-eligible and received trend blocks were used, and numbers on the table reflect such samples.

[^45]:    ${ }^{2}$ The IRT equating of two assessments can be based either on an assumption that the proficjency distributions for the twe assessments are the same (common-population equating) or an assumption that a set of curmon ite..s are functioning in the same manner in both assessments icommon item equating). The 1988 mathematics and science trend assessments used comron-item equating methods. In the future, we may consider an alternate equating method based on the distribl ions of item parameters.

[^46]:    a Age-only BIB sample with at least one science trend block.
    b 1986 age 17 trend sample blocks 1 and 2 were paired.
    c Includes some items that were excluded from IRT scaling.

[^47]:    ${ }^{1}$ The author is indebted to Albert Beaton for portions of this chapter. Information for various tables in this chapter was provided by John Ferris, David Freund, Lynn Jenkins, Edward Kulick, Mıchael Narcowich, Norma Norris, Kate Pashley, and Keith Rust.

[^48]:    * Because many items were used at more than one age class, the total number of distinct items is not the sum of distinct items used for the three age rlasses.

[^49]:    * Because many items were used $: t$ more than one age class, the t-tal number of distinct items is not the sum of distinct items ased for the thr: $=$ age classes.

[^50]:    Grade/age sample using calendar-year age definitions
    Age-only sample using previous age definitions
    c Grade/age samyle rising previous age definitions

[^51]:    * Coefficieat of variation is defined as (100 times Standard Error divided by Weighted N ).

[^52]:    * Coefficient of variation is defined as (100 timec Sandard Error divided by Weighted N).

[^53]:    * Coefficient of variation is defined as (100 times Standard Error divided by Weighted N).

[^54]:    * Coefficient of variation is defined as (100 times Standard Error divided by Weighted N).

[^55]:    * Coefficient of variation is defined as (100 times Standard Error divided by Weighted $N$ ).

[^56]:    * Coefficient of variation is defined as (100 times Standard Error divided by Weighted N).

[^57]:    * Coefficient of variation is defined as (100 times Standard Error divided by Weighted N).

[^58]:    * Coefficient of variation is defined as (100 times Standard Error divided by Weighted N ).

[^59]:    * Coefficient of variation is defined as (100 times Standard Error divided by Weighted N).

[^60]:    * CV is the coefficient of variation for the sum of the woights.

[^61]:    * CV is the coefficient of variation for the sum of the weights.

[^62]:    * Average response method proficiency score
    ** CV is the coefficient of variation for the sum of the weights.

[^63]:    * Average response mothod proficiency scoce

[^64]:    * CV is the coefficient of variation for the sum of the woights.

[^65]:    * CV is the coafficiert of variation for the sum of the welghts.

[^66]:    * CV is the coofficient of variation for sum of the waights.

[^67]:    CV is the coefficient of variation for the sum of the woights.
    (****) Standard orror is Breater than 99.9.

[^68]:    * CV is the coefficient of variation for the sum of the weights.

[^69]:    * CV is the coefficient of variation for the sum of the woights.

[^70]:    * CV is the coefficient of variation for the sum of the weights.

[^71]:    * CV is the coefficient of varlation for the sum $C f$ the weights. (****) Standard error 18 greater than 99.9

[^72]:    * CV is the coefficient of variation for the sum of the weights.

[^73]:    * CV is tho coefficient of variation for the sum of the weights.

[^74]:    * EV is the coefficient of variation for the sum of the weights.

[^75]:    * Number includes 5,098 13-year-old students who were assessed as part of the International Assessment of Mathematics and Science (see A World of Differences. An International Assessment of Mathematics and Scıence. Technical Report [King, Bertrand, \& Dupuis, 1989]).

[^76]:    * Number includes 5,098 13-year-old students who were assessed as part of the International Assessment of Mathematics and 'cience (see A World of Differences. An Iniernational Assessment of Mathematics and Science. Technical Report (King, Bertrand, \& Dupuis, 1989]).

[^77]:    * Number includes 5,098 13 -year-old stufunts who were assessed as part of the International Assessment of Mathematics and Science (see A World of Differences: An International Assessmert of Mathematics and Science. Technical Report [King, Bertrand, \& Dupuis, 1989]).

[^78]:    * Number includes 5,098 13 -year-old students who were assessed as part of the International Assessment of Mathemarics and Science (see A World of Differences. An International Assessment of Mathematics and Science. TeLhnical Report (King, Bertrand, \& Dupuis, 1989]).

[^79]:    * Multicolumn entries without overburs indicate multiple contrasts. "Items in the home," for example, induces two contrasts. A response of 2 vs . all other responses, and a response of 3 vs. all other responses. Barred columns treated as one contrast.

[^80]:    * Multicolumn entries without overbars indicate multiple contrasts. Rarred columns treated as one contrast.

[^81]:    * Multicolumn entr?.es without overbars indicate mu? tiple contrasts. Barred columns treated as one contrast.

[^82]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^83]:    * Multicolumn entries wirhout overbars indicate nultipie cortras.s. Barred columns treaied as one contrast.

[^84]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columns ireated as one contrast.

[^85]:    * Multicolumn entries without overbars irdicate multiple contrasts. Barred columns treated as one contrast.

[^86]:    * Multicolumn entries without overbars indicate multiple contiasts. Barred columns treated as one contrast.

[^87]:    * Multicolumn entries without overbars indicate multiple contcasts. Barred columns treated as one contrast.

[^88]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^89]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columns treatec as one contrast.

[^90]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^91]:    * Multicolumn entries without overbars indicate multiple cor.trasts. Barred columns treated as one contrast.

[^92]:    * Multicolumn entries withc $t$ overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^93]:    * Multicolum entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^94]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^95]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^96]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^97]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^98]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columins treated as one contrast.

[^99]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^100]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^101]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^102]:    * Multicolumn entries without overbars ind..cate multiple contrasts. Barred columns treated as one contrast.

[^103]:    * Multicoluna entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^104]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^105]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^106]:    * MuIticolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^107]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^108]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^109]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^110]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^111]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^112]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^113]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^114]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^115]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^116]:    * Multicolumn entries withcut overbars indicate multiple contrasts. Baried columns treated as one contrast.

[^117]:    * Multicolumn entries without overbars indicate multifle contrasts. Barred columns treated as one contrast.

[^118]:    * Multi, slumn entries without overbars indicate multiple contrasts. Barred columns tr" ted as one contrast.

[^119]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^120]:    * Mult column entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^121]:    * Multicolumn entries without overbars indicate multiple contrasts. Barred columns treated as one contrast.

[^122]:    * Multicoiumn entries vithout overbars indicate multiple contrasts. Barred columns treated as one contrasi.

[^123]:    * Multicolumn entries without overbars indicate multiple contrasts.

    Barred columns treated as one contrast.

[^124]:    ${ }^{1 m} 1984$ variable ETHNIC contains the same race/ethnicity categories as the 1988 variable DRACE, but the imputation procedure used was slightly different.

[^125]:    ${ }^{2}$ In the bridge to 1984 , the race/ethnicity response choices for this item were in a different order.

[^126]:    ${ }^{3}$ In the bridge to 1384, the items used were B000601 and B000701. Instead of "had some education after high school," the third response choice read, "went to another school after graduating from high schooil."

[^127]:    *That part of Virginia that is included in the Washin'ston, DC, metropoiitan statistical area is included in the Northeast region; the remainder of the state is included in the Southeast region.

